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CLASSIFICATION OF LOW DIMENSIONAL ORTHOGONAL 
PAIRINGS 

BY JOSE ADEM 

Introduction 

Let (Pn, q) be a quadratic space over a field P of characteristic :;e2, where 
the quadratic map q is given by q (x) = x1 2 + • • • + Xn 2 for column vectors x = 
(x1 , • • •, xnYE pn_ Since all our quadratic spaces will be of this form, we briefly 
write pn for (Pn, q ). If <I>: pr X ps - pn is a bilinear map then, for x E pr and 
y E p• we have <I>(x, y) = (z1 , • • •, z,,l, where each z; is a bilinear form in x and 
y with coefficients in F. Here, x and y are viewed as variables. A bilinear map 
<I> is called an orthogonal pairing of type [r, s, n] over P, if 

(x/ + · · · + x/)(y1 2 + • · · + y,2) = Z12 +•··+Zn 2, 

for all x E pr andy E F•. Conversely, if there exists such a formula then, there 
exists an orthogonal pairing <I>. To use a short form to express this, we will 
say that the triple [r, s, n] is admissible over P [6; p 236]. 

Following S. Yuzvinsky [7; p 139], we say that two orthogonal pairings cl>, 
'1t or type [r, s, n] over Pare equivalent if there exist orthogonal matrices S, Q 
andP of orders r, sand n, respectively, such that P<I>(Sx, Qy) = 'lt(x, y), for all 
x E F', y E P•. This is a well defined equivalence relation and it provides a 
classification. Let EOp(r, s, n) denote the set of equivalence classes of orthog
onal pairings of type [r, s, n] over P. 

Almost all that is known about these sets may be summarized as follows. 
If P = ~ is the field of real numbers, Yuzvinsky's paper [7] gives several 

partial results of various cases and also a complete description of EOR 
(2, s, n). For instance, ifs is even and n = s + 2, the EOiR<(2, s, s + 2) can be 
identified with the points of the closed interval [O, 1]. 

For other fields, first notice that any orthogonal pairing over an arbitrary F 
can always be viewed as a pairing over an algebraically closed extension of P. 
Therefore, we may suppose from the beginning that Pis an algebraically closed 
field. Using canonical forms for matrices, it was proved by the author [2; 
(2.5)], that each set E0p(2, s, n) contains only one equivalence class, for any 
s and n = s + l and for s odd and n = s + 2 (see ( 4.3)). 

Avoiding the use of matrices, Yuzvinsky studied in [8] the structure of 
orthogonal pairings of type [2, s, n], again for s and n as above. 

Some of these results were developed and used in order to establish that 
certain triples are not admissible over any field. For an account of these 
applications the reader is referred to Shapiro's expository paper [6] and in 
particular to [8], [3] and [4]. 

The main aim of this paper is to determine the set E0p(2, s, s + 2), for s an 
even integer. This set is described in theorem (5.25) and, as we may notice 
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there, besides a part of E0p(2, s, s + 2), that generalizes for arbitrary F the 
closed interval E01l11(2, s, s + 2) = {a IO s a s 1}, we have five more classes. 
This seems significant regarding orthogonal pairings, since it starts a different 
pattern between the field of real numbers and any algebraically closed field. 

The method of proof uses similar techniques to those developed in [1] and 
[2]. 

1. Equivalence of orthogonal pairings 

Assume that F is a field of characteristic different from two and let 
(Fn, q) denote a quadratic space, where pn is the usual n-dimensional vector 
space over F, whose elements are column vectors x = (x1 , • • •, Xn Y, where t is 
the transpose operation and q: pn - F is the quadratic map given by q (x) = 
X12 +···+Xn 2. 

Let (F', q1 ), (F•, q2 ) and (Fn, q) be quadratic spaces as above, respectively 
for the dimensions r, s and n. Let us recall that a bilinear map <I>: F' X F• -
pn is called an orthogonal pairing of type [r, s, n] over F, if 

(1.1) 

for x E F' and y E F". Indistinctively, <I> is also called a normed map and the 
triple [r, s, n] is said to be admissible over F if there exists such a map <I>. 

Let us also recall that the existence of an orthogonal pairing <I> of size 
[r, s, n] over F, is equivalent to the existence of an r-tuple Ll = (Ni, .. •, N,) 
of n X s matrices N; over F, fulfilling the Hurwitz equations (see [1; p 32], [6; 
p 238]): 

(1.2) N/N; = I. if 1 sis r, 

(1.3) N/ M + N/ N; = o if i # j, 1 s i, j s r. 

The matrices Ll = (N1 , • • •, N,) are determined by <I> as follows. Consider 
orthogonal standard bases for F', F•, Fn, and let (e1 , • • •, e,) be such a basis 
for F'. Then let the matrix N;: ps - pn be defined by 

(1.4) N;y = <I>(e;, y) for y E F• (i = 1, • • •, r). 

Using (1.1) it follows that these matrices satisfy the Hurwitz equations (see 
[loc.cit.]). 

Conversely, let Ll = (N1 , • • • , N,) be an r-tuple of n x s matrices satisfying 
the Hurwitz equations. For x E F', with x = (x1 , • • •, x, Y consider 

(1.5) 

where O is used to denote a well defined hybrid product of an r-row Ll, whose 
elements are matrices, and a column vector x of F'. Clearly, as a function N 
= N(x) is an n X s matrix determined by x. Then, for y E F•, set 

(1.6) <I>(x, y) = (Ll O x)y = Ny. 

And, from (1.2) and (1.3), it follows that <I> constructed in this form defines an 
orthogonal pairing. 



LOW DIMENSIONAL ORTHOGONAL PAIRINGS 3 

Consequently, <I> and A = (N 1 , • • •, Nr) can be considered as equivalent in 
the sense that any one of them determines the other. 

The following notation is introduced in order to have a better setting for 
some of the results. 

Let Op(r, s, n) denote the set of all orthogonal pairings <I> of type [r, s, n] 
over P. 

Let Hp(r; n X s) denote the totality of r-tuples A= (N1 , • • •, Nr) of n X s 
matrices Ni over P, fulfilling the Hurwitz equations. 

Let the map 

(1.7) 

be defined by 0(A) = <I>, where A determines <I> according to (1.6). 
The next lemma gives in a condensed from the above statements of this 

section. 

LEMMA (1.8). The map 0 is bijective (one to one and onto) and the explicit 
values of 0-1 and 0 are determined by (1.4) and (1.6), respectively. 

Proof. It follows directly from the definitions of 0 and 0- 1. 

Let O(n) = On(P) be the orthogonal group or group of isometries of 
(Pn, q). According to Yuzvinsky ([7; p 139]), two orthogonal pairings, <I>, \JI: 
pr X ps --,,. pn are said to be equivalent, in symbols <I> "" \JI, if there exist 
orthogonal operations SE O(r), Q E O(s) andP E O(n) such that 

(1.9) P<l>(Sx, Qy) = \Jt(x, y), 

for all x E pr, y E ps_ We can easily verify that"" is an equivalence relation. 
Let EOF(r, s, n) denote the set of all equivalence classes of orthogonal 

pairings <I>: pr X ps--,,. pn, where the symbol I <I>} represents the class determined 
by <I>. 

Keeping r, sand n fixed, write briefly HF= Hp(r; n X s). Let A= (N 1 , • •• , 

Nr) be an element of HF and let the matrix S = (u1 , • • •, Ur), where the u/s 
denote the columns. The product A O S is defined as the obvious extension of 
A O x, introduced in (1.5). That is, A O S = (A O Ui, • • •, A O ur). A direct 
verification gives 

(1.10) (A O S) 0 x = A O (Sx), for x E pr_ 

Set PAQ = (PN 1 Q, • • •, PNrQ). It is easy to prove that 

(1.11) [(PAQ) 0 z]y = P(A O z)Qy, for z E P', y E ps_ 

Now, we have the following 

LEMMA (1.12). Let SE O(r), Q E O(s) and PE O(n). Then A E HF if and 
only if (PAQ) 0 SE HF. 

