Boletin de la Sociedad Matematica Mexicana Vol. 30 No. 2, 1985

NOETHERIAN BASES IN ORDINAL SPACES*

BY ANGEL TAMARIZ MASCARÚA

Summary

A collection $\mathscr C$ of subsets of a set X is said to be Noetherian if $\mathscr C$ does not contain a strictly increasing infinite chain. In this paper we show that a space of ordinals $[0, \alpha)$, has a Noetherian base if and only if α is smaller than the first strongly inaccessible cardinal.

1. Introduction

W. F. Lindgren and P. J. Nyikos in [2], gave an example due to J. Vaughan of a topological space without a Noetherian base. The space in question is that of the ordinals smaller than the first strong limit cardinal *k* of uncountable cofinality with the order topology. The proof is based on the following result: *If f*: $[0, k) \rightarrow [0, k)$ is a regressive function, then there exists $b \in [0, k)$ and A $\subset [0, k)$ such that $f(a) \leq b$ for every $a \in A$ and $|A| > 2^{|b|}$. Nevertheless, this proposition is not true in general. (In the case where *k* is strongly inaccessible it is true. See [1 Theorem **A** 1.3]), as can be seen from the following example: Let $k = \lim_{\alpha \leq w_1} \{ \exp^a w \}$ where w is the first infinite cardinal and w_1 is the first uncountable one. Let us consider the function

 $f: [0, k) \rightarrow [0, k)$ defined by

$$
f(b) = \begin{cases} \exp^a w & \text{if } \exp^a w < b < \exp^{a+1} w \\ a & \text{if } b = \exp^a w \\ 0 & \text{if } b < \exp^1 w \end{cases}
$$

(exp^aw is defined by induction in the following manner: $exp¹w = 2^w$; if $expⁿw$ is defined by every $n < a$ and a is a limit ordinal, $\exp^a w = \lim_{n \leq a} {\exp^n w}$. If a is not a limit and $a > 1$, $\exp^a w = 2^{\exp^{a-1}w}$.

The main result of this paper completely determines for which ordinals α , $[0, \alpha)$ has a Noetherian base. The theorem is the following: $[0, \alpha)$ and any of its subspaces has a Noetherian base if and only if $[0, \alpha]$ does not contain a strongly inaccessible cardinal.

Recently, J. Vaughan informed me that in 1983 E. van Douwen presented this theorem at a conference and he had a copy of this manuscript sent to me. Nevertheless, the proof appearing in the manuscript only shows that $[0, \alpha)$ has a Noetherian base if α is less than the first weakly inaccessible cardinal and that $[0, \alpha)$ does not have a Noetherian base when α is a strongly inaccessible cardinal.

^{*} This article contains a part of a Doctoral Dissertation written under the direction of Professors A. Garcia-Maynez and R. Wilson, to whom the author is gratefully indebted.

32 ANGEL TAMARIZ MASCARUA

In this article inaccessible cardinal will mean uncountable inaccessible cardinal.

2. Spaces of Ordinals and Noetherian Bases

Definition 2.1. A collection $\mathcal C$ of subsets of a set X is *Noetherian* if $\mathcal C$ does not contain strictly increasing infinite chains. That is, \mathscr{C} is Noetherian if whenever ${C_n}_{n \in \mathbb{N}} \subset \mathcal{C}$ is such that $C_1 \subset C_2 \subset \cdots$, then ${C_n}_{n \in \mathbb{N}}$ is a finite collection.

LEMMA (2.2). Let Y be a subset of a T_1 space X and A an open subset of Y. *Then there exists a Noetherian collection* $\mathscr B$ of open sets in X, such that

(i) *For every* $B \in \mathcal{B}, B \cap Y = A$.

(ii) If C is an open subset of X such that $A \subset C \cap Y$, then exists $B \in \mathcal{B}$ *satisfying* $B \subset C$.

Proof. If *A* is open in *X*, then we may take $\mathcal{B} = \{A\}$. Let us now suppose that *A* is not open in *X*. If *C* is an open subset of *X* such that $A \subset Y \cap C$, we can construct by induction a strictly decreasing chain *st'* of open sets in *X* that satisfy

(a) For every $B \in \mathcal{A}, B \cap Y = A$ and $B \subset C$.

(b) $A \cap (\text{int} \cap \mathcal{A})^c \neq \emptyset$.

