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ON THE K-THEORY AND PARALLELIZABILITY OF 
PROJECTIVE STIEFEL MANIFOLDS 

BY E. ANTONIANO, 8. GITLER, J. UCCI AND P. ZVENGROWSKI 

§ 1. Introduction 

Let Vn,s be the Stiefel manifold of orthonormal s-frames in Rn and let Xn,s 

be the projective Stiefel manifold obtained by identifying each s-frame in Vn,s 

with its negative. The double covering V n,s ---,, Xn,s determines a line bundle ~ 
over Xn,s that we will call the Hopf bundle. 

In this paper we study the question of the parallelizability of Xn,s and obtain 
the following results: 

Parallelizable Undecided N onstably parallelizable 

Xn,n-1, n ~ 1 X12,s All other Xn,, 
X2n.2n-2, n ~ 1 
Xn,., n = 2, 4, 8, 1 s s < n 

xl6,s 

The results in the first-column are obtained by a study of the tangent bundle 
of Xn,s, and are stated in Theorem 2.1. 

On the other hand, we will apply the Hodgkin spectral sequence to compute 
almost completely the K-theoretical ring for X 4n,s (Theorem 6.6). In particular 
we will compute the order of the complexification of the Hopf bundle (Theorem 
6.8). When this is added to the fact that the tangent bundle over Xn,s is stably 
isomorphic to ns-times the Hopf bundle, it will follow that any nonparalleliz­
able projective Stiefel manifold Xn,s ~ X12,8 is not stably parallelizable (Theo­
rem 7.1). In Section 2 we prove the positive results on parallelizability of 
projective Stiefel manifolds. In Section 3 we give a brief description of the 
Hodgkin spectral sequence in the form we will use it in §5. Section 4 contains 
a description of the representation rings of the different groups and some 
homomorphisms between them. In particular we describe the homomorphism 
induced by the inclusion 

Z 2 x Spin(4n - 2k + 1) ---,, Spin(4n) 

which in turn is used to describe the Tor term in the spectral sequence. In 
Section 5 we compute the E2 term of the Hodgkin spectral sequence for 
X4n,zk-l• We prove that the spectral sequence collapses and so obtain E"' = E2 • 

In Section 6 we discuss the extension problem in the spectral sequence for 
K*(X 4n,zk-i) and as a consequence obtain the order of the Hopf bundle over 
X 4n,s• In Section 7 we state and prove the nonparallelizability results. Finally, 
in Section 8 we prove Proposition 7.2. 

The authors with to thank Luis Astey for all his valuable suggestions and 
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several readings of the manuscript. We also wish to thank P. Sankaran for 
simplifications of the original proof of theorem 2.l(c ). 

§2. The positive parallelizability results 

In this section we prove that certain projective Stiefel manifolds are paral­
lelizable. 

THEOREM (2.1). The projective Stiefel manifold Xn,r is parallelizable in the 
following cases. 

(a) (n, r) = (16, 8) 
(b) r = n, r = n - l; or r = n - 2 with n even 
(c) n=2,4,8. 

The proofs of (a) and (b) are based on Lam's methods [L], which (c) will be 
proved using another construction for the tangent bundles of Vn,r and Xn,r• 

Proof of (a). By [L, Corollary 3.31, r(X 16,8 ~ 27t where r is the tangent 
bundle, ~ denotes stable equivalence and t is the Hopf bundle over X 16,8 • 

Under the projection 71": X16,8 - X 16,1 = RP 15, the Hopf bundle hs over RP 15 

satisfies 7r*(t15) = t. Since 27t 15 ~ 0 by [A], it follows that 27t ~ 0 and X16,8 

is stably parallelizable. Now dim X 16,8 = 92 and span (S92) = 0 whereas span 

(X16,8 ) ~ (!) = 28 by [L, Theorem 3.2]. The Bredon-Kosinski Theorem [BK] 

completes the proof for Xrn,s-

Proof of (b). First consider Xn,n- 2 with n even. Let G = GR(l, 1, • • •, 1, 2) 
be the flag of manifold of n - 2 unoriented lines and 1 oriented 2-plane, all 
mutually orthogonal in Rn. Because n is even, there is an obvious covering 
map Xn,n-2 - G with fibre z2n- 3 , induced by the covering Vn,n-2 = GR(l, • • ·, 
i, 2,) - G. To show Xn,n- 2 is stably parallelizable it will therefore suffice to 
show G is stably parallelizable (in fact G is parallelizable but we do not prove 
this here). By [l, Corollary 12], 

r(G) == Llsi<jsn-1 t; ® tj, 

where t 1, • • •, tn- 2 are line bundles and tn-1 an oriented 2-plane bundle 
constructed over Gas in [L]. Let us apply the second exterior power A2 to the 
bundle isomorphism 

n == (h EB • • • EB tn-2) EB tn-1 

noting that ;\.2(t) = 0, 1 :Si :Sn - 2 and A2(tn-d = 1 since tn- 1 is an oriented 
2-plane bundle. We thus obtain 