Proof. If S = Ir, it follows easily that A E HF if and only if PAQ E Hp. 
Hence, it is enough to prove the lemma only for Q = Is and P = In. 

As above, let A O S =(A O u1 , • • •, A O ur) and set Mi= A O ui. To establish 
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that these M;'s satisfy conditions (1.2) and (1.3), proceed as follows. The fact 
that u/ u; = l and the hypothesis .:l E HF imply that 

M/M; = (,:l O U;}1(,:l O U;) = / 8 , 

and this proves (1.2). 
We have (u; + uiY(u; + uj) = 2 if i ¥- j. And, using the same argument as 

above, we get 

(M; + MjY(M; + Mj) = [.:l O (u; + Uj)Y[.:l O (u; + Uj)] = 21s• 

Thus, expanding the term (M; + Mi Y(M; +Mi), we obtain 

M/Mi + M/M; = 0 for i ¥-j. 

Therefore, (1.3) is established and .:l O SE HF. 
Conversely, starting with .:l O SE HF, consider (.:l o S) 0 St= .:l o (SSt) = 

.:l, consequently .:l E HF, and this ends the proof of (1.12). 

Parallel to the case of orthogonal pairings, two r-tuples .:l, }; of HF are said 
to be equivalent, in symbols .:l ~ }; if there exist orthogonal matrices S, Q and 
P, as those of (1.12), such that 

(1.13) (P .:lQ) o S = };. 

From (1.12) it follows that}; is well defined and, as for (1.9), we verify that~ 
is an equivalence relation. 

Given two r-tuples, .:l,}; of HF, let <I>= 8(.:l), '¥ = 8(};) be the two orthogonal 
pairings determined by the map 8 of (1.7). The following result holds. 

LEMMA (1.14). Let .:l, }; and <I>, 'IJ! be as above. Then .:l ~ }; if and only if <I> 
~ '¥. 

Proof. Suppose <I> ~ '¥. Then there are orthogonal matrices S, Q and P such 
that 

PifJ(Sx, Qy) = P[.:l O (Sx)]Qy 

= ([(P.:lQ) 0 S] 0 x)y = 'IJ!(x, y) = (}; 0 x)y, 

for all x E F' and y E F 8 • the second equality follows using, first (1.11) and 
then (1.10). Therefore, (P aQ) 0 S = }; and .:l ~ };. 

Starting with .:l ~ }; and reversing the arguments we conclude that <I>~'¥. 
Consequently, the lemma is proved. 

Let EHF(r; n x s) denote the set of all equivalence classes of r-tuples .:l E 
HF(r; n X s) where the symbol [.:l] represents the class determined by .:l. 

Given [.:l] E EHF(r; n x s), define 0([.:l]) = {8(..:l)l, where 8 is the map 
(1.7). We have the following 

LEMMA (1.15). The map 

0: EHF(r; n X s) - EOF(r, s, n) 

is bijective. 
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Proof. From (1.14) it follows that [A]= [i] if and only if {O(M) = {O(i)). 
Then, 0 is well defined and one to one. To prove that 0 is onto let {<I>) E 
EOF(r, s, n). Then 0- 1 (<1>) = A and 0([A]) = {<I>). This ends the proof. 

LEMMA (1.16). Let A E HF and A= (N1 , • • ·, Nr). Then, 

where Ei = ±1 for 1 :s i :s r. 

Proof. It follows after substitution in (1.13) of P = In, Q = ls and S = diag 
(E1, • • •, Er). 

LEMMA (1.17). Let (PAQ) 0 S = i so that A<== i. Then, up to equivalence, 
we can always suppose det S = l. 

Proof. If det S = -1, let S1 = diag(Ir-i, -1) and S' = S 1 S. Then A O S = A 
0 (S1 S') =(A O Si) 0 S' and, if A'= A O S1 , we have (PA'Q) 0 S' = i where 
det S' = 1. 

LEMMA (1.18). Given A E HF there exists i = (E1 , ···,Er) such that A <== 
i, where Ei = [A;, B;]t with A1 = Is and B1 = 0 is the zeros X (n - s) matrix. 
Moreover, for all 2 :s i :s r, each A; is an alternate (skew) matrix of order s and 
each Bi a suitable rectangular s X (n - s) matrix. 

Proof. A proof of (1.18) has already been given elsewhere. We refer to 
[1; p 33-34] for it. 

Remarks. 

(1) A collection i = (E1 , • • •, Er) like the one in (1.18) is said to be 
normalized and, in terms of Ei = [Ai, B;]t, the Hurwitz equations for 2 :s i, j :s 
r become 

(1.19) 

(1.20) 

In fact, using the alternate condition A/= -A;, these relations follow easily 
from (1.2) and (1.3) (see [1; p 34]). 

(2) Lemma (1.18) assures that each class [A] E HF contains a representative 
i in normalized form. If <I>= O(i ), from (1.4), it follows that <I>(e1 , y) = y for 
y E ps and such <I> is also called normalized. 

(3) For r = 1, any n X s matrix N such that Nt N = Is is equivalent to i = 
[Is, 0]1. Therefore, if r = 1 there is only one class of equivalence for n X s 
matrices, hence 

EHF(l; n X s) = {[i]). 

Finally, we have the following 

LEMMA (1.21). Let i E HF, where i = (E 1 , •••,Er) is a normalized r-tuple 
of n X s matrices and let E/ = [A;, B;] for i ~ 2. If Q E O(s), RE O(n - s), 
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[Qt o] 
P = 0 Rt E O(n), 

and P ~ Q = ~ ' = (E 1 ', • • •, E,' ) is al,so normalized and obviously ~ ~ ~ '. 
Moreover, 

E;'' = [QtA;Q, QtB;R] 

for i ~ 2. In particular, if Q = I, then E; ,, = [A;, B;R]. 

Proof. It is a direct verification and we omit it. 

2. The case r = 2 

Let~ = (E1 , E2) and Li= (N 1 , N2) be two systems of n x s matrices, each 
of them an element of HF(2; n x s ). Clearly, to study their equivalence: ~ ~ 
Li, it is enough to consider normalized systems. Then let E 1 = N1 = [I., oy, 
E2 = [A, BY and N 2 = [C, D]t, where as in (l.18~, A and Care alternate matrices 
of order s and B and D are appropriate s X (n - s) rectangular matrices. 

Suppose there exist orthogonal matrices S, Q and P, respectively of orders 
2, s and n, such that 

Li= (P~Q) 0 S. 

Now, taking into account (1.17), we may assume detS = 1, so that 

S = [ ~b !] 
where a2 + b2 = 1. And, the above equality becomes 

(2.1) 

(2.2) 

N1 = aPE1Q - bPE2Q, 

N2 = bPE 1Q + aPE2Q. 

Out of these expressions, consider the product 

N2tN 1 = (bQtE/Pt + aQtE2tpt)(aPE1Q - bPE2Q). 

An elementary calculation, using the identities E/ E 1 = E2 t E2 = I. and E/ E2 
= -E 2 t Ei, shows that 

But, we have 

and 
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Consequently, C = QtAQ, so that C and A are orthogonally similar. Hence, 
the equivalence ~ ~ 6-transforms into 

{2.3) 

To get more precise information some relations will be established. Multiply 
each of the equations {2.1) and {2.2), to the right by Qt and to the left by Pt, 
to have, 

ptN 1Qt = aE1 - bE2 and ptN2Qt = bE1 + aE2. 

Then substitute the expressions of E 1 , E2 , N 1 and N2 in each relation, and 
take the transpose, so to obtain 

Q[l., 0]P = a[l., O] - b[A, B] = [al. - bA, - bB], 

Q[C, D]P = b[ls, O] + a[A, B] = [bl. + aA, aB]. 

Let us decompose the orthogonal matrix P into four blocks, as follows 

<2.4) p = [ z t l 
where U, L1 , L2 and Rare, respectively, s X s, s X (n - s), (n - s) X sand 
(n - s) X (n - s) matrices. Using {2.4), perform the products indicated below, 
to get 

Q[ls, O]P = Q[U, Li], 

Q[C, D]P = Q[CU + DL 2 , CL1 + DR]. 