In fact, if for some ordinal α , $\{B_{\lambda}\}_{{\lambda<\alpha}}$ is a collection of open sets in X such that $B_{\lambda_2} \subsetneq B_{\lambda_1} \Leftrightarrow \lambda_1 < \lambda_2 < \alpha$, satisfying (a) and $A \subset \text{int}(\bigcap_{\lambda \leq \alpha} B_{\lambda})$, the contention is proper and since X is T_1 , there is an open set B_α contained properly in each one of the B_λ and whose intersection with *Y* is *A*. This process must finish for some ordinal α_0 . $\mathscr{A} = \{B_\lambda\}_{\lambda < \alpha_0}$ is the required chain.

In the same manner we construct $\mathscr B$ by induction. Assume that for some ordinal α we have $\{\mathscr{A}_\lambda\}_{\lambda<\alpha}$, where for each $\lambda<\alpha$, \mathscr{A}_λ is a strictly decreasing chain of open sets in X which satisfies (a) and (b) for some open $C \subset X$ such that $A \subset C \cap Y$ and if $\lambda_1 < \lambda_2 < \alpha$ and $B \in \mathcal{A}_{\lambda_2}$, then *B* does not contain any element belonging to \mathscr{A}_{λ_1} . If $\bigcup_{\lambda \leq \alpha} \mathscr{A}_{\lambda}$ does not satisfy (ii), then there is $C \subset X$ an open set such that $A \subset C \cap Y$ and C does not contain any element in $\bigcup_{\lambda \leq \alpha} \mathscr{A}_{\lambda}$. Let \mathscr{A}_{α} be a strictly decreasing chain of open sets in *X* that satisfies (a) and (b) with respect to *C*. This process must finish for some α_0 . So \mathscr{B} = $\bigcup_{\lambda \leq \alpha_0} \mathscr{A}_\lambda$ satisfies (i) and (ii) and is a Noetherian collection since \mathscr{A}_λ is, and if $B_1 \in \mathscr{A}_{\lambda_1} yB_2 \in \mathscr{A}_{\lambda_2}$ with $B_1 \varsubsetneq B_2$ then $\lambda_1 \geq \lambda_2$.

COROLLARY (2.3). Let Y be a subspace of a T_1 space X and let \mathcal{B}' be a *Noetherian base for Y. Then there exists a Noetherian collection of open sets\$ in X such that* $\mathscr{B}' = \{B \cap Y : B \in \mathscr{B}\}\$ and for each $y \in Y$, \mathscr{B} contains a local *base of y in X.*

Proof. For each $B' \in \mathcal{B}'$ let $\mathcal{B}(B')$ be the collection whose existence is guaranteed by Lemma 2.2. $\mathscr{B} = \bigcup \{ \mathscr{B}(B') : B' \in \mathscr{B}' \}$ is the required Noetherian collection.

COROLLARY (2.4). Let X be a T_1 space. For each $x \in X$, x has a Noetherian *local base of neighborhoods.*

LEMMA (2.5). *Any open subspace of a space with a Noetherian base, has a Noetherian base and the disjoint topological union of spaces with a Noetherian base, also possesses a Noetherian base.*

Definition 2.6. A collection $\mathscr A$ of subsets of a set *X* is an *antichain* if for each pair of different elements in \mathscr{A}, A_1 and A_2 , we have $A_1 \not\subset A_2$ and $A_2 \not\subset A_1$ $A₂$.

LEMMA $(2.7)^{i}$ *Let X be an infinite set of cardinality* α *. Then there exists an antichain* $\mathscr{A} \subset \mathscr{P}(X)$ *such that* $|\mathscr{A}| = 2^{\alpha}$ *and for each* $A \in \mathscr{A}$, $|A| = \alpha$.

Proof. Let $\mathcal{P} \subset \mathcal{P}(X)$ be a partition of X consisting of subsets of X, each one with exactly two elements. The collection of choice functions defined on \mathscr{P} , determines an antichain with the desired properties.

THEOREM (2.8). Let α be an ordinal, $[0, \alpha)$ has a Noetherian base if and only *if* $[0, \alpha]$ does not contain a strongly inaccessible cardinal.

