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CLASSIFICATION OF LOW DIMENSIONAL ORTHOGONAL
PAIRINGS

By Jost ADEM

Introduction

Let (F*, q) be a quadratic space over a field F of characteristic #2, where
the quadratic map q is given by q(x) = %2 + - -+ + x,” for column vectors x =
(x4, - - -, x,)°€ F". Since all our quadratic spaces will be of this form, we briefly
write F™ for (F", g). If : F" X F°* — F™ is a bilinear map then, for x € F" and
y € F* we have ®(x, ¥) = (21, - - -, 2,)%, where each z; is a bilinear form in x and
y with coefficients in F. Here, x and y are viewed as variables. A bilinear map
® is called an orthogonal pairing of type [r, s, n] over F, if

(*+ D+ YD) =2+ e+ 25

for all x € F" and y € F*. Conversely, if there exists such a formula then, there
exists an orthogonal pairing ®. To use a short form to express this, we will
say that the triple [r, s, n] is admissible over F [6; p 236].

Following S. Yuzvinsky [7; p 139], we say that two orthogonal pairings ®,
¥ or type [r, s, n] over F are equivalent if there exist orthogonal matrices S, @
and P of orders r, s and n, respectively, such that P®(Sx, Qy) = ¥ (x, y), for all
x € F', y € F°. This is a well defined equivalence relation and it provides a
classification. Let EOz(r, s, n) denote the set of equivalence classes of orthog-
onal pairings of type [r, s, n] over F.

Almost all that is known about these sets may be summarized as follows.

If F = R is the field of real numbers, Yuzvinsky’s paper [7] gives several
partial results of various cases and also a complete description of EQy
(2, s, n). For instance, if s is even and n = s + 2, the EOg(2, s, s + 2) can be
identified with the points of the closed interval [0, 1].

For other fields, first notice that any orthogonal pairing over an arbltrary F
can always be viewed as a pairing over an algebraically closed extension of F.
Therefore, we may suppose from the beginning that F is an algebraically closed
field. Using canonical forms for matrices, it was proved by the author [2;
(2.5)], that each set EOz(2, s, n) contains only one equivalence class, for any
sandn=s+ 1 and for s odd and n = s + 2 (see (4.3)).

Avoiding the use of matrices, Yuzvinsky studied in [8] the structure of
orthogonal pairings of type [2, s, n], again for s and n as above.

Some of these results were developed and used in order to establish that
certain triples are not admissible over any field. For an account of these
applications the reader is referred to Shapiro’s expository paper [6] and in
particular to [8], [3] and [4].

The main aim of this paper is to determine the set EOr(2, s, s + 2), for s an
even integer. This set is described in theorem (5.25) and, as we may notice
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2 JOSE ADEM

there, besides a part of EOr(2, s, s + 2), that generalizes for arbitrary F the
closed interval EOR(2, s, s + 2) = {a| 0 < a = 1}, we have five more classes.
This seems significant regarding orthogonal pairings, since it starts a different
pattern between the field of real numbers and any algebraically closed field.
The method of proof uses similar techniques to those developed in [1] and

[2].
1. Equivalence of orthogonal pairings

Assume that F is a field of characteristic different from two and let
(F™, q) denote a quadratic space, where F" is the usual n-dimensional vector
space over F, whose elements are column vectors x = (x4, - - -, x, )%, where ¢ is
the transpose operation and q: F™ — F is the quadratic map given by ¢ (x) =
0+ - +x,k

Let (F', q1), (F*, q2) and (F™, ¢) be quadratic spaces as above, respectively
for the dimensions r, s and n. Let us recall that a bilinear map ®: F” X F* —
F™ is called an orthogonal pairing of type [r, s, n] over F, if

(1.1) g(®(x, ¥)) = q:1(x)g2(y)

for x € F" and y € F*. Indistinctively, ® is also called a normed map and the
triple [r, s, n] is said to be admissible over F if there exists such a map &.

Let us also recall that the existence of an orthogonal pairing & of size
[r, s, n] over F, is equivalent to the existence of an r-tuple A = (Ny, -.-, N,)
of n X s matrices N; over F, fulfilling the Hurwitz equations (see [1; p 32], [6;
p 238]):

(1.2) NitNi =] if 1=i=< r,
(1.3) NéN, + NfN; =0 if istj,1=ij=r

The matrices A = (Ny, ---, N,) are determined by ® as follows. Consider
orthogonal standard bases for F’, F°, F", and let (es, - - -, e,) be such a basis
for F". Then let the matrix N;: F* — F" be defined by

(1.4) N;y=®(e,y) for yEF i=1,..--,r).

Using (1.1) it follows that these matrices satisfy the Hurwitz equations {see
[loc.cit.]).

Conversely, let A = (N3, ---, N,) be an r-tuple of n X s matrices satisfying
the Hurwitz equations. For x € F", with x = (x,, - - -, x,)° consider

(15) N=A°x=N1x1+ "'+er,-,

where ° is used to denote a well defined hybrid product of an r-row A, whose
elements are matrices, and a column vector x of F''. Clearly, as a function N
= N(x) is an n X s matrix determined by x. Then, for y € F*, set

(1.6) ®(x,y) = (A°x)y=Ny.

And, from (1.2) and (1.3), it follows that ® constructed in this form defines an
orthogonal pairing.
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Consequently, ® and A = (IV;, - - -, N,) can be considered as equivalent in
the sense that any one of them determines the other.
The following notation is introduced in order to have a better setting for

some of the results.
Let Or(r, s, n) denote the set of all orthogonal pairings ® of type [r, s, n]

over F.

Let Hz(r; n X s) denote the totality of r-tuples A = (N, ---, N,) of n X s
matrices N; over F, fulfilling the Hurwitz equations.

Let the map

1.7) 0: He(r; n X s) — Og(r, s, n)

be defined by (A) = &, where A determines & according to (1.6).
The next lemma gives in a condensed from the above statements of this

section.

LEMMA (1.8). The map 0 is bijective (one to one and onto) and the explicit
values of 67" and 0 are determined by (1.4) and (1.6), respectively.

Proof. It follows directly from the definitions of 6 and 6.

Let O(n) = O,(F) be the orthogonal group or group of isometries of
(F™, q). According to Yuzvinsky ([7; p 139]), two orthogonal pairings, &, ¥:
F" X F° — F" are said to be equivalent, in symbols ® = ¥, if there exist
orthogonal operations S € O(r), @ € O(s) and P € O(n) such that

(1.9) P2 (Sx, Qy) = ¥ (x, y),

for all x € F’, y € F*. We can easily verify that = is an equivalence relation.
Let EOgr(r, s, n) denote the set of all equivalence classes of orthogonal
pairings ®: F" X F° — F", where the symbol {® } represents the class determined

by .

Keeping r, s and n fixed, write briefly Hr = Hr(r; n X s). Let A = (N, ---,
N;,) be an element of Hy and let the matrix S = (u,, ---, u,), where the u;’s
denote the columns. The product A ° S is defined as the obvious extension of
A o x, introduced in (1.5). That is, A S = (A ° uy, ---, A ° u,). A direct
verification gives
(1.10) (Ao S)ex=Ac°(Sx), for x € F".

Set PAQ = (PN.Q, - - -, PN,Q). It is easy to prove that
(1.11) [(PAQ) ° 2]y = P(A ° 2)Qy, for z€ F'",y € F".

Now, we have the following

LEMMA (1.12). Let S € O(r), @ € O(s) and P € O(n). Then A € Hr if and
only if (PAQ) » S € Hy.

Proof. If S = I, it follows easily that A € Hy if and only if PAQ € Hp.