(;) =: (Lisi<j:Sn-2 t; ® tj)E9 ((Llsisn-2 t) ® tn-1) E9 1=:r(G)E91 

whence G and Xn,n- 2 are stably parallelizable. We again apply the Bredon­
Kosinski Theorem to show Xn,n- 2 parallelizable. By [L, Theorem 3.2], span 



ON THE K-THEORY AND PARALLELIZABILITY 

Xn,n-2 ~ (n; 2). Now 

1 + dim Xn,n-2 = (;) = m • (odd), m = n/2 

so we see from the Radon-Hurwitz formula that 

span s<~)-i = -1 + p(?) = -1 + p(m) = span sm-i < m 
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where p(m) = 2c + Bd if m = (odd)24d+c, 0 :5 c < 4. Since m = n/2 < ( n; 2) 

for m ~ 3, it follows that X2m,2m-2 is parallelizable for m ~ 3. The remaining 
case X4,2 is covered in (c). 

Both Xn,n-i and Xn,n can be mapped onto GI = GR(l, 1, ... ' 1) as finite 
coverings and G' is easily seen to be parallelizable by the "'A 2 construction. So 
Xn,n-i and Xn,n are also parallelizable. These two cases also follow from the 
theorem that the quotient of a Lie group by a finite subgroup is parallelizable 
[B, p. 502]. 

Proof of (c). We first derive some results for the Stiefel manifolds Vn,r and 
their tangent bundles. For convenience a point in Vn,r is denoted v = (vi, • • •, 
Ur), where V; E Rn and (v;, Vj) = Oij• 

LEMMA (2.2). The tangent space Tu(Vn,r) is the R-vector space 

Tu(Vn,r) = {(wi, ···, Wr)I W; E Rn and (w;, Vj) + (Wj, V;) = O}. 

Proof. Let v(t) = (vi(t), • • • , Vr(t)) be an arbitrary differentiable curve in 
Vn,r with v(O) = v. Differentiating the equations ( v;(t), Vj(t)) = o;j and setting 
v' (O) = w = (wi, • •., wr) gives the desired result. 

For the tangent space T[u1(Xn,r) to Xn,r at a point [v] = {v, -v} E Xn,r we 
have the identification 

T[v](Xn,r) = {[v, w]I w E Tu(Vn,r), [v, w] = [-v, -w]}. 

Thus a tangent vector field on Xn,r is equivalent to an odd (or skew) vector 
fields on Vn,r, i.e., s(-v) = -s(v ). 

LEMMA (2.3). Span Xn,r ~max{(;), p(n) - 1}. 

Proof. As mentioned above, the bound(;) appears in [L, Theorem 3.2]. For 

the other bound, consider the p(n) - 1 Radon-Hurwitz transformations </>; E 
O(n) satisfying</>;+ <t>/ = 0 and </>;</>j + </>j</>i = 0 for i ¥,. j. Setting w;(v) = (</>;Vi, 
•••,</>;Ur) for 1 :5 i < p(n) then gives a (p(n) - 1)-field on Vn,r which is skew, 
hence also a (p(n) - 1)-field on Xn,r• 

The completion of the proof of Theorem 3.l(c) is obtained by noting that 
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X4,, and Xs,, are stably parallelizable (since X4,1 = RP 3 and X8, 1 = RP 7 ) and 
then using the method in the proof of (a) above. By Lemma 2.3, span X4,,;::: 3 
and span X 8,, ;::: 7, and so we may invoke the Bredon-Kosinski Theorem 
individually in each case, e.g., dim X8,2 = 13 and span S 13 = 3. The remaining 
case X 2, 1 = RP 1 is trivial. 

§3. The Hodgkin spectral sequence 

Let H be a closed subgroup of a compact connected Lie group G with torsion­
free fundamental group. Then we have [Hl], [R]. 

THEOREM (3.1). (Hodgkin). There is a multiplicative strongly convergent 
spectral sequence such that: 

(a) As an algebra E2P = TorRca/[R(H), Z] (lives in one line). 
(b) The differential d, is a derivation such that d,: E,p-r - E,p-r is zero for 

even r. 
(c) E,,, * is the graded algebra associated to a multiplicative filtration of 

K*(G/H), i.e., there is a filtration 

0 = F-2 C Fo C F2 C • • • C F2n = K 0 (G/H) 

0 = F-1 C F1 C F3 C • • • C F2n+l = K 1 (G/H) 

with Fi • Fi C Fi+i under the product in K*(G/H) and E,,,P = Fp/Fp-2. 
Furthermore, the product in E,,, * is that induced naturally by that in K*(G/H). 

We have the two edge-homomorphisms 

(a) TorRca/[R(H), Z] = E2° -» E,,, 0 = F0 -K 0 (G/H). 

(b) TorRca/[R(H), Z] = E/ -» E,,, 1 = F 1 - K 1 (G/H). 

which can be identified with the a and f3 constructions [R, Section 4]. 

§4. Representation Rings of Spin and SO 

The following descriptions of the representation rings of Spin(n) and SO(n) 
can be found in Milnor [M], Gitler and Lam [GL], and Anderson, Brown and 
Peterson [ABP]. 

