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A NOTE ON CURVES OF EVEN GENUS 

BY R. SMITH* AND H. TAPIA-RECILLAS** 

Summary. Let k be an algebraically closed field of characteristic zero and 
let C be a projective, irreducible, smooth, non-hyperelliptic curve defined over 
k of even genus 2n, n ~ 2 and generic in the sense of Brill-Noether. Let Wd, 
d ~ 1 be the image under the Abel-Jacobi map of the d-symmetric product 
c<d) of the curve with respect to a fixed base point. In this note we show that 
the curve C and all its (2n)!/(n + l)!n! special linear series gn+/ can be 
recovered from the Gauss map on the subvariety Wn. 

Let C be a projective irreducible smooth non-hyperelliptic curve of even 
genus 2n, n ~ 2 over an algebraically closed field of characteristic zero which 
is generic in the sense of Brill-Noether. In this situation, the subvariety Wn+/ 
of the Jacobian variety J ( C) of C, has dimension zero and consists of precisely 
(2n)!/(n + l)!n! different points (cf. [G-H], [A-C-G-H]). Furthermore, the 
subvariety Wn is smooth and can be identified with the n-symmetric product 
c<n> of the curve under the Abel-Jacobi map. 

The beautiful Theorem of Torelli for curves, tells us among other things, 
how to recover the curve of genus g > 0 from the Gauss map on the subvariety 
Wg-I• The discussion we present here is an extension of the proof of Torelli's 
Theorem given by A. Andreotti ( cf. [A]). 

THEOREM. Let C be a curve of genus 2n, n ~ 2 as described above. Then the 
curve and all its linear series gn+i1 can be recovered from the Gauss map on the 
subvariety Wn: 

G: Wn - <Gr(n - 1, 2n - 1) 

PI + ' • • + Pn - PI + • • • + Pn 

where Pi + · · · + Pn denotes the linear span of the divisor p 1 + • • • + Pn• 

Proof. Since the subvariety Wn is smooth, the Gauss map G is defined 
everywhere and it is holomorphic onto its image. Let B be the analytic subset 
of the Grassmanian <Gr(n - 1, 2n - 1) consisting of the points where the fibre 
of the map G has more than one point. Thus if H = p 1 + • , • + Pn is an element 
of B, by the geometric Riemann-Roch Theorem [G-H, p. 248] and the fact 
that C is generic in the sense of Brill-Noether, there is a unique point Pn+I of 
C such that Pi + ... + Pn + Pn+l = H, i.e., the linear series: Pi + ... + Pn + 
Pn+1: is a gn+/, Conversely, any element of Wn+i1 determines points of B where 
the fibre of the map G has more than one element. Therefore, there is a 
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bijection between the components of B and W~+1 such that B may be thought 
of as the disjoint union of (2n)!/(n + l)!n! copies of IP\. Hence, R = a-1 (B) is 
also the disjoint union of the (same number) curves a-1 (gn+i1). The Gauss 
map G restricted to each one of these curves is obviously of degree n + 1 and 
is injective everywhere else. 

c<n) <Gr(n - 1, 2n - 1) 

Ill u 
Wn - G(Wn) 

u u 
R-B = U Jlll1 

u u 
a-1(gn+i1) - JPl1 ~ I gn+i1 I 

In order to see that each one of the curves a-1 (gn+i1) is birational to the 
original curve C, we define 

F: a-1 (gn+i1) - C, 

D =Pl+ • • • + Pn - [D • C - D] = Pn+l• 

This map is obviously birational between the two curves. Furthermore, the 
Gauss map G: a-1 (gn+i1) - JPl1 ~ lgn+i1 I is such that G(D) = _D • C is the 
unique divisor of the corresponding )inear system gn+i 1 containing the point 
Pn+i, and the following diagram is commutative 

a-1 (gn+/) ... --c:--------'1►► C 

"" / n + 1 to~l /+ 1 to 1 

lgn+i1 I 
Thus, the analytic set B of the Gauss map G on the subvariety Wn is 

birationally equivalent to (2n)!/(n + l)!n! disjoint copies of the curve C and 
the restriction of G to these copies gives the corresponding rational map 
associated to the linear series gn+i 1. 
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