Hence, it is enough to prove the lemma only for @ = I, and P = I,,.
As above,let Ao S=(A°uy, ---, A° u)and set M; = A ° u;. To establish
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that these M;’s satisfy conditions (1.2) and (1.3), proceed as follows. The fact
that u;’u; = 1 and the hypothesis A € Hy imply that

M'M; = (A ° w)(A ° w) = I,

and this proves (1.2).
We have (u; + w;)*(u; + v;) = 2 if i # j. And, using the same argument as
above, we get

(M; + Mj)(M; + Mj) = [A © (u; + u)J[A ° (w; + )] = 2I,.
Thus, expanding the term (M; + M, ) (M; + M, ), we obtain
M:!M;+ M;M; =0 for i#j.
Therefore, (1.3) is established and A » S € Hy.

Conversely, starting with A © S € Hjy, consider (A o S) o S*= A o (SS*) =
A, consequently A € Hp, and this ends the proof of (1.12).

Parallel to the case of orthogonal pairings, two r-tuples A, Z of Hy are said
to be equivalent, in symbols A = X if there exist orthogonal matrices S, @ and
P, as those of (1.12), such that

(1.13) (PAQ) ° S = .

From (1.12) it follows that ¥ is well defined and, as for (1.9), we verify that =
is an equivalence relation.

Given two r-tuples, A, = of Hr, let ® = 0(A), ¥ = §(2) be the two orthogonal
pairings determined by the map 6 of (1.7). The following result holds.

LEMMA (1.14). Let A, 2 and ®, ¥ be as above. Then A = X if and only if ®
=V,

Proof. Suppose ® = V. Then there are orthogonal matrices S,  and P such
that
P2(Sx, Qy) = P[A ° (Sx)]Qy
= ([(PAQ) ° S]° x)y = ¥(x, y) = (2 ° x)y,

for all x € F™ and y € F°. the second equality follows using, first (1.11) and
then (1.10). Therefore, (PAQ) > S=Z and A = 2.

Starting with A = T and reversing the arguments we conclude that & =~ .
Consequently, the lemma is proved.

Let EHr(r; n X s) denote the set of all equivalence classes of r-tuples A €
Hz(r; n X s) where the symbol [ A] represents the class determined by A.

Given [A] € EHg(r; n X s), define O ([A]) = {#(A)}, where 6 is the map
(1.7). We have the following

LEMMA (1.15). The map
O: EH:(r; n X s) — EOx(r, s, n)

is bijective.
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Proof. From (1.14) it follows that [A] = [Z] if and only if {#(A)} = {6(Z)}.
Then, O is well defined and one to one. To prove that O is onto let {®} €
EOg(r, s, n). Then 67*(®) = A and ©([A]) = {®}. This ends the proof.

LEMMA (1.16). Let A€ Hrand A = (N,, - -, N,). Then,

A= (61N1, Tty GrNr),
where e, =x1forl1<i=<r.

Proof. It follows after substitution in (1.13) of P =1,, Q = I, and S = diag
(51’ tt 6r)-

LEMMA (1.17). Let (PAQ) ° S = Z so that A = 2. Then, up to equivalence,
we can always suppose det S = 1.

Proof. If det S = —1, let S; = diag(Z,-;, —1) and S’ = S5;S. Then A°c S= A
°©(S;S’)=(A°S;)°S’and,if A’ = A S;, we have (PA’Q) S’ = = where
det S’ =1.

LEMMA (1.18). Given A € Hy there exists £ = (E,, ---, E,) such that A =
3, where E; = [A;, B;]f with A, = I, and B; = 0 is the zero s X (n — s) matrix.
Moreover, for all 2 < i < r, each A; is an alternate (skew) matrix of order s and
each B; a suitable rectangular s X (n — s) matrix.

Proof. A proof of (1.18) has already been given elsewhere. We refer to
[1; p 33-34] for it.

Remarks.

(1) A collection 2 = (E;, ---, E,) like the one in (1.18) is said to be

normalized and, in terms of E; = [A;, B;]’, the Hurwitz equations for 2 < i,j <
r become

(1.19) -A® + BB’ = I,

(120) AiA_,' + AjA,' = BiBjt + BjBit, for i # ]

In fact, using the alternate condition A;* = —A;, these relations follow easily
from (1.2) and (1.3) (see [1; p 34]).

(2) Lemma (1.18) assures that each class [A] € Hr contains a representative
2 in normalized form. If & = §(Z), from (1.4), it follows that ®(e;, y) =y for

y € F° and such & is also called normalized.
(38) For r =1, any n X s matrix N such that N°N = I, is equivalent to 2 =

[L,, O]’. Therefore, if r = 1 there is only one class of equivalence for n X s
matrices, hence

EHr(1; n X s) = {[Z]}.
Finally, we have the following

LEMMA (1.21). Let 2 € Hy, where 2 = (E,, - - -, E,) is a normalized r-tuple
of n X s matrices and let E;* = [A;, B/ fori = 2. If Q € O(s), R € O(n — s),
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then

_|Q@ ©
and PZQ =2’ = (E,’, ---, E,”) is also normalized and obviously £ = Z’.
Moreover,

Eilt = [QtAiQ, QtBiR]
for i = 2. In particular, if Q = I, then E' = [4;, B;R].
Proof. Tt is a direct verification and we omit it.

2. Thecaser =2

Let 2 = (E,, E;) and A = (N1, N;) be two systems of n X s matrices, each
of them an element of Hr(2; n X s). Clearly, to study their equivalence: = =
A, it is enough to consider normalized systems. Then let E; = N; = [I;, Of,
E,=[A, Bland N, =[C, DT, where as in (1.18), A and C are alternate matrices
of order s and B and D are appropriate s X (n — s) rectangular matrices.

Suppose there exist orthogonal matrices S, @ and P, respectively of orders
2, s and n, such that

A=(PZQ)~°8S.

Now, taking into account (1.17), we may assume detS = 1, so that

s-[5 ]
where a® + b2 = 1. And, the above equality becomes
2.1) N, = aPE.Q — bPE,Q,
(2.2) N, = bPE,Q + aPE.Q.
Out of these expressions, consider the product
N,'N, = (bQ*E.'P* + aQ'E,'P*)(aPE,Q — bPE,Q).

An elementary calculation, using the identities E,’E, = E,’E, = I, and E,*E,
= —FE,'E,, shows that

N:'N; = QtEZtElQ-
But, we have

NN, = [C, D] f; —C

and

E,'E, = [A, B] {)S = A.
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Consequently, C = Q°AQ, so that C and A are orthogonally similar. Hence,
the equivalence Z =~ A transforms into

(2.3) (IL, OF, [4, BY) = ([L,, 0T, [Q"AQ, DT').

To get more precise information some relations will be established. Multiply
each of the equations (2.1) and (2.2), to the right by ° and to the left by P*,
to have,

P'N.Q' = aE, — bE, and P‘N,Q'= bE, + aE,.

Then substitute the expressions of E;, E;, N; and N, in each relation, and
take the transpose, so to obtain

QlL,, O]P = al[l,, 0] — b[A, B] = [al, — bA, — bB],
QIC, D]IP = b[I,, 0] + alA, B] = [bl, + aA, aB].
Let us decompose the orthogonal matrix P into four blocks, as follows
» U L
o pe[V 1]

where U, L, L, and R are, respectively, s X s, s X (n — s), (n — s) X s and
(n — 8) X (n — s) matrices. Using (2.4), perform the products indicated below,

to get
QlL, O1P = Q[U, L],

QIC, D]P = Q[CU + DL,, CL, + DR].