Let Tn and Tn' b~ the maximal tori of Spin(2n) and S0(2n). We have the 
following diagram of vertical inclusions and horizontal double coverings: 

Tn - Tn' 
n n 

Spin(2n) - S0(2n) 
n n 

Spin(2n + 1) - S0(2n + 1) 

Since the induced diagram on the representation rings consists only of 
injections, we can identify all rings as subrings of the representation ring of 
Tn 
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R(Tn) = Z[u/, • • •, Un 2, U1 - 2, • • •, Un -2, (u1 · · • Un)]/~ 

where now and in what follows, the relations ~ are suggested by the notation, 
i.e., u;2u; -2 = 1 for i = l, • · ·, n and (u1 · • • un)2 = U12 • • • Un 2. It is convenient 
to think of this ring as a subring of the larger ring 

in which the element (u1 • • • un) is really a product. 
Now we will introduce some well known elements. Let Ilk be the k-th 

elementary symmetric function in the variables {u;2 + u;- 2 - 2} for i = l, ... , 
n. This is called the k-th Pontrjagin class. 

Let 

where in both sume f; = ±1 and Ll2n+1 = II;(U; + U; -i ). 
These elements satisfy the following relations: 

IIn = (Ll2n + - Ll2n->2, Ll2n + Ll2n-= Lk=l 4k-lIIn-k and 

Now we can describe the other representation rings as 

R(Tn') = Z[u12, • • ·, Un2, Ui-2, • • ·, Un-2]/~ 

R(Spin(2n)) = Z[II 1, · · ·, IIn-2, Ll2n+, Ll2n-] 

R(S0(2n)) = Z[II1, ••• ' IIn-1, (Ll2n +)2, (Ll2n ->21 
{(Ll2n+)2(Ll2n-)2 = (Lk=l 4k-lIIn-k) 2} 

R(Spin(2n + 1)) = Z[II1, • • ·, IIn-1, Ll2n+il, 

R(S0(2n + 1)) = Z[II1, · · ·, IIn]. 

Notice that R(Spin(2n)), R(Spin(2n + 1)) andR(S0(2n + 1)) are polynomial 
rings. 

The homomorphisms induced by the natural inclusions S0(2n - 1) C S0(2n) 
and Spin(2n - 1) C Spin(2n) are given by 

II· {II;,i=l,•••,n-1 
,~ 0 i=n 

With this is is not difficult to describe the homomorphisms induced by the 
inclusions of SO(m - r) C S0(m) and Spin(m - r) C Spin(m). 

The variables II; are in the kernel of the augmentation and in order to 
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handle this kernel effectively it is convenient to make the following change of 
variables: 

We now describe the homomorphisms induced by the inclusions 

fxj 
Z2 x Spin(4n - 2k + 1) - Spin(4n), k = 1, • • ·, 2n. 

where j is the usual inclusion and f is an injection of Z2 into a central subgroup 
of Spin(4n) that projects onto the center of S0(4n) under the natural double 
covering. More precisely, f X j is the composition 

fxj µ 
Z2 X Spin(4n - 2k + 1) - Spin(4n) X Spin(4n) - Spin(4n) 

where µ is the multiplication map. 
To do this it is better to study first the homomorphism 

fxj 
Z2 X Spin(4n) - Spin(4n) 

where now j is the identity map. 
II 

By restricting the double covering Spin(4n) - S0(4n) to the maximal tori, 
we get the following diagram 

S 1 X S 1 X ... X S1 D S 1 X S 1 X • • • X S 1 -gt~ i~ 
T2n II T2n 

I -n n 
Spin(4n) II S0(4n) -

where D(z1, • • ·, Z2n) = (z122, 22 - 123, • • •, Z2n- 121), 2; a complex number of 
absolute value 1. 

With this description for D, the isomorphism induced by g on the represen­
tation rings takes the form 

g#: Z[u1± 2 , • • ·, U2n± 2, (u1 • • • U2n)']!~ ~ Z[a1± 1, • • ·, £X2n± 1]/~ 

Using the parametrization g for T2n, we can now describe the restriction of 
f X j to the maximal tori as 
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fxj 
Z2xS 1 xS 1 x •.• xs 1 -s 1 xs 1 x ... xS 1 

where Z2 = {-1, l}. 
Write R(Z 2) = Z2 [y]/(y 2 = -2y), with y = x - 1 and x: Z2 - S 1 the only 

nontrivial 1-dimensional representation. Then we have 

PROPOSITION (4.1). The homomorphism of representation rings induced by 
f X j: Z2 X T2n - T2n is given by 

(/ x j)#(ui± 2) = (y + l)u/ 2 

and 

Here 

R(Z2 X T2n) = R(Z2) ® R(T2n) = Z[y, U1± 2 , • ··, U2n±2, (U1 • •• U2n)]/~. 

Proof. A direct computation on the one dimensional representations shows 
that 

(/ X j)#(aodd±l) = IY.odd±l 

(/ X j) #(<Xeven±l) = (y + l)<Xeven±l 

and by changing variables we get the Proposition. 

