CLASSES OF TOPOLOGICAL SPACES PRESERVED UNDER REALCOMPACTIFICATIONS

By Adalberto García-Máynez* and Richard G. Wilson

1. Introduction and preliminary results

A well-known result in general topology states that a Tychonoff space X is a P-space if and only if νX is a P-space (see for example [G-J, problem 8A]). Few other properties seem to be preserved by the functor ν (connectedness is one of them), in particular νX is not first countable unless X is first countable and realcompact. The aim of this paper is to study two classes of topological spaces, the C-spaces and the C'-spaces, which are closed with respect to products and the functor ν , and which contain all first countable spaces (indeed all k-spaces). Strangely, these spaces are in some ways complementary to the class of P-spaces (see Corollary 2.2, below).

A subset S of a topological space X is said to be C-discrete if there exists a discrete family of distinct open sets $\{U_s: s \in S\}$ such that $s \in U_s$. Clearly every C-discrete subset of X is closed and discrete and the following easy lemma is left to the reader:

LEMMA (1.1). Every C-discrete subset of X is C-embedded in X and every countable, closed, discrete and C-embedded subset of X is C-discrete.

We note that the right hand edge of the Tychonoff plank (see for example [G-J, 8.20]) is an example of a closed and discrete subset which is not *C*-discrete; the second result of the lemma is the strongest of its type which can be proved in ZFC. Under MA(\aleph_1), the ω th level of an \aleph -Cantor tree (see [R, page 21]) is closed, discrete, *C*-embedded (since the space is normal) and of cardinality \aleph_1 , but is not *C*-discrete since the space is separable. Assuming the existence of measurable cardinals Comfort [C] has given another example of a closed discrete and *C*-embedded subset which is not *C*-discrete, but we know of no example constructed in ZFC.

A point $x \in X$ is said to be a *C*-point if for each countable set $\{U_n: n \in N\}$ of neighbourhoods of x it is possible to choose $x_n \in U_n$ in such a way that $\{x_n: n \in N\}$ is not *C*-discrete. A space is said to be a *C*-space if every non-isolated point is a *C*-point. Similar concepts (with closed and discrete replacing *C*-discrete) were introduced in [M], but the following example (also in [C]) is a non-discrete (pseudocompact) *C*-space in which every countable set is closed and discrete.

Example (1.2). It is known that in ZFC there exist weak P-points in $\beta N - N$, that is to say, points p which are not in the closure of any countable subset of $\beta N - N - \{p\}$ (see [K]). For some fixed weak P-point $p \in \beta N - N$,

^{*} This paper was completed while the first named author was a Visiting Professor at the Universidad Autónoma Metropolitana, Unidad Iztapalapa, México.

we denote the type of p by $T(p) = \{\overline{f}(p): f \text{ is a permutation of } N\}$ (here \overline{f} denotes the Stone extension of f). T(p) is pseudocompact (by [G-S, Theorem 5.3]) and hence every C-discrete subset (being C-embedded) is finite. Thus every point of T(p) is a C-point. On the other hand, since p is a weak P-point of $\beta N - N$ every countable subset of T(p) is closed and hence discrete.

 X_p will denote the set of *P*-points of a topological space X and intA will denote the interior of a subset $A \subset X$. A space X is said to be a C'-space if $intX_p$ is discrete and is said to be admissible if each of its points is a C-point or a *P*-point.

2. Realcompactifications of C-spaces and C'-spaces

In this section all spaces are assumed to be Tychonoff spaces.

LEMMA (2.1). A space X is a C-space if and only if it is an admissible C'-space.

Proof. (Necessity). Let $A = intX_p$. Since the property of being a C-space is preserved under open subsets, A is a P-space and a C-space. However, in a P-space every countable subset is closed, discrete and C-embedded ([G-J, problem 4K]), and hence by Lemma (1.1), every countable subset of A is C-discrete. Thus A must be discrete.

(Sufficiency). We will show that each non C-point $x \in X$ is isolated. Since X is admissible, x is a P-point and since x is not a C-point there exists a countable family of open neighbourhoods $\{U_n: n \in N\}$ of x such that for any choice of $x_n \in U_n$, the set $\{x_n: n \in N\}$ is C-discrete. Clearly, if $z \in \bigcap_{n \in N} U_n$, then z is not a C-point of X and so $\bigcap_{n \in N} U_n \subset X_p$. Since X is a C'-space, $\operatorname{int}(\bigcap_{n \in N} U_n)$ is discrete. But since x is a P-point, $x \in \operatorname{int}(\bigcap_{n \in N} U_n)$ and so x is an isolated point.

COROLLARY (2.2). X is a P-space and a C-space if and only if X is discrete.