Hence, from the above equalities, the following relations are obtained,

(2.5) QU = al; — bA,
(2.6) QL, = —bB,

2.7 QCU + QDL, = bl, + aA,
(2.8) QCL, + QDR = aB.

From (2.5) and (2.6), it follows that
U= Qal, —bA) and L, = —bQ'B,

therefore, the upper part [U, L,] of P is determined by the orthogonal matrix
Q and [A, B]. The lower part of P, though not so readily, it can also be
described in similar terms. However, we skip this and concentrate on some
special results that will be required in section 5. With this purpose, we will
establish the next two relations,

(2.9 DL, = bQ'BB’,
(2.10) DR = Q*(al, + bA)B.
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These relations are proved as follows. From A = QCQ® and (2.5), it follows
that
QCU = (QCQR")(QU) = A(al, — bA) = (aA — bA?).
Now, (1.19) implies that
QCU = (bl + aA) — bBB’,

and a substitution of this in (2.7), establishes (2.9).
Again, from A = QCQ* and L, = —bQ*B, it follows that

QCL, = —bQCQ'B = —bAB.
And a substitution of this expression in (2.8) verifies (2.10).

For later reference, consider the following results.

LEMMA (2.11). Let @,* = Q*(al, + bA). If BB* = 0, then @, is orthogonal and
D = Q.*BR". In general, R may not be orthogonal, but if we also assume B'B =
0, then R becomes orthogonal.

Proof. Supposing BB = 0, from (1.19) it follows that AA*= —A% =I,. Then
(al, + bA)(al, + BA) = (a® + b)), = I,

hence, (al, + bA) and @, are orthogonal.
Substitution of BB® = 0 in (2.9) gives DL, = 0. Then, from

UU' + LiL,' ULy + LlRt] g

t —
PP = [LzUt +RL' L,L + RR'

we get four equalities and, the one in the right lower corner gives RR’ =
I,y — LyL,*. Multiplying (2.10) to the right by R and using this relation we
obtain D = @,'BR".

Similarly, from P*P = I, we have another four equalities and the one in the
right lower corner is L,’L, + R'R = I,,_,,. Now, from (2.6), it follows that
L,’L, = b>B’B. Therefore, assuming B’B = 0, we get R‘R = I,—), and this
ends the proof.

LEMMA (2.12). As before, suppose BB* = 0 and B'B = 0 and set P, = diag
(@, R). Then

A=(PZQ)°S=(P.Zq).
Hence, in this case, the action of S can be given through P, and Q.

Proof. Clearly, E, = N, = [I,, 0]’ and we have D = Q,"BR" in both systems:
in (P2Q) o S by (2.11) and in P; Z @, directly after performing the product.
Finally, since the orthogonal matrix (al, + bA) commutes with A, it follows
that C = @,’AQ; = Q*AQ, and this proves (2.12).

Now, we will consider equivalences that keep A fix, that is A = Q'AQ.
Therefore, QA = AQ, so we need to restrict to those @’s that commute with
A. The next result is an immediate consequence of (2.12).
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LEMMA (2.13). Let 2 = (E,, E;) and A = (N;, N;) be two elements of Hr
(2; n X s), each of them in normalized form. Suppose that

E, =[A, Bl and N, = [A, DY,

where BB* = 0 and B'B = 0. Then, 2 = A if and only if D = @:*BR* where @,
€0n), REO(n —s) and QA = AQ,.

If n = s + 2, the following result, analogous to (2.13), can be formulated
without assuming B‘B = 0.

LEMMA (2.14). Let Z = (E,, E;) and A = (N, N;) be two elements of Hp
(2; (s + 2) X 2), each of them in normalized form. Suppose that E,* = [A, B]
and N,' = [A, D), where BB* = 0. Then £ = A if and only if D = Q,'BR,,
where R, € O(2) and @, € O(s) such that ;A = AQ;.

Proof. Here B is an s X 2 matrix and the condition BB* = 0 implies that B
= [b, = ib] where b € F”. If the sign of the second column of B is minus,
multiplying B to the right by diag[1, —1], it follows that, up to equivalence
(see (1.21)), we can take B = [b, ib]. Then, from (2.6), we have that L, =
—bQ'[b, ib] = [H, iH] where H = —bQ'b and set K = H'H = b®b‘b. Let

c d
(2.15) R = [e f]

denote the component of the matrix R appearing in (2.4). Substituting these
expressions on L,’L; + R'R = I, gives

K iK c2+e* ced+ef| |1 0
(2.16) LK-—]+Ld+d #+f4_[01}

Then, we have
K+c*+e?=1, K—d?>—f*=-1, iK+cd+ ef =0.

Multiply the third relation by 2i and add the result to the first and second
relations, to obtain (¢ + id)? + (e + if )> = 0. Thus, e + if = +i(c + id).
From (2.16), it follows that

1-K —m}

t =
R'R [—m 1+ K|

Hence, det(R‘R) = (det R)?> = 1. Therefore, det R = +1. We will prove that
p = ¢ + id # 0. Suppose, on the contrary, that ¢ = —id, then e = —if and
replacing these values in (2.15), we get det R = 0, then we have a contradiction

and this proves our claim.
Now, according to (2.11), let us consider the right action of R’ on B. We

have

BH=mﬂ4;ﬂ= [b(c + id), be + if)] = (c + id)[b, £ ib].
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Then, up to equivalence, we can consider that BR® = pB, where p = (¢ + id)
# 0.

The matrix R’ is not orthogonal, unless K = 0. However, its action on B can
always be obtained by the following orthogonal matrix

_ (p+p™ ip-p™)
(217) B=1 2[—i(p —p™) (p+p™) ]
In fact, a direct computation shows that BR‘ = BR, = pB.

To prove the lemma first suppose that D = Q,*BR;, where R, and @, are as
in (2.14) and then, define P; = diag[Q:%, R:]. It is easy to verify that (P, Z ;)
= A, hence 2 = A. For the implication in the other direction, let £ =~ A. Then,
from the first part of (2.11) it follows that D = Q,°BR’, where R is as in (2.15)
and @, = Q‘(al, + bA). Then, with a suitable R;, as in (2.17), we have BR! =
BR, and R, € 0(2). Since the matrices (al, + bA) and @ are orthogonal and
both commute with A, it follows that @, € O(s) and @, A = AQ,. This ends
the proof.

3. Canonical forms for alternate matrices

Let us recall some results about canonical forms for alternate matrices. The
results to be quoted were stated in [5; Ch. XI] for the field of complex numbers.
However, it readily follows that they also hold for an algebraically closed field
and, in this form, they already were used in [1] and [2], where further references
can be found.

From now on assume that F is an algebraically closed field of characteristic
different from two. Let i be a fixed element of F such that ;> = —1. Consider
the column vectors

(3.1) u=(1/2,0,.--,0,i/2)" and v=(-i/2,0, ---,0, 1/2),

where u, v € F* and n = 2.

Let W¢ and X,? be alternate canonical matrices fulfilling the following
properties. First, W¢ is an alternate matrix of odd order d, such that it has a
single elementary divisor A%, where X is an indeterminate. And, for any a € F
(including a = 0), X,? is an alternate matrix of even order 2g, such that it only
has two elementary divisors: (A — a)? and (A + a)“.

The matrices W and X,? are constructed as follows. Ford =1, 3, fix W' =

[0] and
0 1+ 0
Wi=1/2|-1-1i 0 -1+

0 1—1 0
Then, for d = 2p + 3 = 5, set by induction

0 u' 0
(3.2) Wt = —y W2l —p|,
0 vt 0
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where u, v € F?**! are column vector as in (3.1).