Hence, from the above equalities, the following relations are obtained, 

{2.5) 

{2.6) 

{2.7) 

{2.8) 

QU = als - bA, 

QL1 = -bB, 

QCU + QDL2 = bl. + aA, 

QCL1 + QDR = aB. 

From {2.5) and {2.6), it follows that 

U = Qt(als - bA) and L1 = -bQtB, 

therefore, the upper part [ U, Li] of P is determined by the orthogonal matrix 
Q and [A, B]. The lower part of P, though not so readily, it can also be 
described in similar terms. However, we skip this and concentrate on some 
special results that will be required in section 5. With this purpose, we will 
establish the next two relations, 

{2.9) 

{2.10) 

DL2 = bQtBBt, 

DR= Qt(al. + bA)B. 
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These relations are proved as follows. From A = QCQt and (2.5), it follows 
that 

QCU = (QCQt)(QU) = A(al, - bA) = (aA - bA 2 ). 

Now, (1.19) implies that 

QCU = (bl, + aA) - bBBt, 

and a substitution of this in (2. 7), establishes (2.9). 
Again, from A= QCQt and L1 = -bQtB, it follows that 

QCL1 = -bQCQt B = -bAB. 

And a substitution of this expression in (2.8) verifies (2.10). 

For later reference, consider the following results. 

LEMMA (2.11). Let Q/ = Qt(al, + bA). If BBt = 0, then Q1 is orthogonal and 
D = Q/BRt. In general, R may not be orthogonal, but if we also assume BtB = 
0, then R becomes orthogonal. 

Proof. Supposing BBt = 0, from (1.19) it follows that AAt = -A 2 = I,. Then 

(al, + bA)(aI. + bAY = (a 2 + b2)I. = I., 
hence, (al,+ bA) and Q1 are orthogonal. 

Substitution of BBt = 0 in (2.9) gives DL2 = 0. Then, from 

pnt [Uut + L1L/ UL2t + L1Rt] I 
r = L2Ut + RL/ L2L/ + RRt = n, 

we get four equalities and, the one in the right lower corner gives RRt = 
I<n-s> - L2L/. Multiplying (2.10) to the right by Rt and using this relation we 
obtain D = Q/BRt. 

Similarly, from ptp = In we have another four equalities and the one in the 
right lower corner is L/L 1 + RtR = I<n-s>• Now, from (2.6), it follows that 
L/L 1 = b2BtB. Therefore, assuming BtB = 0, we get RtR = I<n-s), and this 
ends the proof. 

LEMMA (2.12). As before, suppose BBt = 0 and BtB = 0 and set P 1 = diag 
(Q/, R). Then 

d = (P"l;Q) 0 S = (A"l;Qi). 

Hence, in this case, the action of S can be given through Pi and Q1. 

Proof. Clearly, E1 = N 1 = [1., oy and we have D = Q/BRt in both systems: 
in (P "1; Q) 0 S by (2.11) and in A "}; Q1 directly after performing the product. 
Finally, since the orthogonal matrix (al, + bA) commutes with A, it follows 
that C = Q1tAQ1 = QtAQ, and this proves (2.12). 

Now, we will consider equivalences that keep A fix, that is A = QtAQ. 
Therefore, QA= AQ, so we need to restrict to those Q's that commute with 
A. The next result is an immediate consequence of (2.12). 
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LEMMA (2.13). Let~ = (E1, E2) and Ll = (N1, N2) be two elements of HF 

(2; n X s ), each of them in normalized form. Suppose that 

E 2 = [A, BY and N2 = [A, DY, 

where BBt = 0 and BtB = 0. Then,~,::::'. Ll if and only if D = Q/BRt where Q1 

E O(n), RE O(n - s) and Q1A = AQ1. 

If n = s + 2, the following result, analogous to (2.13), can be formulated 
without assuming BtB = 0. 

LEMMA (2.14). Let~ = (E1 , E 2 ) and Li = (Ni, N 2 ) be two elements of HF 

(2; (s + 2) X 2), each of them in normalized form. Suppose that E/ = [A, BY 
and N 2 t = [A, DY, where BBt = 0. Then ~ ,::::'. Li if and only if D = Q/BR 1, 
where R1 E 0(2) and Q1 E O(s) such that Q1A = AQ1. 

Proof. Here B is an s X 2 matrix and the condition BBt = 0 implies that B 
= [b, ± ib] where b E F•. If the sign of the second column of B is minus, 
multiplying B to the right by diag[l, -1], it follows that, up to equivalence 
(see (1.21)), we can take B = [b, ib]. Then, from (2.6), we have that L1 = 
-bQt[b, ib] = [H, iH] where H = -bQtb and set K = HtH = b2btb. Let 

(2.15) 

denote the component of the matrix R appearing in (2.4). Substituting these 
expressions on L/L 1 + RtR = l 2 , gives 

(2.16) [K iK] + [c 2 + e2 cd + et] = [1 OJ 
iK -K cd + ef d 2 + /2 0 1 • 

Then, we have 

K + c2 + e2 = 1, K - d 2 - f2 = -l, iK + cd + ef = 0. 

Multiply the third relation by 2i and add the result to the first and second 
relations, to obtain (c + id) 2 + (e + i/) 2 = 0. Thus, e +if= ±i(c + id). 

From (2.16), it follows that 

RtR = [l-: K -iK ]. 
-iK l + K 

Hence, det(RtR) = (det R) 2 = 1. Therefore, det R = ±1. We will prove that 
p = c + id ¥, 0. Suppose, on the contrary, that c = -id, then e = -if and 
replacing these values in (2.15), we get det R = 0, then we have a contradiction 
and this proves our claim. 

Now, according to (2.11), let us consider the right action of Rt on B. We 
have 

BRt = [b, ib{ ~ /] = [b(c + id), b(e + if)] = (c + id)[b, ± ib]. 
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Then, up to equivalence, we can consider that BRt = pB, where p = (c + id) 
¢0. 

The matrix Rt is not orthogonal, unless K = 0. However, its action on B can 
always be obtained by the following orthogonal matrix 

_ [ (p + p-1) i(p _ p-1)] 
(2.17) R1 - 1/2 -i(p _ P-1) (p + P-1) • 

In fact, a direct computation shows that BRt = BR 1 = pB. 
To prove the lemma first suppose that D = Q1 t BR 1 , where R1 and Q1 are as 

in (2.14) and then, define Pi = diag[Q1 t, R1 t]. It is easy to verify that (Pi~ Q1 ) 

= Ll, hence ~ =: Ll. For the implication in the other direction, let ~ =: Ll. Then, 
from the first part of (2.11) it follows that D = Q/BRt, where R is as in (2.15) 
and Q/ = Qt(aI. + bA). Then, with a suitable R1, as in (2.17), we have BRt = 
BR 1 and R1 E 0(2). Since the matrices (als + bA) and Qare orthogonal and 
both commute with A, it follows that Q1 E O(s) and Q1A = AQ1 . This ends 
the proof. 

3. Canonical forms for alternate matrices 

Let us recall some results about canonical forms for alternate matrices. The 
results to be quoted were stated in [5; Ch. XI] for the field of complex numbers. 
However, it readily follows that they also hold for an algebraically closed field 
and, in this form, they already were used in [1] and [2], where further references 
can be found. 

From now on assume that F is an algebraically closed field of characteristic 
different from two. Let i be a fixed element of F such that i 2 = -1. Consider 
the column vectors 

(3.1) u = (1/2, 0, ... , 0, i/2)t and v = (-i/2, 0, • • •, 0, 1/2)\ 

where u, v E pn and n ~ 2. 
Let Wd and Xa q be alternate canonical matrices fulfilling the following 

properties. First, wa is an alternate matrix of odd order d, such that it has a 
single elementary divisor 'A a, where 'A is an indeterminate. And, for any a E F 
(including a= O), Xaq is an alternate matrix of even order 2q, such that it only 
has two elementary divisors: ( 'A - a) q and ( 'A + a) q. 