The following Lemma is easy and its proof is left to the reader. 

LEMMA (4.2). Let Ih' be the k-th elementary function in the variables X1 + 
C, • • •, X2n + C and lh the k-th elementary symmetric function in the variables 
X1, • • ·, X2n• Then 

Since (/ X j) #( Ilk) must be the k-th elementary symmetric function in the 
2n variables 

(f X j)#(u/ + U;- 2 - 2) = (y + l)(u/ + U;- 2 - 2) + 2y, i = 1, .. ·, 2n, 

and (y + l)y = -y, we obtain 

COROLLARY (4.3). The homomorphism of representation rings induced by 

f x j: Z2 X Spin(4n - 2k + 1) - Spin(4n) 

is given by 
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(f X j)#(IT;) = IT;' = (-1/-{L~-1 22i-1( 2n -/ + j)y IT;-i] + (1 + y)ilt 

(f X j)#(X4n = -2k-l04n-2k+IY - 22n-IY 

and 

(/ X j)#(04n) = 2k-I04n-2k+l 

where in the right side of the first formula 

II-= U4n-2k+l U4n-2k+l - £..,j-1 2n-k-j, {
~ 2 + 22n-k+l r '-' 2n-k IT 

' 0 
ifi= 2n-k 
ifi>2n-k 

The matrix expressing the elements IT;' in terms of the IT; has the following 
form 

1 2(in)y 
0 1 + y 
0 0 

-23(~n)y 

-2( in-l)y 

1 
0 

2sGn)y 
2 3(~n-1 )y 

2( in+2)y 
l+y 

0 

By Netto's formula [N, formula (2), page 51], we see that this matrix is its 
own inverse. Hence the new variables IT;' can equally serve as generators. 

§5. Computation of TorR(Spin(4n)) *[R(Spin(4n - 2k + 1) X Z2), Z] 

We describe Tod(spin(4n))[R(Spin(4n - 2k + 1) X Z2), Z] as a graded algebra. 
For this purpose, let 2 :S k :S 2n and set 

A= R(Spin(4n))/(IT1, · · ·, IT2n-k) and 

B = R(Spin(4n - 2k + 1) X Z2)/(II;', •. ·, II2n-k'), 

where II;' is as in 4.3. Then (f X j)# induces an algebra homomorphism 8: 
A - B that makes Ban A-algebra, and we have 

PROPOSITION (5.1). As graded algebras: 

Tod(Spin(4n))[R(Spin(4n - 2k + 1) X Z2), Z] ~ TorA *[B, Z]. 

Proof. Let A = Z[IT 1, · · ·, II 2n-k] and let <f;: A - R(Spin(4n)) be the 
inclusion. Then R{Spin(4n)) is A-free and by [CE, XVI, Theorem 6.1] we have 
a spectral sequence: 

TorA[TorA[R(Spin(4n - 2k + 1) X Z2 ), Z], Z] 

==> TorR(Spin(4n))[R(Spin(4n - 2k + 1) X Z2, Z]. 
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But since Tor,1_[R(Spin(4n - 2k + 1) X Z2 ), Z] = Tor 0 = B, the spectral 
sequence collapses and we get the Proposition. 

In order to describe TorA [B, Z] write 

A = Z[II2n-k+1, • • •, II2n-2, X4n, 04n], 

B =Z[o,y]/(y2 = -2y, 02=-22n-k+lo + 24n-2k-{ 1 + (-1t+1(;~=!) ]y) 

and 0(04n) = 2k-IO, 

0(X4n) = -2k-loy - 22n-ly 

and 0(II;) = II;' for i = 2n - k + 1, • • •, 2n. 

LEMMA (5.2). For i = 2n - k + 1, • • •, 2n, we have in B 

II ., = 22;-1(2n) _ "'i:----1 22u-n(2n - j)rr _, , • Y £., J=2n-k+l · J 
i J 

Proof. In R(Spin(4n) X Z2), 

II;= (-l);-1 L~=1 22j-1(2n -/ + j)yrr' i-j + (1 + y);II;'. 

But now in B we have II; = 0 for i = 2n - k + 1, • • •, 2n as well as II/' = 0 
for i = 1, • • •, 2n - k and y II;' = -21I; '. So we get the Lemma by substitution. 

Let m = g.c.d. {22;-1( 2;) Ii= 2n - k + 1, • • •, 2n - 2 }­

COROLLARY (5.3). A can be described as 

where the elements r;, i = 1, • • •, k - 3 and p satisfy 0(r;) = 0 and 0(p) = my. 

Let A' = A/( 71, ••. ' Tk-3) = Z[p, X4n, 04n]­

PROPOSITION (5.4). As graded algebras 

TorA*[B, Z] !a:a Az*(t1, · • ·, tk-3) ®z TorA,[B, Z] 

where Az*(t 1, • • •, tk-3) is the exterior algebra on generators of degree 1. 