Now, for X,9, first define

1_| 0 ia
(3.3) X,!'= [—-ia ol
Then, for p = 1, set by induction
0 u' ia
(3.4) XPl=|—-u X,» —v],
—ia v* 0

where u, v € F?? are as in (3.1). The matrices (3.2) and (3.4) are easily
identified to be the same as those constructed in [1; (4.7), (4.8)].

Let A be an alternate matrix and consider a list of all its elementary divisors
that, according to [1; (4.5)], are of the form (A — a;)%, (A + a;)% and A%, where

i=1,.--,8;j=1, ---, h and each d; is an odd number. Now, from this list
construct the alternate matrix
(3-5) W = diag[Wd17 M) Wdh; Xalql, M) Xagqg]'

Clearly, A and W have the same elementary divisors, therefore they are similar,
and since both are alternate, it follows that they are orthogonally similar (see
[1; p 38]). Consequently, there exists an orthogonal matrix € such that W =
QAQ*. Hence, the matrix W determined by the elementary divisors, gives a
canonical form for A.

4. Canonical forms and rectangular matrices
Let (E,, E,) be a normalized system of two (s + d) X s matrices. Then, E;*
= [I, 0] and E,* = [A, B] where A is an alternate matrix of order s and B is a
s X d matrix. In this case the Hurwitz equations transform into the single
relation (see (1.19))

(4.1) —A% + BB' = I,
and this relation implies that ([1; p 35]),
(4.2) s=rank A =s—d.

Moreover, since A is an alternate matrix, the rank of A must be even.

Suppose that A has the canonical form (3.5) and that [A, B] satisfies (4.1).
Up to equivalence, we will consider all possible forms of E,* = [A, B] for d =
1, 2. Excepting when s is even and d = 2, all these cases have already been
established by the author in [2; (2.5)]. To state them we introduced some
notation.

Let X = X;" be as in (3.3) and define the following matrices

A, = diag[X, -.-, X] and A, = diag[0, A;].

k—times
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Now, consider

1 1 0
(.) 0 0 0

B]_ = : ) B2 = E and Bg = ; E B
0 0 0 0

where B, is a 2k-column of zeros, B, is a (2k + 1)-column and Bs is a (2k + 1)
X 2 matrix.
Set

2, = ([, O, [A1, B;]"), for s = 2k,
2, = ([L, O], [As, B:]"), fors =2k +1,
23 = ([L;, 0T, [As, Bs]), fors =2k + 1.
Then the mentioned results are the following:
EHr(2; (2k + 1) X 2k) = {[2.]},

4.3) EHx(2; (2k + 2) X (2k + 1)) = {[Z:]},
EHz(2; (2k + 3) X (2k + 1)) = {[Z;5]}.

The case s = 2k and d = 2 is not so easy as the cases above and the rest of
this paper is dedicated to solve it. For this purpose, some preliminary results
need first to be established.

To study this case, let

(E1, E;) € Hp(2; (2k + 2) X 2k)

be a normalized system. Then E,* = [A, B], where A is an alternate matrix of
order 2k and B is a 2k X 2 matrix. Let us first construct some possible matrices
[A, B].

To simplify the writing set

]

_1‘1_0 —a — YV — ¥.1_—
X, = X, _[a OJ and X=X, =X'=

0 -1}
1 0]
where a € F and X,? are in general, the matrices (3.3) and (3.4).

Now, we will define &/, &/, and /3, three sets of normalized systems Z =
(E1, E;) of two (s + 2) X s matrices, where s = 2k. First, notice that E,‘ =
[L,, 0] is the same matrix for all the systems 2 and only E,* = [A, B] needs to
be specified. This is done as follows.

(4.4) The set ./, formed with all = = (E,, E,) where E,* = [A4;, B;] and
A, = diag[X, ..., X], Bi; = Bi(b) =[b, ib],

k—times

forb € F?* and b # 0.



LOW DIMENSIONAL ORTHOGONAL PAIRINGS 13
(4.5) The set .7, constructed with all £ = (E;, E;) where the matrices
[A, Bs], are given by
A2 = A2(c) = diag[Xa’ X7 M) X]’

b,0,0,---,0]
BZ:Bz(C)=[O’b 0, - 0]’

where ¢ = (a, b) € S*. Here S! is the “unit circle” of F? that is, the set of all
(a, b) € F? such that a® + b*>=1.

(4.6) The set /3 consists of a single system =3 = (E;, E;), where E,* =
[As, Bs] is constructed as follows,

A3 = diag[Xi2’ X; ) X] and B3 = [bh b2],
where
b1 = (1, 1/2’ —1/2, —i, O, Tty O)t and b2 = (l’ 1/2, I‘/2’ Lo,..., O)t

Any two of the sets /1, %5, &3 are disjoint. Let & = .&/; U &3, U &3 be their
union and defined the map (k = 2)

k: & — EHp(2; (2k + 2) X 2k)
by «(Z) = [2]. We have the following
THEOREM (4.7). The map « is surjective.

Proof. Let £ € & where 2 = [E;, E;] and E;* = [A, B]. Then A is an
alternate matrix of order 2k and B is a 2k X 2 matrix. From (4.2), we get that
2k = rank A = 2k — 2. Therefore, there are two possibilities: either rank A =

2k or rank A = 2k — 2.

As pointed out in the proof of [2; (2.5)], the alternate matrix A can be
assumied to have one of the canonical forms given in (3.5). Suppose this is the
case and let

w, by o
(48) a=| | ad B=|: I,

Way, bar  Cor
where w;* € F?* and b;, ¢; € F. Conditions (4.1) become
4.9) w;w;t + bib; + cic; = by,
where §;; is the Kronecker delta.

Case I. Rank A = 2k.

Suppose rank A = 2k, then det A # 0, hence, all the characteristic values of
A are nonzero. Consequently, from (3.5) it follows that A has no components
of the form W< and that all other components X,? are with a # 0.
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To analyze X,? as a possible component of A, up to equivalence, we can
assume

A = diaglX.*, M],

where M denotes a suitable matrix and q is the highest value occurring in (3.5)
among the g;’s. In (4.8) consider the first 2q rows of A and B. Forgetting some
zeros, they form the matrices

Wy b1 C1
(4.10) Xo=| : | and B*=| @ |,
Waq | b2q Coq

and, since X,? is a block in a diagonal form of A, it follows that the pair
[X.?, B;*] satisfies condition (4.1). Then their elements fulfill condition (4.9)
and we have

(4.11) wiw;*+b*+¢*=1, for j=1, ..., 2q.
Now, from (3.4), the following relations are obtained by induction
wyw;*=—-a? for j=1,..., 2q,
(4.12) wwy' = —a, if ¢g>1,
Wy Weq = 0.
Hence, from (4.11) and the first relations of (4.12), we get
(4.13) b2+ ¢i=1+a% for j=1, ..., 2q.

To analyze possible values of g; and a;, first assume that ¢ = 1 is the highest
value among the matrices X, % (consequently, all g; = 1) and that at least one
of the matrices, say X, #, has a;> # —1. Then,

1 *7 — O ial b1 C1
[)(a1 ’ Bl ] - [[—ial 0 :|7 l:b2 o ’

where b1by + cico = 0and b2+ 12 =62+ .2 =1+ a2 # 0. Let b’ =1 + a;%,
then R® = b7'B,* (b determined up to sign) is an orthogonal matrix and
B,*R = bl,. Therefore, putting a, = ia, up to convenience (see (1.21)), we have

(414) [X.', Bi*] = [Xa, [g g]]

where a® + b2 = 1.