The matrices wd and Xa q are constructed as follows. For d = 1, 3, fix W 1 = 
[OJ and 

[ 
0 1 + i 

W 3 = 1/2 -1 - i 0 
0 1 - i 

Then, for d = 2p + 3 ~ 5, set by induction 

(3.2) W'p+' -[ ~u ~~+> 
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where u, v E F 2p+1 are column vector as in (3.1). 

Now, for Xaq, first define 

(3.3) X/ = [ -~a t]. 
Then, for p ~ 1, set by induction 

(3.4) Xap+l = [;u 
-ia 

ia] 
-v ' 
0 

11 

where u, v E F 2P are as in (3.1). The matrices (3.2) and (3.4) are easily 
identified to be the same as those constructed in [1; (4.7), (4.8)]. 

Let A be an alternate matrix and consider a list of all its elementary divisors 
that, according to [1; (4.5)], are of the form(;\ - a;)q1, (;\ + a;)q1 and ;\di, where 
i = 1, • • •, g; j = 1, •••,hand each dj is an odd number. Now, from this list 
construct the alternate matrix 

(3.5) 

Clearly, A and W have the same elementary divisors, therefore they are similar, 
and since both are alternate, it follows that they are orthogonally similar (see 
[1; p 38]). Consequently, there exists an orthogonal matrix Q such that W = 
QAQt. Hence, the matrix W determined by the elementary divisors, gives a 
canonical form for A. 

4. Canonical forms and rectangular matrices 

Let (E1, E 2) be a normalized system of two (s + d) X s matrices. Then, E/ 
= [ls, O] and E/ = [A, B] where A is an alternate matrix of orders and Bis a 
s X d matrix. In this case the Hurwitz equations transform into the single 
relation (see (1.19)) 

(4.1) 

and this relation implies that ( [1; p 35]), 

(4.2) s ~ rank A ~ s - d. 

Moreover, since A is an alternate matrix, the rank of A must be even. 
Suppose that A has the canonical form (3.5) and that [A, B] satisfies (4.1). 

Up to equivalence, we will consider all possible forms of E 2 t = [A, B] ford= 
1, 2. Excepting when s is even and d = 2, all these cases have already been 
established by the author in [2; (2.5)]. To state them we introduced some 
notation. 

Let X = X;1 be as in (3.3) and define the following matrices 

A1 = diag[X, • • • , X] and A 2 = diag[O, Ai]. 
k-times 



\ 
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Now, consider 

where B1 is a 2k-colu:t'nn of zeros, B2 is a (2k + 1)-column and B3 is a (2k + 1) 
X 2 matrix. 

Set 

~1 = ([J,, OJt, [A1, B1Y), for s = 2k, 

~2 = ([Is, OJt, [A2, B2f), for s = 2k + 1, 

~3 = ([I., OJ\ [A2, B3Y), for s = 2k + 1. 

Then the mentioned results are the following: 

(4.3) 

EHp(2; (2k + 1) x 2k) = {[~i]), 

EHp(2; (2k + 2) x (2k + 1)) = {[~2 J), 

EHp(2; (2k + 3) x (2k + 1)) = {[~3]}. 

The case s = 2k and d = 2 is not so easy as the cases above and the rest of 
this paper is dedicated to solve it. For this purpose, some preliminary results 
need first to be established. 

To study this case, let 

(E 1 , E2) E HF(2; (2k + 2) X 2k) 

be a normalized system. Then E 2 t = [A, BJ, where A is an alternate matrix of 
order 2k and B is a 2k X 2 matrix. Let us first construct some possible matrices 
[A, BJ. 

To simplify the writing set 

X _ X 1 _ ro -al 
a- ia -la oJ d X X X l [0 -11 an = 1= i = 1 oJ' 

where a E F and Xa q are in general, the matrices (3.3) and (3.4). 
Now, we will define .w'i, .w'2 and .w'3 , three sets of normalized systems ~ = 

(E1 , E2 ) of two (s + 2) X s matrices, where s = 2k. First, notice that E/ = 
[Is, OJ is the same matrix for all the systems~ and only E 2 t = [A, BJ needs to 
be specified. This is done as follows. 

(4.4) The set .w'1 formed with all~= (E1 , E2) where E 2 t = [Ai, Bi] and 

A1 = diag[X, • • • , XJ, B1 = B1 (b) = [b, ib J, 
k-times 

for b E F 2k and b #- 0. 
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(4.5) The set .5¥'2 constructed with all l: = (Ei, E2 ) where the matrices 
[A2, B2], are given by 

A2 = A2(c) = diag[Xa, X, • · ·, X], 

B = B ( ) = [b, 0, 0, • • ·, O]t 
2 2C 0b0---0' 

' ' ' ' 
where c = (a, b) E S1• Here S1 is the "unit circle" of F 2 that is, the set of all 
(a, b) E F 2 such that a2 + b2 = 1. 

(4.6) The set .w'a consists of a single system l:a = (E1 , E2 ), where E 2 t = 
[Aa, Ba] is constructed as follows, 

Aa = diag[X;2, X, • • ·, X] and Ba = [b1, b2 ], 

where 

b1 = (1, i/2, -1/2, -i, 0, . · ·, 0)t and b2 = (i, 1/2, i/2, 1, 0, ... , ot 
Any two of the sets .w' 1, .w' 2, .w' a are disjoint. Let .w' = .w' 1 U .w' 2 U .w' a be their 

union and defined the map (k =::: 2) 

K: .w' - EHp(2; (2k + 2) x 2k) 

by K ( l:) = [ l: ] . We have the following 

THEOREM (4.7). The map K is surjective. 

Proof. Let l: E .w' where l: = [E1, E2 ] and E2 t = [A, B]. Then A is an 
alternate matrix of order 2k and Bis a 2k X 2 matrix. From (4.2), we get that 
2k =::: rank A =::: 2k - 2. Therefore, there are two possibilities: either rank A = 
2k or rank A = 2k - 2. 

As pointed ott in the proof of [2; (2.5) ], the alternate matrix A can be 
assumed to have one of the canonical forms given in (3.5). Suppose this is the 
case and let 

(4.8) 

where w/ E F 2k and bi, ci E F. Conditions ( 4.1) become 

(4.9) 

where o;j is the Kronecker delta. 

Case I. Rank A = 2k. 

Suppose rank A = 2k, then det A =;f 0, hence, all the characteristic values of 
A are nonzero. Consequently, from (3.5) it follows that A has no components 
of the form Wd and that all other components Xa q are with a =;f 0. 
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To analyze Xa q as a possible component of A, up to equivalence, we can 
assume 

A= diag[Xaq, M], 

where M denotes a suitable matrix and q is the highest value occurring in (3.5) 
among the <Ji 's. In (4.8) consider the first 2q rows of A and B. Forgetting some 
zeros, they form the matrices 

[ 
W1 ] [ b1 C1] 

Xa q = : . and B1 * = : : , 
W2q b2q C2q 

(4.10) 

and, since Xa q is a block in a diagonal form of A, it follows that the pair 
[Xa q' B1 *] satisfies condition (4.1). Then their elements fulfill condition (4.9) 
and we have 

(4.11) Wj w/ + b/ + c/ = 1, for j = 1, • • •, 2q. 

Now, from (3.4), the following relations are obtained by induction 

wiw/ = -a 2, for j = 1, • • •, 2q, 

(4.12) 

W1W2q = 0. 

Hence, from (4.11) and the first relations of (4.12), we get 

(4.13) b/ + c/ = 1 + a2, for j = 1, • • •, 2q. 

To analyze possible values of <Ji and ai , first assume that q = 1 is the highest 
value among the matrices Xa; q; (consequently, all <Ji= 1) and that at least one 
of the matrices, say Xa/ 1 , has a1 2 ¥- -1. Then, 

[X 1 B *] = [[ ? ia1] [b1 c1]] 
al ' 1 -ia1 0 ' b2 C2 ' 

where b1b2 + c1c2 = 0 and b12 + ci2 = b/ + c22 = 1 +a/¥- 0. Let b 2 = 1 + a12, 
then Rt= b- 1B1* (b determined up to sign) is an orthogonal matrix and 
B1 * R = bl2. Therefore, putting a1 = ia, up to convenience (see (1.21) ), we have 

(4.14) 

where a2 + b2 = 1. 