Proof. Since A is a polynomial ring, we can use the Koszul resolution to 
view Tor A* [ B, Z] as the homology of the chain complex AB* ( t1, • • •, tk-3 , P, 
X, D) in which the differential is the derivation given on generators by 

d(t;) = 0(r;) = 0 

d(P) = 0(p) 

d(X) = 0(X4n) 

d (D) = 0(~4n). 
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But we have the isomorphism of chain complexes 

AB*(t1, • • ·, tk-3, P, X, D) !:1f Az*(t1, • • ·, tk-3) ®z AB·*(P, X, D); 

here the right hand side has the differential d = E ® d ', where E is the 
augmentation and d ' is given by 

d'(P) = 0(p) 

d 1 (X) = 0(X4n) 

d 1 (D) = 0(lhn). 

We thus get the Proposition. 
Now we are ready to describe Tor A· [B, Z]. This is the homology of the 

Koszul complex 

d d 

where dis the derivation of B-modules given by 

d(P) = my 

d(X) = -2k-loy - 22n-ly 

d(D) = 2k-1 0. 

d 

Let 2" = g.c.d. { m, 22n-i} and let am + b 22n-i = 2". We then have a new 
basis for AB*(P, X, D) given by 

u1 =aP-b(X-yD) 

Uz=D 

U3 = 22n-l-a p + mr"(X -yD) 

PROPOSITION (5.5). As graded algebras 

d(u1) = 2y" 

where d(ui) = 2k-10 

d(ua) = 0 

TorA•*[B, Z] = Az*(z1, Zz, za, u) ®z Z[y, o]/~ 

where z1 , z2 , z3 , u are of degree 1, y and o are degree O and~ is given by: 

1) y 2 = -2y, 2"y = 0 

2) 02 = -22n-k+10 + 24n-2k-1[1 + (-l)k+l(;~ = !)}, 2k-10 = 0 

3) 2'u = 0, r = min{a, k - 1} 

4) Z1Y = 0, Z1U = 0 

5) z2o = 24n-Zk-l-a+'[l + (-l)k+1(;~ = !)]u, Z2U = 0 

6) uy = -2u - 2k-l-rOZ1, uo = -2 2n-k+lu = 2"-'yz2. 

Proof. Take 
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Z1 = (y + 2)U1, 

z2 = (o + 2k- 1 )u2 - 2k-l-{ 1 + (-1l+ 1(;~ = !) ]u1, 

Z3 = U3, and u = -2k-l-lOU1 + 2a-rYU2 
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Now the Theorem follows by direct inspection of kernels, images and relations. 

COROLLARY (5.6). The Hodgkin spectral sequence for X 4n, 2k-l collapses. 

Proof. As we see from Propositions 5.1, 5.4 and 5.5, the E2 term is generated 
as an algebra by E 2 ° and E 2 1 and since the differentials are zero there for 
dimensional reasons and are derivations, we obtain the Corollary. 

Employing the results of this section, we can describe the R,, term of the 
Hodgkin spectral sequence for X4n,2k-1 as 

R,/ = Az1'(ti, • • ·, tk-3, Z1, Z2, Z3, u) ®z Z[o, y]/~ 

where t1 , • • •, tk- 3 , z1 , z2 , z3 and u are of degree 1, y and o are of degree O and 
~ is exactly as in Proposition 5.5. 

§6. The Extension Problem 

To get K* (X4n, 2k-l) from the Eoo * term of the Hodgkin spectral sequence, 
we have to solve an extension problem. We will have this in mind in what 
follows. 

We consider two categories of algebras which we will call CK and CE. 
The category CK consists of Zrgraded algebras K = K 0 EB K 1 with multiplic­

ative filtration 

0 = F-2 C Fo C F2 C • • • C F2n C • • • C K 0 = U; F2;, 

0 = F-1 C F1 C F3 C • • • C F2n+1 C • • • C K 1 = U; F2i+l 

F; • Fj C F;+j• 

The category CE consists of Z-graded algebras: 

E = E 0 EB E 1 EB E 2 EB • • • 

There are two natural functors between these categories of algebras: 

T: cK- cE, 

T(K) = E, with Ei = FJF;- 2 and the product induced by the multiplicative 
filtration on K, and 

L(E) = K, F 2; = E 0 EB E 2 EB • • • EB E 2i and F 2;+ 1 = E 1 EB E 3 EB • • • EB E 2i+1_ 

It is clear that T O L: CE - CE is the identity functor and we have the 
following ~xtension problem: 

PROBLEM (6.1). Given E in CE, describe all algebras in r- 1 (E). 
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We will partially answer this question in some elementary cases. For this 
let us restrict our attention to algebras that are quotients of a universal 
algebra, i.e., of a cummutative algebra which is the tensor product of an 
exterior algebra over Z, finitely generated by elements of odd degree, with a 
polynomial algebra over Z, finitely generated by elements of even degree. 

Any Z-graded algebra can be considered as Zrgraded by considering its even 
and odd parts. In particular this is true for universal algebras, and we can 
speak of an object of CK as a quotient of a universal algebra. 