Proof. Assume that [0, α] does not contain a strongly inaccessible cardinal and that for every $\beta < \alpha$, $[0, \beta)$ has a Noetherian base. If α is a successor ordinal, Corollary 2.4 and the hypothesis of induction show that $[0, \alpha)$ has a Noetherian base.

Suppose that α is a limit ordinal.

First Case. $\cot \alpha < \alpha$.

By the induction hypothesis [0, cof α) possesses a Noetherian base. Let $A \subset [0, \alpha)$ be a closed cofinal subset in $[0, \alpha)$ homeomorphic to $[0, \text{cof }\alpha)$. $[0, \alpha]$ α) – A has a Noetherian base \mathcal{B}_1 (by Lemma 2.5 and the induction hypothesis). Let \mathcal{B}_2 be a Noetherian collection of open sets that contains a local base for each $a \in A$ (Corollary 2.3). $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2$ is then a Noetherian base of $[0, \alpha)$.

Second Case. α is a non-limit cardinal.

Consider the set $A = \{ \gamma + \alpha^- : \gamma \in [0, \alpha) \}$ where α^- is the immediate predecessor cardinal of α (α^- exists because α is a nonlimit cardinal).

Thus we have that:

(a) *A* is a cofinal set in [0, α) and the closure of *A* in [0, α), \overline{A} , is homeomorphic to $[0, \alpha)$ and it follows that $Y = [0, \alpha) - \overline{A}$ is a disjoint topological union of spaces with Noetherian bases. Let \mathscr{B}_1 be a Noetherian base of *Y.*

(b) For each $\lambda = \gamma + \alpha^- \in A$, let $L = \{\xi \in (\gamma, \gamma + \alpha^-): \xi \text{ is isolated}\}.$ *L*

ⁱ I wish to express my sincere thanks to Professor Victor Neumann for having called my attention to this result.

satisfies:

(i) $|L| = \alpha^{-}$.

(ii) If $L' \subset L$ is such that $|L'| = \alpha^-$, then L' has order type α^- and is a cofinal set in $[0, \lambda)$.

(c) For each $\lambda \in A$, there exists an antichain $\mathscr{L} \subset \mathscr{P}(L)$ such that $|\mathscr{L}| =$ 2^{α} , and if $L' \in \mathcal{L}$, $|L'| = \alpha$ ⁻ (Lemma 2.7).

For each $\lambda \in A$, let $\varphi_{\lambda}: (\lambda, \alpha) \to \mathscr{L}$ be an injective function. Each $\varphi_{\lambda}(\beta)(\lambda)$ $< \beta < \alpha$) is a cofinal set in [0, λ) and it has order type α^- , and so it can be indicated as $\varphi_{\lambda}(\beta) = \{x_{\delta}\}_{\delta \leq \alpha^{-}}$ such that $\delta_1 < \delta_2 \Leftrightarrow x_{\delta_1} < x_{\delta_2}$. If $\delta_0 < \alpha^{-}$, let $\varphi_{\lambda}^{\delta_0}(\beta) = \{x_{\delta}\}_{\delta_0 < \delta < \alpha^{-}}$ and for each triple $(\lambda, \beta, \delta) \in A \times (\lambda, \alpha) \times [0, \alpha^{-})$, let $S(\lambda, \beta, \delta) = \varphi_{\lambda}(\delta) \cup (\lambda, \beta]$. Each $S(\lambda, \beta, \delta)$ is an open set in $[0, \alpha)$ and the collection $\mathscr{B}_2 = \{ S(\lambda, \beta, \delta) : (\lambda, \beta, \delta) \in A \times (\lambda, \alpha) \times [0, \alpha^{-}) \}$ is Noetherian. In fact, if $S(\lambda_1, \beta_1, \delta_1) \subset S(\lambda_2, \beta_2, \delta_2)$ and if $\lambda_1 < \lambda_2$, then $\varphi_{\lambda_1}^{\delta_1}(\beta_1) \subset \varphi_{\lambda_2}^{\delta_2}(\beta_2)$ and this means, because of (b), that $\varphi_{\lambda_1}^{\delta_1}(\beta_1)$ is a cofinal set in [0, λ_2), which contradicts the inclusion $\varphi_{\lambda_1}^{\delta_1}(\beta_1) \subset [0, \lambda_1)$. Then $\lambda_1 \geq \lambda_2$. So if $S(\lambda_1, \beta_1, \delta_1)$ $\subset S(\lambda_2, \beta_2, \delta_2) \subset \cdots \subset S(\lambda_n, \beta_n, \delta_n) \subset \cdots$, there exists n_0 such that $\lambda_s = \lambda_{n_0}$ for all $s \ge n_0$ and, by construction, $\beta_s = \beta_{n_0}$ for all $s \ge n_0$ and $\delta_{n_0} \ge \delta_{n_0+1} \ge$ $\delta_{n_0+2} \geq \cdots$, which means that the sequence $\{S(\lambda_n, \beta_n, \delta_n)\}_{n \in \mathbb{N}}$ is finite.