This result implies that the pair [A, BJ of (4.8) is equivalent to the pair 
[A2, B2] introduced in (4.5). To see this, let [bk, ck] be the part of B assigned 
to the kth row of [A, BJ. If k ==: 3, (4.9) implies that the kth row is orthogonal 
to the first and second rows of [A, B] and the diagonal structure of A implies 
that bbk = bck = 0. But b ¥- 0, hence bk= ck= 0 for all k 2::: 3, therefore B = B2. 
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Now, from (4.13), it follows that a/= -1 and choosing aj = i, we have Xaj i = 
X for all other components of A. Consequently, A = A 2 and the above assertion 
is proved. 

To continue with the case q = l, suppose aj 2 = -1 for all the matrices Xaj i 

and as before choose aj = i. Then A = Ai as in (4.4) and we have two 
possibilities for B. 

(1) Bis the 2k X 2 zero matrix. Then [A, B] is the matrix [A2, B2] of (4.5) 
for the special case c = (1, 0) E si (here Ai = A2). 

(2) Bis not the zero matrix. Then we can select [X/, Bi*], a first component 
of [A, B] where Bi* is not zero. If 

[x. i B *] = [[o -1] [bi Ci]] 
' ' i 1 0 ' b2 C2 ' 

then b/ + c/ = b22 + c/ = 0. Thus, ci = Eiibi and c 2 = E2ib2, where Ek= ±1 
fork = l, 2. Since bib2 + cic2 = 0, it follows bib2(l - EiE 2 ) = 0. If bib2 =;i:-0, 
then Ei = E2 . If bi b2 = 0 then, since Bi* is not the zero marix, one of bi and b2 
is different from zero, say bi =;i:-0 and b2 = 0, and we can also take Ei = E2 . Now, 
it follows from (1.21) that, in both cases, we can suppose Ei = E2 = 1. In fact, 
if R = diag[l, Ei], then 

(4.15) Bi*R=[bi Ei~bi]R=[bi ~bi]. 
b2 E2 ib2 b2 ib2 

As before, let [bk, ck] be the part of B assigned to the kth row of [A, B] and 
consider k 2: 3. Since in (4.15) we have the first two rows of B and [bk, ck] is 
orthogonal to these rows, it follows that bi (bk + ick) = 0 and bi =;i:-0. Then 
ck= ibk and this proves that B = [b, ib], is as given in (4.4). 

Keeping the assumption rank A = 2k, proceed to the case q = 2. Beginning 
with a pair [A, B] as in (4.8), suppose A= diag[Xa 2, M] and consider the pair 
(see (4.10)) 

(4.16) 

1/2 i/2 
0 ia 

-ia 0 
-i/2 1/2 

We will determine the possible values of a and the form_ of B 2*. From (4.13), 
we get that 

(4.17) b/ + c/ = 1 + a2 = d for j = 1, • • •, 4. 

Since the first and fourth rows of Xa 2 are orthogonal, it follows that 

(4.18) 

hence, b/b 4 2 = c/c 4 2. From (4.17), we get b/ = d - c/, then b/bl = 
(d - c/) (d - c 4 2 ) = d(d - ci 2 - c 4 2 ) + c/c 4 2. Therefore, d(d - c/ - cl)= 0 
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and then, either d = 0 or d = c1 2 + C4 2 . If this last equality holds, we have 

c1 2 + C4 2 = d = b1 2 + c1 2 = b4 2 + c/, 

and this implies 

(4.19) 

In particular, b 1 = t:C4 where t: = ±1, and a substitution of this in (4.18) gives, 

(4.20) 

The products, respectively, of the first and third, and of the third and fourth 
rows of (4.16), give 

bibs + C1Ca = ia and bab4 + C3C4 = a. 

Now, square each of these expressions, add them, and use (4.20) to simplify 
the result, to obtain 

(b1 2 + b/)ba 2 + (c1 2 + C42)ca 2 = 0. 

Then, a substitution here, using equalities (4.19), gives 

(b 12 + c/)(ba2 + ca2) = d 2 = 0. 

Hence, d = a2 + 1 = 0 in all the cases. Then a2 = -1 and we choose a = i 
(notice that a = -i will give the same final result, since X;2 is orthogonally 
similar to X_;2). 

From (4.17) it follows that b/ + c/ = 0 for j = 1, • • •, 4. Then ci = t:iibi 
where l:j = ±1, and (4.16) becomes 

[ ill t:1ib1]] 

[X/, B2*] = X;2, :: ::;:: • 

b4 t:4tb4 

The elements of [X/, B2*] fulfill the conditions of (4.9) and in X;2 we have 
w1w/ = 1 and w2w/ = -1. Therefore, in B2* we must have b 1b 3 (1 - t:1t:3) = 
-1 and b2b4(l - t:2t:4) = 1. These two equations imply that bi ,;t:. 0 for 1 sj s 
4, and that t:1t:3 = t:2t:4 = -1. Hence, t:1 = -t:a and t:2 = -t:4. Now, from w1w/ = 
0 we have that b 1b 4 (1 - t:1 t:4 ) = 0 and this implies that t:1 = t:4. Consequently, 
t:1 = t:4 = -t:2 = -t:s. Then 

[ 

b1 t:ib1 ] 
B 2* = b2 -t:~b2 , 

ba -t:ibs 
b4 t:ibs 

and, up to equivalence, we can take t: = 1 ( consider B 2 * R where R = diag 
[l, €:], [see (1.21) ]). 

With t: = 1, consider the relations (4.9) in the pair [X;2, B2*]. Respectively, 
from w1w/ = -i, w1w/ = 1 and wsw/ = -i we get 2b1b2 = i, 2b1b 3 = -1 and 
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2b3b4 = i. Consequently, if b = b1, we obtain b2 = i/(2b), b3 = -1/(2b) and b4 
= i/(2bd = ib. then 

[ 
b ib ] 

* _ i/(2b) 1/(2b) 
B 2 - -1/(2b) i/(2b) • • 

-ib b 

To simplify this expression, consider the orthogonal matrix [cf. (2.17)] 

[ (b+b- 1) -i(b-b- 1)] 
R = 1/2 i(b - b-1) (b + b-1) • 

It is easy to verify that the product B 2 * R becomes the above expression for 
b = 1. So, by the same argument used before, we take 

B 2 * = lA~2 ;J:] · 
• -i l 

(4.21) 

To analyze the form of other components, let [bk, ck] be the part of B 
assigned to the kth row of [A, B] where k === 5. The diagonal structure of A 
implies that [bk, ck] is orthogonal to the four components of B 2 *. In particular, 
bk + ick = 0 and -(1/2)bk + (i/2)ck = 0, and these relations imply that bk = ck 
= 0. Hence, if X;2 is a component of A then no other Xa 2 with q > l and a ;I: 
0 can be a component. In fact, Xa q is excluded since it is not an orthogonal 
matrix [see (4.12)] and it can not be completed to fulfill (4.9) since its 
corresponding part in B is already zero. Therefore, in this case only X = X;1 
can be a component, so B = B 3 and, since rank A= 2k, it follows that A= A3 , 

as described in (4.6). 

To complete the analysis, assume that X/ is not a component of A, then we 
will show that Xa q+l for q === 2, can not be a component of A. Suppose on the 
contrary that Xa q+I is a component of A and that [Xa q+I, B*], like in (4.10), 
represents the first 2q + 2 rows of [A, B]. Let u, v E F 2q be the vectors defined 
in (3.1). From (3.4) it follows that the 2q X (2q + 2) matrix A 4 = [-u, Xa q' -v] 
forms the central part of Xa q+i_ Let Bq * be the part of B* assigned to the rows 
ofA 4 and consider the pair [A4 ,Bq *]. The rows of[Xaq+i,B*] and, consequently, 
the rows of [A4 , Bq *] satisfy (4.9). Now, recall 

1/2 -i/2 
0 0 

u= and v= 
0 0 

i/2 1/2 

Then, it follows that these vectors only contribute with isotropic components 
along the rows and with orthogonal components along the columns. Hence, 
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taking them away we get the rows of [X0 q' Bq *] also satisfy (4.9). Then, by 
induction, we end with [ X 0 

3, B 3 *] and [ X0 
2 , B 2 *]. Hence, we can choose a = i 

and B2 * as is (4.21). Explicitly, we have 

0 1/2 0 0 i/2 -n X.' 
-i/2 

1 -i/2 0 0 1/2 

-1 

I ,~2 

-1/2 
0 

d e 

f g 

The six rows of [X/, B3 *] must satisfy (4.9) but w6w2t + f + ig = 0 implies/+ 
ig = 1 and w6w/ - if+ g = 0 implies/+ ig = -I. Therefore, we get a 
contradiction. Consequently, Xa q+1 is not a component of A for q 2:: 2, and this 
ends the analysis for rank A = 2k. 