This result implies that the pair [A, B] of (4.8) is equivalent to the pair
[A., B,] introduced in (4.5). To see this, let [b;, ci] be the part of B assigned
to the kth row of [A, B]. If k = 3, (4.9) implies that the kth row is orthogonal
to the first and second rows of [4, B] and the diagonal structure of A implies
that bb,, = bc, = 0. But b 5 0, hence b, = ¢, = 0 for all k = 3, therefore B = B,.
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Now, from (4.13), it follows that a;> = —1 and choosing a; = i, we have X, ' =
X for all other components of A. Consequently, A = A, and the above assertion
is proved.

To continue with the case ¢ = 1, suppose a;> = —1 for all the matrices X, *
and as before choose @; = i. Then A = A, as in (4.4) and we have two
possibilities for B.

(1) B is the 2k X 2 zero matrix. Then [A, B] is the matrix [A, B:] of (4.5)
for the special case ¢ = (1, 0) € S* (here A4; = A,).

(2) Bis not the zero matrix. Then we can select [X;*, B;*], a first component
of [A, B] where B;* is not zero. If

e =8 3 e}

then b;2 + ¢,%2 = by? + ¢, = 0. Thus, ¢; = €,ib; and ¢, = €1b,, Where ¢, = *1
for k = 1, 2. Since b1bs + ci1c; = 0, it follows by ba(1 — €165) = 0. If b, b, # 0,
then e; = €. If b1, = 0 then, since B;* is not the zero marix, one of b; and b,
is different from zero, say b, # 0 and b, = 0, and we can also take ¢; = ¢;. Now,
it follows from (1.21) that, in both cases, we can suppose ¢; = ¢; = 1. In fact,
if R = diag[1, ¢ ], then

* _ b1 € ibl _ b1 ibl
s sona[t 8o [o ]
As before, let [b, c.] be the part of B assigned to the kth row of [A, B] and
consider k = 3. Since in (4.15) we have the first two rows of B and [b;, c.] is
orthogonal to these rows, it follows that b,(b, + ic,) = 0 and b; # 0. Then
¢, = ib; and this proves that B = [b, ib], is as given in (4.4).
Keeping the assumption rank A = 2k, proceed to the case ¢ = 2. Beginning

with a pair [A, B] as in (4.8), suppose A = diag[X,? M] and consider the pair
(see (4.10))

0 1/2 i/2 ia b o

o pxi_||F1/2 0 ia /2 by ¢

416 [XSBII=10 0 g 0 12| 7| b
—ia —l/2 ]./2 0 b4 Cy

We will determine the possible values of a and the form of B>*. From (4.13),
we get that

(4.17) bi’+¢*=1+a>=d for j=1, .-, 4.
Since the first and fourth rows of X,? are orthogonal, it follows that
(418) b1b4 + C1C4 = O,

hence, b:2b,2 = ¢,%ci®. From (4.17), we get b;> = d — ¢;, then b,%b,> =
(d — ¢2) (d — ci?) = d(d — ¢1.% — ¢42) + ¢1%¢c4% Therefore, d(d — ¢;*> — ¢,*) =0
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and then, either d = 0 or d = ¢;? + ¢,2. If this last equality holds, we have
altei=d=b2%2+c2=0b’+ c

and this implies

(4.19) b2 =c¢s® and b2 = c,?.

In particular, b; = ec, where ¢ = +1, and a substitution of this in (4.18) gives,

(4.20) biby + cics = e(bycy + bicy) = 0.

The products, respectively, of the first and third, and of the third and fourth
rows of (4.16), give

bibs + cics =1a and bsbsy + cscy = a.

Now, square each of these expressions, add them, and use (4.20) to simplify
the result, to obtain

(b12 + b42)b32 + (Cl2 + 042)032 = 0.
Then, a substitution here, using equalities (4.19), gives
(b2 + ¢1?)(bs® + %) =d* = 0.

Hence, d = a> + 1 = 0 in all the cases. Then a? = —1 and we choose ¢ = i
(notice that a = —i will give the same final result, since X;? is orthogonally
similar to X_;%).

From (4.17) it follows that b;,> + ¢;> = 0 for j = 1, ..., 4. Then ¢; = ¢ib;
where ¢; = +1, and (4.16) becomes

r 1 €1ib1

b, eib

2 P oA — 9 [D2 €102

[XL ’ BZ ] l Xl ’ b3 63ib3

b4 €4ib4
The elements of [X,2, B,*] fulfill the conditions of (4.9) and in X;? we have
wyws' = 1 and wow,’ = —1. Therefore, in B.* we must have b, b3(1 — €;¢5) =
—1 and byb,(1 — e¢,) = 1. These two equations imply that b; # 0 for 1 = <
4, and that ¢ e3 = e3¢, = —1. Hence, ¢, = —e3 and ¢, = —¢4. Now, from w, w,* =

0 we have that b,;b,(1 — € ¢,) = 0 and this implies that ¢; = ¢,. Consequently,
€] = €4 = —€y — —€3. Then

b1 Eibl
b2 “‘Gibg
b J—
B = | b, —eibs |’
b4 6ib5

and, up to equivalence, we can take ¢ = 1 (consider B,*R where R = diag
[1, €], [see (1.21)]).

With € = 1, consider the relations (4.9) in the pair [X;%, B,*]. Respectively,
from w, wy' = —i, wyws* = 1 and wsw,* = —i we get 2b,b, = 1, 2b:b; = —1 and
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2bsb, = i. Consequently, if b = b;, we obtain b, = i/(2b), bs = —1/(2b) and b,
= 1/(2b3) = ib. then
b ib
i/(2b) 1/(2b)
—1/(2b) i/(2b)
—ib b
To simplify this expression, consider the orthogonal matrix [cf. (2.17)]
_ G+b") —ib—-0b")
k= 1/2[i(b b G+bY |
It is easy to verify that the product B,*R becomes the above expression for
b = 1. So, by the same argument used before, we take

Bz* =

1

. _| 2 172

(4.21) B*=| " s
-1

To analyze the form of other components, let [b., c.] be the part of B
assigned to the kth row of [A, B] where k = 5. The diagonal structure of A
implies that [b, c:] is orthogonal to the four components of B;*. In particular,
by + ic, = 0 and —(1/2)b;, + (i/2)c, = 0, and these relations imply that b, = c;
= 0. Hence, if X;% is a component of A then no other X, with ¢ > 1 and a #
0 can be a component. In fact, X,? is excluded since it is not an orthogonal
matrix [see (4.12)] and it can not be completed to fulfill (4.9) since its
corresponding part in B is already zero. Therefore, in this case only X = X;!
can be a component, so B = B; and, since rank A = 2k, it follows that A = A,
as described in (4.6).

To complete the analysis, assume that X;? is not a component of 4, then we
will show that X,?"* for ¢ = 2, can not be a component of A. Suppose on the
contrary that X,?*" is a component of A and that [X,?*', B*], like in (4.10),
represents the first 2q + 2 rows of [4, B]. Let u, v € F? be the vectors defined
in (3.1). From (3.4) it follows that the 2g X (2¢ + 2) matrix A, = [—u, X,% —v]
forms the central part of X,?*". Let B,* be the part of B* assigned to the rows
of A, and consider the pair [A4, B,*]. The rows of [X,?*", B*] and, consequently,
the rows of [A,, B,*] satisfy (4.9). Now, recall

1/2 —i/2

0 0
u= . and v =

0 0

i/2 1/2

Then, it follows that these vectors only contribute with isotropic components
along the rows and with orthogonal components along the columns. Hence,
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taking them away we get the rows of [X,% B,*] also satisfy (4.9). Then, by
induction, we end with [X,?, Bs*] and [X,? B.*]. Hence, we can choose a = i
and B,* as is (4.21). Explicitly, we have

0 /2 0 0 i/2 -1 d e
~1/2 i/2
x5 B*1= || o X2 1. | &
~i/2 ~1/2
1 -2 00 12 0 foe

The six rows of [X;? Bs;*] must satisfy (4.9) but wew,* + f + ig = 0 implies f +
ig = 1 and wews® — if + g = 0 implies f + ig = —1. Therefore, we get a
contradiction. Consequently, X,?"" is not a component of A for ¢ = 2, and this
ends the analysis for rank A = 2k.

