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NOETHERIAN BASES IN ORDINAL SPACES* 

BY ANGEL TAMARIZ MASCARUA 

Summary 

A collection 'ff of subsets of a set Xis said to be Noetherian if<?? does not 
contain a strictly increasing infinite chain. In this paper we show that a space 
of ordinals [O, a), has a Noetherian base if and only if a is smaller than the 
first strongly inaccessible cardinal. 

1. Introduction 

W. F. Lindgren and P. J. Nyikos in [2], gave an example due to J. Vaughan 
of a topological space without a Noetherian base. The space in question is that 
of the ordinals smaller than the first strong limit cardinal k of uncountable 
cofinality with the order topology. The proof is based on the following result: 
If f: [O, k) - [O, k) is a regressive function, then there exists b E [O, k) and A 
C [O, k) such that f (a) :S b for every a EA and I A I > 21 b 1. Nevertheless, this 
proposition is not true in general. (In the case where k is strongly inaccessible 
it is true. See [1 Theorem A 1.3]), as can be seen from the following example: 
Let k = lima<w, lexpaw) where w is the first infinite cardinal and w1 is the first 
uncountable one. Let us consider the function 

f: [O, k) - [O, k) defined by 

{
exp0 w 

f (b) = ~ 
if expaw < b < exp0 + 1w 
if b = expaw 
if b < exp1w 

( exp 0 w is defined by induction in the following manner: exp1 w = 2 w; if expnw 
is defined by every n < a and a is a limit ordinal, exp 0 w = limn<a{expnw }. If a 
is not a limit and a> 1, expaw = 2exp•-'w). 

The main result of this paper completely determines for which ordinals a, 
[O, a) has a Noetherian base. The theorem is the following: [O, a) and any of 
its subspaces has a Noetherian base if and only if [O, a] does not contain a 
strongly inaccessible cardinal. 

Recently, J. Vaughan informed me that in 1983 E. van Douwen presented 
this theorem at a conference and he had a copy of this manuscript sent to me. 
Nevertheless, the proof appearing in the manuscript only shows that [O, a) 
has a Noetherian base if a is less than the first weakly inaccessible cardinal 
and that [O, a) does not have a Noetherian base when a is a strongly 
inaccessible cardinal. 

* This article contains a part of a Doctoral Dissertation written under the direction of Professors 
A. Garcia-Maynez and R. Wilson, to whom the author is gratefully indebted. 
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In this article inaccessible cardinal will mean uncountable inaccessible 
cardinal. 

2. Spaces of Ordinals and Noetherian Bases 

Definition 2.1. A collection 'fl of subsets of a set Xis Noetherian if 'fl does 
not contain strictly increasing infinite chains. That is, 'fl is Noetherian if 
whenever ICn)nEN C 'fl is such that Ci C C2 C • • • , then ICn)nEN is a finite 
collection. 

LEMMA (2.2). Let Y be a subset of a Ti space X and A an open subset of Y. 
Then there exists a Noetherian collection$ of open sets in X, such that 

(i) For every B E $, B n Y = A. 
(ii) If C is an open subset of X such that A C C n Y, then exists B E $ 

satisfying BC C. 

Proof. If A is open in X, then we may take $ = IA j. Let us now suppose 
that A is not open in X. If C is an open subset of X such that A C Y n C, we 
can construct by induction a strictly decreasing chain st' of open sets in X that 
satisfy 

(a) For every B E st', B n Y = A and B C C. 
(b) A n (int n st')°¥- 0. 

In fact, if for some ordinal a, IBx h<a is a collection of open sets in X such 
that Bx2 £Bx,~ Ai< \ 2 < a, satisfying (a) and AC int(nx<aBx ), the contention 
is proper and since Xis Ti, there is an open set Ba contained properly in each 
one of the Bx and whose intersection with Y is A. This process must finish for 
some ordinal a 0 • st'= IBx h<ao is the required chain. 