Case II. Rank A = 2k - 2. 

Again we will study the possible components of A according to (3.5). Since 
the Wd 's are of odd order, they need to appear an even number of times ( for 
instance, M = diag[W 3, W3 ] is of order 6 and rank M = 4). Suppose wa is a 
component of A and consider the pair [Wd, B*] where B* denotes the part of 
B assigned to wa. It was established in [2; p 31-32], precisely for B* ad X 2 
matrix, that [Wa, B*] fails to fulfill (4.9) if d ¥- I. Therefore, the component 
wa cannot be in A for d ~ 3. Consequently, d = 1 and 

is a possible component of A. 
It follows that B* is an orthogonal matrix of order 2 and, like in (4.14), we 

can take R = B*t to obtain, up to equivalence, 

Then, the same argument used for [A2(c), B2(c)], where c = (a, b) E S 1 and 
a ¥- 0, establishes this pair as possible for c = (0, 1) 
(and obviously for c = (0, -1)). This completes (4.5) for all points of S 1. 

Finally, we study the possibility to have X 0 q for q > 1 as a component of A. 
Consider the following three consecutive rows of X 0 q (see (3.4) ). If q = 2, then 

W1 = (0, 1/2, i/2, 0), 

W2 = (-1/2, 0, 0, i/2), 

W3 = (-i/2, 0, 0, -1/2). 



If q ~ 3, then 
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Wq-1 = ( • • ·, 1/2, 0, 1/2, i/2, 0, i/2, • • • ), 

Wq = ( • • ·, 0, -1/2, 0, 0, i/2, 0, • • • ), 

Wq+l = ( • • •, 0, -i/2, 0, 0, -1/2, 0, · · • ), 
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where the dots represent symmetrically placed zeros to complete 2q compo
nents. Form the pair 

[ Wq-1] [bq-1 Cq-1] 
[ Wq , B*] where B* = bq Cq 

Wq+l bq+l Cq+l 

is the part of B assigned to the rows. Since the rows are isotropic and any two 
are orthogonal (i.e., wi wk t = 0 for q - 1 $ j, k $ q + 1), it follows that the 
rows of B* form 3 linearly independent row vectors of F 2. And this contradic
tion eliminates X 0 q(q ~ 2) as a component of A. Therefore, since all possible 
cases have been reduced either to (4.4), (4.5) or (4.6) this ends the proof of 
theorem (4.7). 

5. Main result 

Our final aim is to describe the classes of EOF(2, 2k, 2k + 2) or equivalently 
of EHp(2; (2k + 2) X 2k). The set .91 of theorem (4.7) gives a good approxi
mation, however some of its elements may represent the same equivalent class. 
We proceed to characterize unique representatives of the different equivalent 
classes. 

We begin with the case ( 4.4) and the set .911. Let P2k be the set of all nonzero 
vectors of F 2k and write O(A 1) to denote the subgroup of O(s) formed with all 
Q's such that QA1 = A1Q. Clearly, A1 E O(A1) since A1 E O(s). 

If 2: E .911 then 2: = (E1, E2) is a normalized system and E/ = [Ai, Bi], 
where B1 = [b, ib] for some b E P2k. Observe that this sets a one to one 
relation between b E P2k and 2: E .911 . Hence, we have a well defined bijective 
map 

a: _F2k - .911 

Let P be the multiplicative group, F - {O}, of the field F. 

Definition (5.1). Two vectors band d of F2k are equivalent, in symbols b ~ 
d, if and only if there exist Q E O(A 1) and p E P such that d = pQb. 

It follows that ~ is a well defined equivalence relation and its importance 
can be appreciated by the following 

LEMMA (5.2). Let b, d E .F2\ then b ~ d if and only if a(b) ,:.: a(d). 

Proof. Let a(b) = 2: and a(d) =Li.Since B = [b, ib], it follows that BBt = 
0. Then, the conditions of (2.14) are satisfied and we have that a (b) ,:.: a ( d) if 
and only if 
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D = [d, id] = QBR = p[Qb, iQb] 

for some Q E O(Ai), RE 0(2) and p E P, where pB = BR. Clearly, this is 
equivalent to b ~ d. Hence, (5.2) is proved. 

From (5.2), it follows that the problem of determining the equivalent classes 
(~) of .'#1 can be solved by finding the equivalent classes(~) of F2k. We will 
use this last procedure. 

Given b E F'2\ we have two cases: btb '# 0 (anisotropic) and btb = 0 
(isotropic). Regarding the first case, we have the following 

THEOREM (5.3). Any two anisotropic vectors of F2k are equivalent. 

Let d E pzk be an anisotropic vector where dtd = c2 . Then, if b = c- 1d, we 
have d ~band btb = 1. Then it easily follows that theorem (5.3) is equivalent 
to the next 

THEOREM (5.4). Let b E F2k be an anisotropic vector and suppose that btb 
= 1. Then b ~ e1 where e1 = (1, 0, ... , O)t. 

Proof of (5.4). Given b we need to prove that there exists Q E O(Ai) such 
that Qb = e1 . First, let us characterize matrices Q that commute with A1 = 
diag[X, • • •, X]. Given a matrix Q = [ar,] of order 2k, divide it in blocks 

[
~11 

Q= . 
Qkl 

where each block 

(5.5) 

i!! of order 2 and 1 ~ i,j ~ k. 
It is easy to verify that QA1 = A1Q if and only if Q;iX = XQ;i and this last 

relation holds if and only if llzi,2j-1 = -a 2;-i,2i and a2;,2i = a2;-1,zi-I• Therefore 
QA1 = A1 Q, if and only if 

(5.6) 

for each matrix (5.5). 
Let ai denote the j-row of Q. It follows from (5.6) that only odd rows need 

to be specified. So, if 

define 

and set a 2p = i 2p-l• Clearly, this will preserve (5.6) and we will have QA1 = 
A1Q, 
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Now, given b E P2k, as in (5.4), in order to construct the rows of Q we 
proceed by induction, as follows. Set a1 = b1 and a2 = a1 . For p < k, suppose 
we have a1 , • • •, a 2p such that aia/ = Oij for 1 ~ i, j ~ 2p. Let U1 and U2 be 
two subspaces of F 2k generated as follows: U1 by the first 2p vectors e1 , • • •, 

e2p of the standard basis e1 , • • •, e2k of F 2k and U2 by the vectors a/,•••, a2/. 

Define an isometry h: U1 - U2 by setting h(ej) = a/ for 1 ~ j ~ 2p. Since 
(F 2k, q) is a nonsingular quadratic space, "Witt's extension theorem" implies 
that h can be extended to an isometry h': F 2k - F 2k. Defining a2p+i t = 
h' (e2p+ 1 ) and a2p+2 = i2p+1, the induction step is completed and this establishes 
the existence of Q E O(Ai) such that Qb = e1. Then (5.4) is proved. 

If b is an isotropic vector there are three equivalent classes as shown by the 
next 

THEOREM (5.7). Let btb = 0, where b E F2k and k ii;; 2. Then, it holds one 
and only one of the following equivalences: 

(5.8) 

(5.9) 

(5.10) 

b ~ e1 + ie2, 

b ~ e1 - ie2, 

b ~ e1 + ie4. 