PROPOSITION (6.2). Suppose E = T(K) and E is generated by homogenous 
elements e1 , •••,en. For each ei EE= F)Fj- 2 choose a representative ki E Fi. 
Then the elements k1 , • • • , kn generate K. 

Proof. Let k E Kbe a homogeneous nonzero element, i.e., k E K 0 or k E K 1. 

Then k E Fi - Fi-z for some j. Let k be the image of k in Fif Fi- 2 = Ei and 
write it as a sum of products of the e1, • • •, en. 

Let k ' have the same expression as k but in the elements k1 , • • •, kn. Then 
k - k' E Fi- 2 and the assertion follows by induction on j. 

COROLLARY (6.3). If E = T(K), then E and Kare both quotients of a common 
universal algebra. 

Now let KE CK be a quotient of the universal algebra U by a Zrgraded 
homogeneous ideal IK. To each element e E IK, we can associate its homoge­
neous part of highest degree, denoted by h ( e). All these homogeneous elements 
generate a homogeneous ideal of U denoted by h(IK). 

PROPOSITION (6.4). Let E = T(K), where E and Kare both quotients of the 
universal algebra U, by ideals IE and IK, Then h(h) = IE. 

Proof. Given u E U, denote by (u)E and (u)K its classes in E and K. Notice 
that if u is homogeneous of degree n, then (u)K E Fn. 

Now, if u E IE, the (u )E = 0 and so (u )KE Fn- 2 • Thus (u )K = (u' )K with u' 
of degree :::;n - 2. Then u - u' E IK and u = h(u - u') E h(IK), so IE C h(h). 

If u E h([K), then u + u' Eh for some u' of degree <n. Then (u' )KE Fn-z 
and (u)E = (u)K = (u + u' )Kin En= Fn/Fn-z, sou E IE. This ends the proof. 

COROLLARY (6.5). If E = T(K) and IE is generated by elements of degrees 0 
and 1, then K = L(E). 

This is the case for the Eo. * term of the Hodgkin spectral sequence for the 
Stiefel manifolds [R], therefore K* = E .. * thus giving a Z-grading to K* in 
this case. 

THEOREM (6.6). As algebras 

K*(X4n,2k-1) ~ Az*(t1, •• ·, tk-3, Z1, Zz, Z3, u) ® ZI Y, 0 I/~ 
where ~ is described as in Proposition 5.5, except for the two relations in 

dimension two 
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and 

for some integers a; and b;. 

Proof. It follows as a Corollary of Proposition 6.4 and Corollary 5.6. 
In particular for the case k = 2n, when we are dealing with the group PO( 4n) 

= X4n,4n-1, we have that 

Z1U = 2"a3oy 

ZzU = 2"- 1b3oy 

where a3 and b3 are O or 1. This coincides with Held and Suter [HS, Theorem 
6.2] where they further determine that a3 = b3 = 0. 

Now we wish to identify the complexification of the Hopf bundle over 
X2n,zk-l with the element y + 1 EK* (X4n,zk-l ). For this notice that the element 
y + 1 is the a construction on the one dimensional representation 

X: Spin(4n - 2k + 1) x Z2 - Z2 - S 1 = U(l) 

where the first arrow is the projection on the second factor. (See [R, 4.1] and 
our definition of yin section 4). We have 

PROPOSITION (6.7). The a construction on the one dimensional representa­
tion XE R (Spin( 4n - 2k + 1) X Z2) is the complexification of the Hopf bundle. 

Proof. By definition of the a construction [H] or [R, 4, 1], a (X) is the 
complex line bundle over X4n,zk-i associated to the principle bundle 

Spin(4n - 2k + 1) X Z2 - Spin(4n) - X4n,2k-1 

when we let act Spin(4n - 2k + 1) x Z2 on C via the representation X. 
But since X factors through Z2 we have 

Spin(4n) Xspin(4n-2k+l)XZ2 C 

= Spin(4n)/Spin(4n - 2k + 1) Xz 2 C = Vin,2k-1 Xz 2 C 

and this ends the proof. 

Let 

a ( 4n, s) = min{ 2n - 1, 2i - 1 + v2( 2;) I i ~ 14n - 2
8 + 2 1} 

where v2 (m) = maximum power of 2 dividing m and [x] = integral part of x. 

THEOREM (6.8). The complexification of the Hopf bundle over X 4n,s has order 
2"<4n,s) in K(X4n,s). 

Proof. This is a direct consequence of Theorem 6.6 and Proposition 6. 7 for 
s = 2k - 1. (See the definition of a in Section 5.) 
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For s = 2k the fibration 

7f 

S 4n-2k - X4n,2k - X4n,2k-1 

is totally noncohomologous to zero in K-theory [GL] and since 1r pulls the 
Hopf bundle over X4n,2k-1 back to the Hopf bundle over X 4n,zk, we get the 
theorem. One can use the same fibration to describe K* (X4n,zk) in terms of 
K*(X 4n,zk-d as Gitler and Lam do for Stiefel manifolds in [GL]. 