In the same manner we construct $ by induction. Assume that for some 
ordinal a we have lst'xh<a, where for each A< a, st'x is a strictly decreasing 
chain of open sets in X which satisfies (a) and (b) for some open CCX such 
that AC C n Y and if Ai< \ 2 < a and BE st'x2 , then B does not contain any 
element belonging to st'x,• If Ux<ast'x does not satisfy (ii), then there is CCX 
an open set such that A C C n Y and C does not contain any element in 
Ux<ast',-. Let st'a be a strictly decreasing chain of open sets in X that satisfies 
(a) and (b) with respect to C. This process must finish for some a0 • So$= 
Ux<a0st'x satisfies (i) and (ii) and is a Noetherian collection since st'x is, and if 
Bi E st'x,YB2 E st'x2 with Bi£ B2 then Ai 2:: \2, 

COROLLARY (2.3). Let Y be a subspace of a Ti space X and let$' be a 
Noetherian base for Y. Then there exists a Noetherian collection of open sets$ 
in X such that $' = IB n Y:B E $) and for each y E Y, $ contains a local 
base of y in X. 

Proof. For each B' E $' let $ (B') be the collection whose existence is 
guaranteed by Lemma 2.2. ,~ = U I$ (B ') :B' E $' l is the required N oeth­
erian collection. 
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COROLLARY (2.4). Let X be a T1 space. For each x E X, x has a Noetherian 
local base of neighborhoods. 

LEMMA (2.5). Any open subspace of a space with a Noetherian base, has a 
Noetherian base and the disjoint topological union of spaces with a Noetherian 
base, also possesses a Noetherian base. 

Definition 2.6. A collection st' of subsets of a set X is an antichain if for 
each pair of different elements in st', A1 and A 2 , we have A 1 <:f.. A 2 and A 2 <:f.. 

A2. 

LEMMA (2.7).i Let X be an infinite set of cardinality a. Then there e;xists an 
antichain st' C fJl! (X) such that I st' I = 2" and for each A E st', I A I = a. 

Proof. Let fJl! C !JI) (X) be a partition of X consisting of subsets of X, each 
one with exactly two elements. The collection of choice functions defined on 
fJl!, determines an antichain with the desired properties. 

THEOREM (2.8). Let a be an ordinal, [O, a) has a Noetherian base if and only 
if [O, a] does not contain a strongly inaccessible cardinal. 

Proof. Assume that [O, a] does not contain a strongly inaccessible cardinal 
and that for every /3 < a, [O, /3) has a Noetherian base. If a is a successor 
ordinal, Corollary 2.4 and the hypothesis of induction show that [O, a) has a 
Noetherian base. 

Suppose that a is a limit ordinal. 

First Case. cof a < a. 

By the induc;tion hypothesis [O, cof a) possesses a Noetherian base. Let 
A C [O, a) be a closed cofinal subset in [O, a) homeomorphic to [O, cof a). [O, 
a) -A has a Noetherian base &71 (by Lemma 2.5 and the induction hypothesis). 
Let &72 be a Noetherian collection of open sets that contains a local base for 
each a EA (Corollary 2.3). $ = &71 U &72 is then a Noetherian base of [O, a). 

Second Case. a is a non-limit cardinal. 

Consider the set A = h + a-: 'Y E [O, a)} where a- is the immediate 
predecessor cardinal of a (a- exists because a is a nonlimit cardinal). 

Thus we have that: 
(a) A is a cofinal set in [O, a) and the closure of A in [O, a), A, is 

homeomorphic to [O, a) and it follows that Y = [O, a) - A is a disjoint 
topological union of spaces with Noetherian bases. Let &71 be a Noetherian 
base of Y. 