Proof. The proof is by induction and for this purpose some auxiliary results 
are developed. 

Let {ej}, 1 ~ j ~ 2k, be the orthonormal standard basis for F2k. Recall that 
ej = (0, • • •, 1, • • •, 0)1 is a column vector with 2k - 1 zeros and a single 1 in 
the jth place. 

Decompose the identity matrix 12k in k rectangular 2k X 2 matrices Jj , as 
follows: 

I2k = [ J1, • • ·, Jk] where Jj = [e2j-1, e2j ]. 

Let Sk be the symmetric group of degree k. If <1 E Sk, defme 

Qu = ul2k = [Ju(l), • • ·, Ju(k)], 

as the u permutation of pairs of consecutive columns Ji= (e2j-i, e2i ]. Clearly, 
Qu is an orthogonal matrix and it fulfills condition (5.6) on its order two 
required matrices. In fact, these matrices have either two O's or two l's in the 
main diagonal and always O's in the other diagonal. Hence, Qu E O(Ai). 

It easily follows that 

Ifw E F 2k and 

where Ah E F, then 
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For simplicity, write 

(5.11) 
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<JW = Q,,W 

and, for each <J E Sk regard <J: F2k - F2k as an operator defined by (5.11). 
Clearly, we have w ~ <JW. This equivalence will be useful. 

For 1 ~ p < k, decompose F2k as the orthogonal sum of the quadratic spaces 
F2P and F2<k-p)_ Let (e1, • • •, e2k), (ei', • • •, e2p') and (ei'', · · ·, e2(k-pi") be, 
respectively, the orthonormal standard basis for F 2\ F 2P and F2<k-pJ_ As a 
vector space F2k = F2P EB F2<k-p l is a direct sum and the three different bases 
are connected as follows: ei = (e;', 0") for 1 ~ i ~ 2p, and e2p+j = (0', e/') for 
1 ::5 j ::5 2(k - p ), where 0' E F 2P and 0" E F2<k-p) represent the zero vectors. 

Let A1' and Ai'' be, respectively, the matrix diag[X, • • •, X], where X 
appears 2p and 2(k - p) times. Then A1 = diag[A1', Ai'']. 

Given w E F 2\ write w = (w1, w2) where w1 E F2P and w2 E F 2<k-pJ_ Suppose 
that Q'w 1 = u1 and Q'w 2 = u2 where Q' E O(A1') and Q" E O(Ai''). Then, 

(5.12) 

where Q = diag[Q', Q"] and Q E O(Ai). 
Consider the following special case of (5.12). Suppose that 

(5.13) 

where Ej = + 1 and qi E F, for j = 1, 2. Then, we have 

(5.14) 

To verify this, let 

[ (q + q-1) 
Q = Q(q, f.) = 1/2 "( -1) -a q - q 

where q E F and E = +1. Then Q E O(X) and Q(qe1 + Eqie2) = e1 + Eie2. 
Therefore, if Qi= Q(qi, Ej) for j = 1, 2, and we define 

Q* = diag(Q1, I2(k-2J, Q2], 

then Q* E O(A1) and Q*(u1, u2) = (e1 + f.1ie2) + (e2k-1 + E2ie2k). 
Finally, if <J is the transposition <J(k) = 2 and Q,, is as in (5.11), then 

Q"Q*(u1, ~) = (e1 + E1ie2) + (e3 + f.2ie4), 

and this proves (5.14). 

Forgetting zeros, the expression to the right of (5.14) can be regarded as a 
vector (1, E1 i, 1, E2 iY E F4. As we will see the equivalence can be simplified 
further, according to the values of E1 and f.2. 

Since (1, i, 1, -i)t and (1, -i, 1, i)t are equivalent by a simple transposition, 
we actually have three cases: (1, i, 1, i)t, (1, i, 1, -i)t and (1, -i, 1, -iY. For 
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each case we construct an orthogonal matrix that commutes withA 1 = diag[X, 
X] and gives the needed equivalence. Define Qj for j = 1, 2, 3, as follows: 

and 

Q1 = 1/2 [~ }li _=-20~ _
2
il , Q, - 1/2 [~ ~ l -;] . J -~ ; -~ -~ 

5 

-7 
-3i 

~i] 
3i 
-7 

It is immediate to verify that 

And, changing notation, these results become 

(5.15) 

(5.16) 

(5.17) 

We will prove theorem (5.7) for k = 2, namely, the starting case for the 
induction. As in (5.12), write F 4 = F/ EB F 22 as orthogonal sum, where (ei', 
e/) and (ei'', e

2
") are, respectively, basis for F

1

2 and F
2

2

• Given b E F4 set b 
= (ui, u2), where u1 E F1 2 and u2 E F/. Then bib = 0 if and only if u/u1 = 
0 and u/u 2 = 0. And these last two relations hold if and only if u1 and U2 are 
of the form (5.13). Hence, assuming bib = 0 we have, first that bis equivalent 
to the general expression (5.14) and then to one of the expressions (5.15), 
(5.16) and (5.17), in agreement to the values of e1 and e2 . 

To complete the proof for k = 2, it is enough to show that not two of the 
vectors 

V1 = (1, i, 0, O)t, u2 = (1, -i, 0, OY and u 3 = (1, 0, 0, i)t 

are equivalent. According to (5.5), the most general matrix Q E O(Ai) is of 
the form 

a13 a14] 
-a14 a13 . 

a3s a34 

-as4 a3s 
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The images Qv1 and Qv2 are as follows: 

(5.18) 

The form of these images clearly shows that v1 is not_equivalent to u2 and 
that V2 is not equivalent to u3 • Since~ is symmetric, this proves that not two 
of u1, v2 , u3 are equivalent and establishes (5.7) fork= 2. 

For future reference, let us state as a lemma the following special case of 
(5.7). 

LEMMA (5.19). Let b = (b1 , • • •, b2k)I be an isotropic vector and suppose there 
exists a number p < k such that b/ + ... + b2/ = c2 ~ 0. Then, as in (5.10), 
we have the b ~ e1 + ie4. 

Proof. Clearly, b2p+/ + • • • + b2/ = -c 2 and since b ~ c- 1b (see (5.1)), we 
suppose c2 = 1. Write b = (u1, u2) where u1 = (b1, • • •, b2p)1 E F2P and U2 = 
(b2p+1, • • •, b2kl E F 2Ck-p)_ By (5.4), we have Q'u1 = e1' and Q"(iu 2) = e1". 
Then, -Q"u 2 = iei''. Set Q = diag[Q', - Q"] then, as in (5.12), we have 

Qb = (e1', iei'') = e1 + ie2p+l• 

If u E Skis a transposition defined by u(p + 1) = 2, then (see (5.11)) 

Q"Qb = u(e1 + ie2p+d = e1 + ies. 

Finally, if Q1 = diag[l2, X, 12, • • •, 12], where X is as in (4.4), then Q1 E 
O(A1) and 

Q1 Q"Qb = Q1 (e1 + ies) = e1 + ie4. 

Hence, b ~ e1 + ie4 and this ends the proof of (5.19). 

We have shown that theorem (5.7) is true fork= 2, and now we are ready 
to prove it for all k. By induction, suppose that (5.7) is true fork= p and let 
b E P2p+2 be an isotropic vector. Decompose F 2P+2 = F 2P EB F2 as an orthogonal 
sum and write b = (u1, u2) where u1 E F 2P and u2 E F 2. We will show that a 
given b is equivalent to one of the three vectors considered in ( 5. 7). It follows 
that btb = u/u 1 + u/u 2 = 0, and the two possible cases: u/u 1 ~ 0 or u/u 1 = 
0, will be treated apart. 

If U11u1 ~ 0 then, according to (5.19), we have that b ~ e1 + ie4 and this 
agrees with (5.10). 

If u/u 1 = 0, by the induction assumption, we have that, either 

Q'u1 = Q1(e1' + ie/) or Q'u1 = Q1(ei' + f1ie2'), 

where Q' E O(A1') is as in (5.12), q1 E F and e1 = ±1. 
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Since u/u 1 = 0 implies that u/u 2 = 0 and u2 E F 2, for the component u2, it 
follows that U2 = Q2(ei'' + t2ie2"), where q2 E F and t2 = ±1. 