Case II. Rank A = 2k — 2.

Again we will study the possible components of A according to (3.5). Since
the W%’s are of odd order, they need to appear an even number of times (for
instance, M = diag[ W3, W?] is of order 6 and rank M = 4). Suppose W¢is a
component of A and consider the pair [W¢, B*] where B* denotes the part of
B assigned to W< It was established in [2; p 31-32], precisely for B* a d X 2
matrix, that [W¢, B*] fails to fulfill (4.9) if d # 1. Therefore, the component
W€ cannot be in A for d = 3. Consequently, d = 1 and
0 0

0 0]=X°1=X°

diag[W*, W'] = [

is a possible component of A.
It follows that B* is an orthogonal matrix of order 2 and, like in (4.14), we
can take R = B** to obtain, up to equivalence,

[X, B*] = Hg 3] [(1) (1)]]

Then, the same argument used for [A.(c), B:(c)], where ¢ = (@, b) € S* and
a # 0, establishes this pair as possible for ¢ = (0, 1)
(and obviously for ¢ = (0, —1)). This completes (4.5) for all points of S*.
Finally, we study the possibility to have X7 for ¢ > 1 as a component of A.
Consider the following three consecutive rows of X,? (see (3.4)). If ¢ = 2, then

w;, = (0, 1/2, /2, 0),
Wy = (—1/2’ 0; 07 1/2),
ws = (—i/2, 0, 0, —1/2).
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If g = 3, then
We—1=(---,1/2,0,1/2,1/2,0,i/2, - - -),
we=(---,0,—1/2,0,0,i/2,0, --.),
Wer1=(---,0,-i/2,0,0,—-1/2,0, - - -),

where the dots represent symmetrically placed zeros to complete 2¢ compo-
nents. Form the pair

Wq-1 bq——l Cg—1
[| wg |,B*] where B*=| b, ¢,
Wa+1 bq+1 Cq+1

is the part of B assigned to the rows. Since the rows are isotropic and any two
are orthogonal (i.e., wjw,* =0 for ¢ — 1 < j, k < q + 1), it follows that the
rows of B* form 3 linearly independent row vectors of F2. And this contradic-
tion eliminates X,%(g = 2) as a component of A. Therefore, since all possible
cases have been reduced either to (4.4), (4.5) or (4.6) this ends the proof of
theorem (4.7).

5. Main result

Our final aim is to describe the classes of EOx(2, 2k, 2k + 2) or equivalently
of EHr(2; (2k + 2) X 2k). The set .« of theorem (4.7) gives a good approxi-
mation, however some of its elements may represent the same equivalent class.
We proceed to characterize unique representatives of the different equivalent
classes.

We begin with the case (4.4) and the set ;. Let F’2* be the set of all nonzero
vectors of F?* and write O(A;) to denote the subgroup of O(s) formed with all
Q’s such that QA; = A; Q. Clearly, A; € O(A;) since A; € O(s).

If £ € &, then £ = (E,, E;) is a normalized system and E,’ = [A,, B,],
where B; = [b, ib] for some b € F?., Observe that this sets a one to one
relation between b € F?* and T € «;. Hence, we have a well defined bijective
map

a F* 5 o 1
Let F be the multiplicative group, F — {0}, of the field F.

Definition (5.1). Two vectors b and d of F** are equivalent, in symbols b ~
d, if and only if there exist @ € O(A,) and p € F such that d = pQb.

It follows that ~ is a well defined equivalence relation and its importance
can be appreciated by the following
LEMMA (5.2). Letb, d € F?*, then b ~ d if and only if a(b) = a(d).

Proof. Let a(b) = 2 and a(d) = A. Since B = [b, ib], it follows that BB* =
0. Then, the conditions of (2.14) are satisfied and we have that a(b) = a(d) if
and only if
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D =[d, id] = @BR = p[Qb, iQb]

for some @ € O(4,), R € O(2) and p € F, where pB = BR. Clearly, this is
equivalent to b ~ d. Hence, (5.2) is proved.

From (5.2), it follows that the problem of determining the equivalent classes
(=) of &, can be solved by finding the equivalent classes (~) of F'%. We will
use this last procedure.

Given b € F*, we have two cases: b’b # 0 (anisotropic) and b’b = 0
(isotropic). Regarding the first case, we have the following

THEOREM (5.3). Any two anisotropic vectors of F* are equivalent.

Let d € F?* be an anisotropic vector where d‘d = ¢2. Then, if b = ¢'d, we
have d ~ b and b’b = 1. Then it easily follows that theorem (5.3) is equivalent
to the next

THEOREM (5.4). Letb € F? be an anisotropic vector and suppose that b'b
=1.Thenb ~ e; where e; = (1,0, -- -, 0)%.

Proof of (5.4). Given b we need to prove that there exists @ € O(4,) such
that @b = e;. First, let us characterize matrices @ that commute with A; =
diag[X, - - -, X]. Given a matrix Q = [a,,] of order 2k, divide it in blocks

Qll M Qlk
Q= | - -,
i Qi -+ Qu
where each block
Agi—1,2j—-1 QA2i~1,2j
5.5 g=| 2
( ) QU | @2i2j-1 Qg;,2; ’

isoforder2and 1 =1i,j=k.
It is easy to verify that QA; = A;Q if and only if §;; X = XQ;; and this last

relation holds if and only if @ 5,1 = —@2;i—1,2; and ag; 2; = @2;—1 2;-1. Therefore
QA] = A1 Q, if and Only if

A2i—1,2— QAgi—1,25
(5.6) Qij = i—1,2j—1 i 7

—Q2i-1,2j QA2i-1,2j-1

for each matrix (5.5).
Let a; denote the j-row of . It follows from (5.6) that only odd rows need
to be specified. So, if

Ap-1 = (azp—1,1, Tty a2p—1,2k)
define
g, = (_a2p—1,27 Q2p—-1,1, ***y —O2p—1,2ks a2p—1,2k—1)

and set a,, = a,,—;. Clearly, this will preserve (5.6) and we will have QA, =
A.Q.
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Now, given b € F?*, as in (5.4), in order to construct the rows of @ we
proceed by induction, as follows. Set a; = b’ and a, = a,. For p < k, suppose
we have a;, - - -, ag, such that a;a;* = §;; for 1 =i, j = 2p. Let U; and U, be
two subspaces of F'?* generated as follows: U; by the first 2p vectors ey, - - -,
ey, of the standard basis ey, - - -, ey, of F?* and U, by the vectors a,’, - - -, ag,".
Define an isometry h: U, — U, by setting h(e;) = a;’ for 1 = j = 2p. Since
(F%, q) is a nonsingular quadratic space, “Witt’s extension theorem” implies
that h can be extended to an isometry h’: F#* — F?. Defining ag,+,’ =
h'(esp+1) and agpeo = Agp41, the induction step is completed and this establishes
the existence of @ € O(A;) such that @b = e;. Then (5.4) is proved.

If b is an isotropic vector there are three equivalent classes as shown by the
next

THEOREM (5.7). Let b*b = 0, where b € F? and k = 2. Then, it holds one
and only one of the following equivalences:

(5.8) b ~ e + iez,
(5.9) b ~ e — ie,
(5.10) b ~ e + ie4.