§ 7. The negative parallelizability results 

The object of this section is to prove the following: 

THEOREM (7.1). The projective Stiefel manifold Xn,s is not stably paralleliz­
able in the following cases: 

a) m odd ands< n - 1 

b) m even, n > 4, s < 4n - 2 and (n, s) ¥- (8, s), (12, 8) or (16, 8). 

All others are parallelizable (Theorem 2.1) except possibly X 12,8 . 

Proof. This is the union of Corollaries 7.3, 7.4 and Proposition 7.5, 7.6 and 
7.7. 

Let 2/JCn,s) be the order of the Hopf bundle in KO(Xn,s) and let 2a<n,s) be the 
order of its complexification in .K(Xn,.). Since complexification followed by 
realification is multiplication by two, we have 

f3(n, s) = a(n, s) + E with E = 0 or l. 

PROPOSITION (7.2). Let n > 2, 1 ::5 s < 4n - 2 and (4n, s) ¥- (12, 8) or 
(16, 8). Then v2(4ns) < a(4n, s). 

The proof is in the next section. 

COROLLARY (7.3). If n 2:: 2, 1 ::5 s < 4n - 2 and (4n, s) ¥- (12, 8) or (16, 8), 
the manifold X 4n,s is not stably parallelizable. 

Proof. The tangent bundle T (Xn,s) is stably isomorphic to ns times the Hopf 
bundle [L]. Then by Proposition 7.2, r(X 4n,s) is not zero in .K(X 4n,s). 

COROLLARY (7.4). If n 2:: 2, 1 :S s < 4n and 1 :S k :S 3, the manifold X 4n+k,s 
is not stably parallelizable, except possibly for X10 ,4 • 

Proof. If n > 2, then v2(4ns) :s a(4n, s). To see this one checks it directly 
for (4n, s) = (12, 8), (16, 8), (4n, 4n - 1) and (4n, 4n - 2), and then applies 
Proposition 7 .2 in the other cases. 

Since the natural inclusion X 4n,s - X 4n+k,s pulls the Hopf bundle back to 
the Hopf bundle we have that a(4n, s) ::5 a(4n + k, s). But v2 ((4n + k)s) :s 
V2(4ns) so than r(X4n+k,s) is not zero in .K(X4n+k,s)-

For n = 2 we know that a(8, s) = 3 for 1 ::5 s :s 7 and then a(8 + k, s) 2::3 
fork= 1, 2, 3 and 1 :s s :s 7. Since 112((8 + k)s) <3 except for (10, 4), this 
completes the proof. 
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PROPOSITION (7.5). If n > 1 and k = 0 or 1, the manifold X4n+3,4n+k is not 
stably parallelizable. 

Proof. This is obvious for k = 1 since v2 ((4n + 3)(4n + 1)) = 0 and 
a(4n + 3, 4n + 1) 2::: 1 because the Hopf bundle is not trivial. 

Now, following the ideas of Sections 5 and 6 it is possible to show that for 
n > 1, a(4n + 2, 4n) = v2 (8n). 

Since the natural inclusion X4n+z, 4n - X4n+3,4n pulls the Hopf bundle back 
to the Hopf bundle, we have that a(4n + 2, 4n) ::S a(4n + 3, 4n) and then 
r(X4n+3,4n) is not zero in K(X4n+3,4n), 

PROPOSITION (7.6). The manifold X10,4 is not stably parallelizable. 

Proof. As in the proof of Proposition 7.5, we can show that a(lO, 8) = 4. 
Since a(lO, 4) 2::: a(lO, 8), r(X 10,4 ) is not zero in .K(X10,4 ). 

PROPOSITION (7.7). The manifold Xn,s is not stably parallelizable if (n, s) = 
(7, 4), (7, 3), (7, 2), (7, 1), (6, 3), (6, 2), (6, 1), (5, 3), (5, 2) or (5, 1). 

Proof. Take first the case (7, 4). We will make use of the Atiyah-Hirzebruch 
spectral sequence for KO to show that f3(7, 4) = 3. We already know that 
f3(7, 4) ::: f3(8, 4) = 3. 

Let f: X7,4 - P 00 the classifying map of the Hopf bundle, so we have the 
fibration 

f 
V1,4 - X1,4 - P 00

• 

It is well known that Jli ( V7,4 ; Z) = 0 for i :::S 3 and that is enough to see from 
the Serre spectral sequence of the above non orientable fibration that f * ( y 2 ) 

¢ 0 in H* (X7,4 ; Z) where y 2 E H 4 (P 00
; Z) is the generator. 

In the Atiyah-Hirzebruch spectral sequence we have 

0 ¢ f*(y 2 ) E F2 4'- 4 = H 4 (X1,4 ; K0- 4 (* )). 

But f*(y 2 ) is a permanent cycle since it comes from P 00
, and it is not a 

boundary for dimensional reasons, so 

0 ¢ f* (yz) E Eoo 4,-4_ 

Thus, in .KO(X7,4 ), 22 (~ - 1) = (~ - 1)3 is not zero since (~ - 1)3 is 
represented by f*(y 2 ) E Eoo 4 ,- 4_ This shows that {3(7, 4) 2::: 3. 