(d) Let $A' = \{a \in A : a \text{ is an isolated element in } A\}$. For each $a \in A'$ we can take a Noetherian local base $\mathscr{B}(a)$ of *a* in [0, α) such that if $B \in \mathscr{B}(a), B \cap$ $A = \{a\}$. Let $\mathcal{B}_3 = \bigcup_{a \in A'} \mathcal{B}(a)$.

(e) $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2 \cup \mathscr{B}_3$ is a Noetherian collection of open sets in [0, α) and it is clear that it contains a local base for each point in $[0, \alpha) - (A - A')$. Let $\beta \in \overline{A} - A'$ and $\gamma < \beta$. Since $\beta \in \overline{A} - A'$, there exists $\lambda \in A$ such that $\gamma < \lambda$ $< \beta$ and $\delta < \alpha^-$ satisfying $\varphi_{\lambda}(\beta) \cup (\lambda, \beta] \subset (\gamma, \beta]$. Thus $\mathscr B$ is a Noetherian base of [0, α).

Third Case. α is a limit regular cardinal which is not strongly inaccessible.

Let α_0 be a regular cardinal smaller than α such that $2^{\alpha_0} \ge \alpha$.

The proof for this case is analogous to the one given in the preceding case; the only difference being the substitution of α^- for α_0 .

As mentioned in the Introduction, the argument which appears in Example 5.5 in [2] is valid for *k* strongly inaccessible. That is, [O, k) does not have a Noetherian base in this situation. Because of Lemma 2.5, if $\alpha \geq k$, $[0, \alpha)$ does not have a Noetherian base. This ends the proof of our theorem.

LEMMA (2.9). Let $Y \subset [0, \alpha)$ and $y \in Y$. Let $\mathcal{B}(y)$ be a local base of y in (Y, τ_0) , where τ_0 *is the order topology in Y. Then* $\mathscr{B}(y)$ *is a local base of y in* (Y, τ_R) or $\{y\} \in \tau_R$, where τ_R is the relative topology of Y.

Proof. If *y* is an isolated point in *Y*, then $\{y\} \in \tau_R$. Assume that *y* is not isolated and that *A* is an open set in [0, α) that contains *y*. Let $x < y$ be such that $(x, y] \subset A$. Then there exists $z \in Y$ such that $x \leq z \leq y$ and so $(z, y] \cap Y$ $\in \tau_0$. Thus there exists $B \in \mathcal{B}(y)$ such that $y \in B \subset (z, y] \cap Y \subset A \cap Y$.

THEOREM (2.10). Let $Y \subset [0, \alpha)$, where α is an ordinal such that $[0, \alpha]$ does *not contain a strongly inaccessible cardinal. Then* (Y, τ_R) has a Noetherian base.

Proof. (Y, τ_0) is homeomorphic to some [0, β), with $\beta \leq \alpha$. Let \mathcal{B}_1 be a Noetherian base of (Y, τ_0) and let $\mathscr{B}_2 = \{(y): y \text{ is an isolated element in } Y\}.$ From the previous Lemma, $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2$ is a Noetherian base for (Y, τ_R) .

UNIVERSIDAD AUTONOMA METROPOLITANA, MEXICO 13, D. V., MEXICO

Present address: FACULTAD DE CIENCIAS UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO MEXICO 20, D. F. 04510 MEXICO

REFERENCES

- [1] I. JuuAsz, Cardinal Functions in Topology, Math. Centre Tracts No. 34, Math. Centrum, Amsterdam, 1971.
- [2] W. F. LINDGREN and P. J. NYIKOS, *Spaces with bases satisfying certain order and intersection properties, Pacific J. Math., 66, 2,*(1976) 455-476.