Proof. The proof is by induction and for this purpose some auxiliary results
are developed.

Let {e;}, 1 = j = 2k, be the orthonormal standard basis for F?*. Recall that
e=(0,.--,1, ..+, 0)"is a column vector with 2k — 1 zeros and a single 1 in
the jth place.

Decompose the identity matrix I, in k rectangular 2k X 2 matrices J;, as
follows:

Izk = [Jl, sy, Jk] Where J:, = [62_,'_1, ezj].
Let S; be the symmetric group of degree k. If ¢ € S,, define
Q, = oly = [Ja(l)y tety Jo(k)]’

as the ¢ permutation of pairs of consecutive columns J; = [ez;_;, es;]. Clearly,
€. is an orthogonal matrix and it fulfills condition (5.6) on its order two
required matrices. In fact, these matrices have either two O’s or two 1’s in the
main diagonal and always O’s in the other diagonal. Hence, Q, € O(4,).

It easily follows that

Qoezj—1 = ez(-1 and Qe = ey, ().
If w € F** and
w = 2% \gjo1€zjm1 + Aojes))
where A\, € F, then

Q.w = Zh; Ngjm1€s0¢)-1 + Azj€a,(iy)-
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For simplicity, write
(5.11) ow = Q,w

and, for each ¢ € S, regard ¢: F?* — F? as an operator defined by (5.11).
Clearly, we have w ~ ow. This equivalence will be useful.

For 1 = p < k, decompose F?* as the orthogonal sum of the quadratic spaces
F? and F** P Let (e, - -, ew), (€1, -+, €3’) and (&1”, -+, €s0—p)") be,
respectively, the orthonormal standard basis for F%, F?? and F?*P) As a
vector space F?* = F?? @ F**P) ig a direct sum and the three different bases
are connected as follows: e; = (¢;’, 0”) for 1 =i = 2p, and e,,+; = (0’, ¢;”) for
1<j<2(k—p), where 0’ € F? and 0” € F?**P) represent the zero vectors.

Let A,’ and A,” be, respectively, the matrix diag[X, --., X], where X
appears 2p and 2(k — p) times. Then A, = diag[A,’, A,”]. '

Given w € F?*, write w = (w1, w.) where w, € F?? and w, € F?**P, Suppose
that @’ w; = u; and @’ ws = u, where @’ € O(4,’) and Q” € O(A,”). Then,

(5.12) Q(wy, ws) = (uy, uz)

where @ = diag[@’, Q"] and @ € O(4,).
Consider the following special case of (5.12). Suppose that

(5.13) u; = qiler’ + giex’) and uy = gole,” + eiey”),
where ¢, = +1 and g; € F, for j = 1, 2. Then, we have
(5.14) (w1, uz2) ~ (e1 + eriez) + (es + exiey).

To verify this, let

(@+q) €lg—q™)
] —3 1 . —_ _
Q= Q(qg, ¢ /2[—el(q —q 1y (g+gq H P
where ¢ € F and ¢ = +1. Then @ € O(X) and Q(ge; + egie:) = e; + ele,.
Therefore, if @; = Q(g;, ¢) for j = 1, 2, and we define
Q* = diag(Qla IZ(k—Z): QQ]!

then @, € O(A,) and Q, (u1, uz) = (€1 + e1les) + (ear—1 + €xiegw).
Finally, if o is the transposition (k) = 2 and Q, is as in (5.11), then

Q. Q, (U1, us) = (e + eles) + (e3 + exies),
and this proves (5.14).

Forgetting zeros, the expression to the right of (5.14) can be regarded as a
vector (1, €11, 1, e:1)° € F*. As we will see the equivalence can be simplified
further, according to the values of ¢ and e,.

Since (1, i, 1, —i)* and (1, —i, 1, i)’ are equivalent by a simple transposition,
we actually have three cases: (1, i, 1, i), (1, i, 1, —i)* and (1, —i, 1, —i)®. For
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each case we construct an orthogonal matrix that commutes with A; = diag[X,
X] and gives the needed equivalence. Define @ for j = 1, 2, 3, as follows:

2 0 1 i 2 0 1 =
_ 0 2 = 1 _ 0 2 i1
@Q=1211 5 9 o ®=12]1 i 2 o
i 1 0 -2 - 1 0 -2
and

(7 8 5 —i

_ -3i 7 i 5

Q=185 ; 1 3

| -1 5 -3 -7

It is immediate to verify that

1 1 17 1 1 1
| _1i | _ |- il _|o
Ql 1 ._ O ’ Q2 1 - 0 and Q3 1 - O
i 0 —1 0 -1 i

And, changing notation, these results become

(5.15) e; + iez + e; + ie4 ~ e + i82,
(516) e; — iez + e; — ie4 ~ e — iez,
(5.17) e, + iez + €3 — i€4 ~ e + i€4.

We will prove theorem (5.7) for k = 2, namely, the starting case for the
induction. As in (5.12), write F* = F,2 @ F,? as orthogonal sum, where (e,’,
e,’) and (e,”, e,”) are, respectively, basis for F;? and F,2. Given b € F* set b
= (uy, uz), where u;, € F,2 and u, € F,2. Then b‘b = 0 if and only if u,‘u, =
0 and us‘uy; = 0. And these last two relations hold if and only if u; and u, are
of the form (5.13). Hence, assuming b’b = 0 we have, first that b is equivalent
to the general expression (5.14) and then to one of the expressions (5.15),
(5.16) and (5.17), in agreement to the values of ¢; and e.

To complete the proof for k = 2, it is enough to show that not two of the
vectors

vi=(1,1i0 08 ve=(,—i0 00 and vs=(L,0,0, i)

are equivalent. According to (5.5), the most general matrix @ € O(A;) is of
the form

Q. Q2 Qi3 Q4

Q= —Qi2 OGu1 TG4 Q3
a31  A32 Q33 Q34

TQ3z2 Q31 —0a3s4 Q33
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The images Qu, and Qu, are as follows:

1 (@11 + ias2) 1 (a1 — ia12)
i i(an + ia12) —1 —i(a1 — iae)
5.18 = . d = .
( ) Q 0 (@31 + iasz) an @ 0 (a3 — ia32)
0 i(as; + iagz) 0 —i(@s; — iass)

The form of these images clearly shows that v; is not_equivalent to v, and
that v, is not equivalent to vs;. Since ~ is symmetric, this proves that not two
of vy, vs, U3 are equivalent and establishes (5.7) for k = 2.

For future reference, let us state as a lemma the following special case of
(5.7). '

LEMMA (5.19). Letb = (by, - - -, ba)* be an isotropic vector and suppose there
exists a number p < k such that b;®> + - -- + by,? = ¢® # 0. Then, as in (5.10),
we have the b ~ e, + 1ey.

Proof. Clearly, byysi” + - -+ + by” = —c? and since b ~ ¢7'b (see (5.1)), we
suppose ¢ = 1. Write b = (u;, u,) where u; = (b, -+, byp)" € F** and u, =
(bop+1s -+ b))t € F2*P) By (5.4), we have Q'u; = e;” and Q" (ius) = e,”.
Then, —Q"u, = ie,”. Set @ = diag[@’, — Q"] then, as in (5.12), we have

Qb = (e/, ie,”) = e1 + iegpr1.
If 0 € S, is a transposition defined by o(p + 1) = 2, then (see (5.11))
Q.,Qb = O’(el + i62p+1) =e; + i€3.