As in (5.12), let Q = diag[Q', 12]. Then Qb = (Q'u 1, u2), and 

(5.20) 

or 

(5.21) 

If we suppose (5.20) then, from (5.19) it follows that b ~ e1 + ie4, as it 
happened in the preceding case. 

If we now take (5.21) then, as in (5.14) it follows that 

b ~ (e1 + t1ie2) + (e3 + t2ie4). 

Considering the values of t1 = ±1 and t2 = ±1, we get 

Since uw3 = w4, where u(l) = 2 is a transposition, we actually have the first 
three cases. 

Let Qj * = diag[ Qj, I2<p- 1i], where Qj for j = 1, 2, 3 are, respectively, the 
matrices used to prove (5.15), (5.16) and (5.17). To establish the similar cases 
for b E F 2P+1, set h1 = (1, i, 0, · · ·, 0)t, h2 = (1, -i, 0, · · ·, 0)t and b3 = (1, 0, 0, 
i, 0, • • •, 0)t. It is immediate to verify that Qj * Wj = bj, for j = 1, 2, 3. Therefore, 
bis equivalent to one of the vectors e1 + ie2, e1 - ie2 or e1 + ie4, as assured in 
(5.7). 

Finally, taking the most general matrix Q of order 2p + 2, such that Q E 
O(Ai) (see (5.5)), the same argument already used in (5.18) fork= 2, shows 
that not two of the vectors b1 , b2 , b3 are equivalent and this ends the proof of 
theorem (5.7). 

Let 2: = (E1, E2) be an element of the set .¼"1 defined in (4.4). Then E 1 = 
[I2k, Of and E2 = [Ai, Bi]t, where B1 = B1 (b) = [b, ib] for b E F2k. Set E2 (bj) 
= [A1, B1 (bj) Y, and construct the systems 

L1 = (E1, E2(hj))t for j = o, 1, 2, 3, 

where ho= e1, h1 = e1 + ie2, h2 = e1 - ie2 and b3 = e1 + ie4. Now, define the 
set 

(5.22) 

It follows from (5.2), (5.4) and (5.7) that .¼"1 has four equivalent classes and 
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that .SIi 1 * contains exactly one representative for each one of these classes. 
Let .912 = I ~ ( c) I c E S 1 I be the set of normalized systems constructed in 

(4.5), where ~ (c) = (E1 , E2 (c)) and E2 t (c) = [A2 (c ), B2 (c) ]. Recall that S 1 C 
F 2 is the "unit circle" and wherefore a 2 + b2 = 1 for c = (a, b) E S 1. 

To determine the equivalence classes of .912, consider 

and 

B ( ) = [b, 0, • • ·, O]t 
2 c ob ... o· 

' ' ' 
All the terms E 2 ( c) have components of this form and each A 2 ( c) has ( A - ia), 
(>.. + ia), (>.. - i), (>.. + i), • • •, (>.. - i), (>.. + i) as elementary divisors. Therefore, 
QtA2 (c)Q = A2 (c') if and only if a'= ±a where c' = (a', b'). Consequently, 
to find equivalent systems we only need to analyze possible change of signs of 
a and b. 

If c = (a, b), write ~(c) = ~(a, b) andA 2 (c) = A 2 (a, b). We have 

(5.23) ~(a, b) c,: ~(a, -b) c,: ~(-a, b) c,: ~(-a, -b). 

These equivalences are obtained from (1.21) using suitable matrices Q and R. 
So, the first follows trivially with Q = 12k and R = - 12 • For the others, set 

Q = diag[H, X, .. ·, X] where H = [~ ~], 

and R = eH fore= ±1. It is easy to verify that QtA 2 (a, b)Q = A 2 (-a, b) and 
QtB2 R = ill 2 • Hence, the second and third equivalences follow, respectively 
for e = 1 and e = -1. 

To formalize this let IT= 11, x I be the cyclic group of order two and generator 
x. The group IT operates on the additive part of F by x(a) = -a, for all a E F. 
The direct product IT x IT, componentwise, operates on F 2 and on S 1. The 
elements of IT x IT are: (1, 1), (1, x), (x, 1), (x, x), and the action of them on 
(a, b) E S 1 gives 

l(a, b), (a, -b), (-a, b), (-a, -b)l, 

that is, the orbit associated to (a, b ). Denote by S 1 /(IT x IT) the set of orbits 
determined by the action of IT x IT on S 1. 

Let .912 * indicate the equivalence classes of .912. Since ( a, b) - ~ ( a, b) gives 
a one to one correspondence and (5.23) holds, it follows that .912* can be 
represented by the set of orbits S 1/(IT x IT). That is, 

(5.24) .912* ~ S 1/(IT X IT). 

If we consider IT x IT operating on .912 then, the orbit linked to ~(a, b), 
denoted by O ( ~ ( a, b)), is formed by the union of the four systems that appear 
in (5.23). We have O(~(a, b)) E .912*. 
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Remark. If F = ~ is the field of real numbers, we can always take (a, b) 
with O :S a :S 1 and b = ✓1 - a 2• Hence, in this case, S 1/(II x II) can be 
realized as a simplex of dimension one. For a more general statement of this 
type, concerning orthogonal pairings of size [2, s, n J over ~, see [7; Remark 9, 
p 141]. 

Set .91 * = .911 * U .91' 2 * U .91' 3 and define, for k ~ 2, 

K*: .91* - EHF(2; (2k + 2) x 2k), 

as a map induced by K of (4.7). Our main result is the following 

THEOREM (5.25). The map K * is bijective. 

Proof. All of the work of the proof has already been done and a summary 
of needed results follows. The elements of .91'1 were reduced to four nonequi
valent systems with a very simple expression and they form .911 *, as shown in 
(5.22). If ~j E .91'1 * then K*(~j) = [~j ]. 

Each system of .912 is associated with a point (a, b) E S 1. Two systems are 
equivalent if and only if they are associated with two points out of the four 
points (±a, ±b ). These collections of four equivalent systems, denoted by 
O(~(a, b)) are the elements of .912* as described in (5.24). Then K*(O(~(a, 
b))) = [~(a, b)J. 

Finally, recall that .91'3 consists of a single system ~3 and set K*(~3) = [~ 3 ]. 

The map K * is a restriction of K on .911 * U .91' 3 and it becomes one to one, on 
this part of .91' *. On the other hand, each orbit O ( ~ ( a, b)) of four elements, 
have the same image under K, and is considered as a single element of .912 *. 
From this and from the observation already made about elementary divisors, 
showing that equivalences (5.23) are the only ones possible for .91'2 , it follows 
that K * is one to one on .91' 2 *. Therefore, since K is surjective, it follows that K * 

is bijective and this ends the proof. 

CENTRO DE INVESTIGACI6N DEL IPN 
APARTADO POSTAL 14-740 
MEXICO, D. F., MEXICO 07000. 

REFERENCES 

[1] J. ADEM, On the Hurwitz problem over an arbitrary field I, Bol. Soc. Mat. Mexicana, 25 
(1980), 29-51. 

[2] --, On the Hurwitz problem over an arbitrary field II, Bol. Soc. Mat. Mexicana, 26 (1981), 
29-41. 

[3] --, On Yuzvinsky's theorem concerning admissible triples over an arbitrary field, Bol. 
Soc. Mat. Mexicana, 29 (1984), 65-69. 

[4] --, On admissible triples over an arbitrary field, Bull. Soc. Math. de Belgique, (1986), 31-
33. 

[5} F. R. GANTMACHER, The theory of matrices, I, II, Chelsea Publishing Company, New York, 
1960. 

[6] D. B. SHAPIRO, Products of sums of squares, Expo. Math., 2 (1984), 235-261. 
[7] S. Yuzv1NSKY, Orthogonal pairings of euclidean spaces, Michigan Math. J., 28 (1981), 131-

145. 
[8] --, On the Hopf condition over an arbitrary field, Bol. Soc. Mat. Mexicana, 28 (1983), 

1-7. 