The other cases follow from the fact that {3(4, 3) = 2 and f3(6, 2) = 3. This 
also can be proved by using the Atiyah- Hirzebruch spectral sequence as above. 

§ 8. Proof of Proposition 7 .2 

We begin by recalling a well known theorem of Lucas. Let v2 (x) be the 
maximum power of2 dividing x, a(x) the number of l's in the dyadic expansion 

of x and ( ~) the usual binomial coefficient. 
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THEOREM (8.1). (Lucas). v2(�) = a(b) + a(a - b) - a(a).

We will also make use of the following easy consequence of 8.1:
LEMMA (8.2). Suppose that 2 t I 2n, 2t Ii and O <j < 2t. Then

v2( 2;) < V2( /; j).
For the proof of Proposition 7 .2 first observe that v2 ( 4ns) :::s v2 ( 4n) < 2n -1 if n > 2. Thus it is sufficient to prove 

for n > 2 and 1 :::s s < 4n - 2.
Observe I 4n -

2
8 + 2 1 assumes the same value for s = 2k - 1 and s = 2k. 

Since v2(4n(2k + 1)) < v2(4n(2k)), it is enough to prove (*)for seven and for 
s = 4n - 3. Thus we must prove 

PROPOSITION (8.3). Let n > 2 and 1 :::s k < 2n - 1. Then

v2 (8nk) < 2i - 1 + v2(2;) for all i ==:: 2n - k + 1
and

PROPOSITION (8.4). Let n > 2. Then v2(4n) < 2i - 1 + v2( 2;) for all i ==:: 2.
Proof of 8.4. Let 2n = 2n1 + 2n2 + · · · + 2n,, 0 < n1 < n2 < · · · < ns . Thenv2(4n) = n1 + 1 < 2ni+1 - 1 and 8.4 follows for i ==:: 2n1

. 

Now let 2 :::s i < 2n1 and write i = i1 + • • • + 2;,, i1 < • • • <it < n1. Then by
the Theorem of Lucas v2( 2;) = n1 - i1. But 2i - 1 + v2( 2;) :=:: 2;1+1 - 1 + n1 

- i1 > n1 + 1 = v2 ( 4n) for i1 :=:: 1, and 2i - 1 + v2( 2;) :=:: 3 + n1 > n1 + 1 = 

v2(4n) for i1 = 0.
Proof of 8.3. We will consider 5 cases. Let i0 = 2n - k + 1 and 2n = 2n, +

2n2 + ... + 2n,, 0 < n1 < n2 < ... < ns . 

Case 1: 2 :::s v2(k) - k1 < n1 and v2 (8nk) = 2 + n1 + k1. Here it suffices toprove 8.3 for k = 2n - 2k1
• But then i0 = 2k, + 1.

For i = 2t, k1 :::s t < n1 , then, since 2
t+i > 2t + 3 :=:: k1 + t + 3,
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2i + 1 + v2( 2;) = 2t+I - 1 + n1 - t > 2 + n1 + k1 = v2(8nk). 

For i ¥- 21 and i < 2ni we simply invoke Lemma 8.2. And for i = 2n, we have 

2i - 1 = 2n,+l - 1 ~ 2 + 2n1 > 2 + n1 + k1 = V2(8nk). 
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Case 2: v2 (k) = k1 = 0 or 1 and k1 < n1. The proof is analogous to the proof 
of 8.4. 

Case 3: v2 (k) = k1 = n1 and v2 ( 8nk) = 2 + 2n1. In this case it suffices to 
prove 8.3 fork= 2n - 2n,+I. But then io = 2n,+1 + 1 and 2io - 1 = 2n1+2 + 1 > 
2 + 2n1 = v2(8nk). 

Case 4: v2(k) = k1 > n1 and1k ¥- n2, • • •, n •. Then n1-1 < k1 < n1 for some t 
= 2, • • •, s, and it is enough to prove 8.3 for k = 2k1 + 2k1+1 + ... + 2n,-1 + 
2nt+l + ... + 2n,. Then io = 1 + 2n1 + ... + 2n,_, + 2k1 and 2io - 1 ~ 2ki+l ~ 2 
+ 2k1 > 2 + n1 + k1 = v2(8nk). 

Case 5: v2 (k) = k1 = n1 for some t = 2, • • •, s. In this final case it suffices to 
prove 8.3 for k = 2n, + . . . + 2n,. So io = 1 + 2n1 + . . . + 2n,_, _ Observe that 2i 0 

- 1 + V2(~~) ~ 1 + 2n,+l + nt > 2 + n1 + nt = V2(8nk) and 2n,+l - 1 ~ 2 + 2nt 

> 2 + n1 + n1 = v2 (8nk). For io < i < 2n,, then i = 2i1 + 2i2 + • • • + 2iq with n1_ 1 

=5 iq < n1 and by the Theorem of Lucas v2( 2;) ~ n1 - iq. So 2i - 1 + v2( 2;) ~ 
iq+I - 1 + n1 - iq ~ 2 + iq + n1 > 2 + n1 + n1 = v2(8nk). 
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