(b) For each A= 'Y +a-EA, let L = {~ E (-y, 'Y +a-):~ is isolated}. L 

i I wish to express my sincere thanks to Professor Victor Neumann for having called !IlY 
attention to this result. 
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satisfies: 
(i) IL I = a-. 
(ii) If L' CL is such that IL' I = a-, then L' has order type a- and is a 

cofinal set in [O, A). 
( c) For each A E A, there exists an antichain .2' C 9fJ (L) such that 12' I = 

2"'-, and if L' E .:?, IL' I = a- (Lemma 2.7). 
For each A EA, let 'P>..: (A, a) - .2' be an injective function. Each 'P>.. {/j){A 

< {j < a) is a cofinal set in JO, A) and it has order type a-, and so it can be 
indicated as 'P>..{/j) = {xih<a- such that 01 < 02 ~ Xi 1 < x½. If oo < a-, let 
'P>..60(/j) = {xilio<6<a- and for each triple (A, /j, o) EA X (A, a) X [O, a-), let 
S(A, {j, o) ~ 'P>..6(/j) U (A, /j]: Each S(A, /j, o) is an open set in [O, a) and the 
collection $ 2 = {S(A, /j, o):(X, /j, o) EA X (A, a) X [O, a-)} is Noetherian. In 
fact, if S(Ai, /j1, oi) C S(A2, /j2, 02) and if A1 < A2, then 'P>../1 (/ji) C cp>...i. ½(/j2) 
and this means, because of (b), that 'P>../1 (/ji) is a cofinal set in [O, A2), which 
contradicts the inclusion 'P>../1 (/ji) c [O, Ai). Then A1 ~ A2. So if S(A1, /j1, oi) 
C S(A2, /j2, 02) C • • • C S(An, {jn, on) C ···,there exists no such that A,= Ano 
for all s ~ n0 and, by construction, /j, = {jno for all s ~ no and Ono ~ On0+1 ~ 
Ono+2 ~ ···,which means that the sequence {S(An, {jn, on)}neN is finite. 

(d) Let A'= {a E A:a is an isolated element in A). For each a EA' we can 
take a Noetherian local base .!B(a) of a in [O, a) such that if BE .!B(a), B n 
A= {a). Let $3 = UaEA'/B (a). 

(e) $ = $ 1 U $ 2 U $ 3 is a Noetherian collection of open sets in [O, a) and 
it is clear that it contains a local base for each point in [O, a) - (A - A'). Let 
/j E .A -A' and 'Y < {j. Since {j E .A -A', there exists A EA such that 'Y < A 
< {j and o <a-satisfying 'P>..6(/j) U (A, /j] C ('Y, /j]. Thus$ is a Noetherian 
base of [O, a). 

Third Case. a is a limit regular cardinal which is not strongly inaccessible. 

Let a0 be a regular cardinal smaller than a such that 2"'" ~ a. 
The proof for this case is analogous to the one given in the preceding case; 

the only difference being the substitution of a- for a0 • 

As mentioned in the Introduction, the argument which appears in Example 
5.5 in [2] is valid for k strongly inaccessible. That is, [O, k) does not have a 
Noetherian base in this situation. Because of Lemma 2.5, if a ~ k, [O, a) does 
not have a N oetherian base. This ends the proof of our theorem. 

LEMMA (2.9). Let Y C [O, a) and y E Y. Let !B(y) be a local base of yin 
(Y, To), where To is the order topology in Y. Then !B(y) is a local base of yin 
(Y, TR) or {y} E TR, where TR is the re/,ative topology of Y. 

Proof. If y is an isolated point in Y, then {y} E TR. Assume that y is not 
isolated and that A is an open set in [O, a) that contains y. Let x < y be such 
that (x, y] C A. Then there exists z E Y such that x < z < y and so (z, y] n Y 
E To. Thus there exists BE .!B(y) such thaty EB C (z, y] n Y CA n Y. 

THEOREM (2.10). Let Y C [O, a), where a is an ordinal such that [O, a] does 
not contain a strongly inaccessible cardinal. Then (Y, TR) has a Noetherian base. 
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Proof. (Y, To) is homeomorphic to some [O, (3), with (3 :S a. Let 971 be a 
Noetherian base of (Y, To) and let 972 = lly):y is an isolated element in Y). 
From the previous Lemma, 97 = 971 U 972 is a Noetherian base for (Y, TR). 
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