Finally, if @, = diagll,, X, I,, ---, I,], where X is as in (4.4), then @, €

O(A,) and
Q:Q.Qb = Q1 (e, + ies) = e; + ies.
Hence, b ~ e; + ie, and this ends the proof of (5.19).

We have shown that theorem (5.7) is true for k = 2, and now we are ready
to prove it for all k. By induction, suppose that (5.7) is true for £ = p and let
b € F?*2 be an isotropic vector. Decompose F?*? = F?* @ F? as an orthogonal
sum and write b = (u,, u;) where u, € F?? and u, € F?. We will show that a
given b is equivalent to one of the three vectors considered in (5.7). It follows
that b’b = u,‘u, + u,'u, = 0, and the two possible cases: u;‘u; # 0 or u,'uy =
0, will be treated apart.

If u,fu, # 0 then, according to (5.19), we have that b ~ e; + ie, and this
agrees with (5.10).

If u,*uy; = 0, by the induction assumption, we have that, either
Q'u; = qiler” +ies’) or Q'u; = qiles” + eriey’),
where Q' € O(A,’) is asin (5.12), ¢ E Fand ¢; = #1.
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Since u;'u; = 0 implies that us'u, = 0 and u, € F?, for the component u., it
follows that u, = gz(e;” + e;ie;”), where g € F and e, = %1.

As in (5.12), let @ = diag[Q’, I;]. Then @b = (Q’u;, u,), and

(5.20) b ~ qi(er + ies) + ga(egpr1 + €iegpra)
or
(5.21) b ~ qi(er + iep) + Q2(62p+1 + é2i€2p+2)-

- If we suppose (5.20) then, from (5.19) it follows that b ~ e; + ie,, as it
happened in the preceding case.
If we now take (5.21) then, as in (5.14) it follows that

A b ~ (e; + eleg) + (es + eaiey).
Considering the values of ¢; = 1 and ¢, = %1, we get
w, = e + lex + e; + iey,
we = e; — ley + es — ey,
ws = e, + les + e3 — ley,
wy = e — ley + ez + ley.

Since cws = w,, where ¢(1) = 2 is a transposition, we actually have the first
three cases.

Let @* = diagl[®;, I»-1)], where @; for j = 1, 2, 3 are, respectively, the
matrices used to prove (5.15), (5.16) and (5.17). To establish the similar cases
forb € F?P*! getb, = (1, 1,0, ---,0), bo= (1, —i, 0, - - -, 0)*and bs = (1, 0, 0,
i,0, - - -, 0)". It is immediate to verify that @;*w; = b;, for j = 1, 2, 3. Therefore,
b is equivalent to one of the vectors e; + ie,, e; — ie; or e; + iey, as assured in
(5.7).

Finally, taking the most general matrix @ of order 2p + 2, such that Q €
O(A;) (see (5.5)), the same argument already used in (5.18) for k = 2, shows
that not two of the vectors b, b,, bs are equivalent and this ends the proof of
theorem (5.7).

Let 2 = (E,, E:) be an element of the set .«; defined in (4.1_1). Then E;, =
[12, OY and E; = [A,, B;]’, where B; = B;(b) = [b, ib] for b € F*. Set E;(b;)
= [A4, B:1(b;)], and construct the systems

ZT = (E].) E2(bj))t fOI'j = 07 ]-: 27 3,

where by = e;, b, = e; + ley, by = e; — ie; and b; = e; + ie,. Now, define the
set

(5.22) Z*={3¥|j=0,1,2, 3]
It follows from (5.2), (5.4) and (5.7) that &, has four equivalent classes and
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that 7, * contains exactly one representative for each one of these classes.
Let &/, = {Z(c)|c € S} be the set of normalized systems constructed in
(4.5), where Z(c) = (E,, Ez(c)) and E,*(c) = [A2(c), Bz(c)]. Recall that S* C
F? is the “unit circle” and wherefore a2 + b?> =1 forc = (a, b) € S™.
To determine the equivalence classes of .&7,, consider

A2(c) = diag[Xay X; ) X]

— b, 0, M) O ‘

By(c) = [o, b, ---, 0} .

All the terms E;(c) have components of this form and each A;(c) has (A — ia),
A+ia), A=10),(A+1),---,(A—1), (XA + i) as elementary divisors. Therefore,
Q'A2(c)Q = Ay(c’) if and only if a’ = +a where ¢’ = (a’, b’). Consequently,
to find equivalent systems we only need to analyze possible change of signs of
a and b.

If ¢ = (a, b), write Z(c) = Z(a, b) and A,(c) = As(a, b). We have

(5.23) 2(a, b) = Z(a, —b) = Z(—a, b) = Z(—a, —b).

and

These equivalences are obtained from (1.21) using suitable matrices Q and R.
So, the first follows trivially with @ = I,; and R = —I,. For the others, set

Q = diag[H, X, --., X] where H = [(1) (1):|,
and R = eH for e = £1. It is easy to verify that Q‘A.(a, b)Q = As(—a, b) and
Q'BsR = eB,. Hence, the second and third equivalences follow, respectively
fore=1and e=—1.

To formalize this let IT = {1, x} be the cyclic group of order two and generator
x. The group II operates on the additive part of F by x(a) = —a, for all a € F.
The direct product II X II, componentwise, operates on F? and on S*. The
elements of II X II are: (1, 1), (1, x), (x, 1), (x, x), and the action of them on
(a, b) € S* gives

{(a’ b)’ (a’ _b), (_a; b)’ (_a, _b)};

that is, the orbit associated to (a, b). Denote by S*/(II X II) the set of orbits
determined by the action of IT X II on S*.

Let &, * indicate the equivalence classes of ;. Since (a, b) & Z(a, b) gives
a one to one correspondence and (5.23) holds, it follows that «/,* can be
represented by the set of orbits S*/(II X II). That is,

(5.24) oo* = SY/(II x 1I).

If we consider II X II operating on ., then, the orbit linked to Z(a, b),
denoted by O(Z(a, b)), is formed by the union of the four systems that appear
in (5.23). We have O(Z(a, b)) € #,*.
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Remark. If F = R is the field of real numbers, we can always take (a, b)
with 0 < a < 1 and b = v1 — a” Hence, in this case, S*/(II X II) can be
realized as a simplex of dimension one. For a more general statement of this
type, concerning orthogonal pairings of size [2, s, n] over R, see [7; Remark 9,
p 141]. ‘

Set &7 * = &1* U &,* U &3 and define, for k = 2,

k*: % — EHp(2; (2k + 2) X 2k),
as a map induced by « of (4.7). Our main result is the following
THEOREM (5.25). The map «* is bijective.

Proof. All of the work of the proof has already been done and a summary
of needed results follows. The elements of .«/; were reduced to four nonequi-
valent systems with a very simple expression and they form ./, *, as shown in
(522) If Ej S Ml* then K*(Ej) = [Ej].

Each system of &7, is associated with a point (a, b) € S*. Two systems are
equivalent if and only if they are associated with two points out of the four
points (*a, +b). These collections of four equivalent systems, denoted by
O(Z(a, b)) are the elements of «/,* as described in (5.24). Then «*(O(Z (a,
b))) =[Z(a, b)].

Finally, recall that <75 consists of a single system 23 and set «*(2;) = [2;].

The map «* is a restriction of x on .71 * U /5 and it becomes one to one, on
this part of . *. On the other hand, each orbit O(Z(a, b)) of four elements,
have the same image under «, and is considered as a single element of &/,*.
From this and from the observation already made about elementary divisors,
showing that equivalences (5.23) are the only ones possible for .%7,, it follows
that «* is one to one on &,*. Therefore, since « is surjective, it follows that «*
is bijective and this ends the proof.
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