THEOREM (2.3). If X is the union of connected zero sets then X is a C'-space.

Proof. Suppose that $X = \bigcup_{\alpha \in I} Z_{\alpha}$, where Z_{α} is a connected zero-set for each $\alpha \in I$. Let A be a non-empty cozero set in X whose closure is contained in X_p (if no such set exists then $\operatorname{int} X_p = \Phi$ and the theorem is proved). If $A \cap Z_{\alpha} \neq \Phi$ then necessarily $Z_{\alpha} \subset A$ because otherwise the sets $A \cap Z_{\alpha}$ and $Z_{\alpha} - A$ being closed (in a P-space each cozero set is closed) would separate the connected set Z_{α} . But if $Z_{\alpha} \subset A$, then necessarily Z_{α} must consist of a single point since every P-space is totally disconnected; furthermore, since every G_{δ} -point in a P-space is isolated, $\operatorname{int} X_p$ must consist of isolated points.

THEOREM (2.4). Every k-space is a C-space. (Compare [M, Lemma 2.7]).

Proof. Since each k-space is the quotient image of a locally compact space, it suffices to show that the quotient image of a locally compact space is a C-space. To this end, let X be a locally compact T_2 -space and $f: X \to Y$ a quotient mapping. We will show that each non-isolated point $y \in Y$ is a C-point. Let $\{U_n: n \in N\}$ be a countable family of open neighbourhoods of y. $f^{-1}(y)$ is

closed but not open and hence does not consist solely of isolated points of X. Thus it is possible to choose $x \in Fr(f^{-1}(y))$. Let V be a compact neighbourhood of x, and select $x_1 \in V \cap f^{-1}(U_1) \cap (X - f^{-1}(y))$. Let $y_1 = f(x_1)$: clearly $y \neq$ y_1 . Having defined x_1, \dots, x_n and y_1, \dots, y_n , select $x_{n+1} \in V \cap f^{-1}(U_{n+1}) \cap$ $(X - f^{-1}(y, y_1, \dots, y_n))$ and define $y_{n+1} = f(x_{n+1})$. It is not hard to see that such a choice is possible, since $f^{-1}(y, y_1, \dots, y_n)$ is closed for each $n \in N$. Since $\{x_n : n \in N\}$ is an infinite subset of V, it is not C-discrete, and hence neither is the set $\{y_n : n \in N\}$.

THEOREM (2.5). An arbitrary product of C-spaces (respectively C'-spaces) is a C-space (respectively C'-space).

Proof. For finite products the results are obvious. That an infinite product of non-trivial C-spaces is a C-space follows from the fact that in such a product every point is an accumulation point of a compact subspace, namely the product of two point spaces, which also shows that no point of an infinite product of non-trivial spaces is a P-point.

Our aim will now be to show that in the absence of measurable cardinals, the classes of C-spaces and C'-spaces are closed under the functor ν ; indeed, X is a C'-space if and only if νX is a C'-space.

LEMMA (2.6). If νX is a C'-space then X is a C'-space.

Proof. Let A be any open set in νX such that $A \cap X = \operatorname{int} X_p$. Since νX is a C'-space it suffices to show that A is an open P-subspace of νX . Let Z be a non-empty zero set in νX which is contained in A. By [G-J, problem 8D], $Z = \operatorname{cl}_{\nu X}(Z \cap X)$ and since $Z \cap X$ is a zero set in X and $Z \cap X \subset X_p$, $Z \cap X$ is open in X. Thus $\operatorname{cl}_{\beta X}(Z \cap X)$ is an open and closed subset of βX . However, since $Z = \operatorname{cl}_{\nu X}(Z \cap X) = \operatorname{cl}_{\beta X}(Z \cap X) \cap \nu X$, it follows that Z is an open and closed subset of νX . Thus A is a P-space and the result follows.

LEMMA (2.7). If X is an admissible space then νX is also admissible.

Proof. We will show that if z is a non C-point of νX , then z is a P-point of νX . Let $\{V_n : n \in N\}$ be a nested family of open neighbourhoods of z in νX . It suffices to show that $z \in int(\bigcap_{n \in N} V_n)$. Since z is not a C-point of νX , there exists a countable family of open neighbourhoods $\{U_n : n \in N\}$ of z in νX , such that for every choice $z_n \in U_n$, the set $\{z_n : n \in N\}$ is C-discrete. Let Z be a zero-set in νX such that $z \in Z \subset \bigcap_{n \in N} V_n \cap \bigcap_{n \in N} U_n$. But $Z = cl_{\nu X}(Z \cap X)$ and since $Z \cap X \subset \bigcap_{n \in N} U_n \subset X_p$ it follows that $Z \cap X$ is an open and closed subset of X and hence Z is open in νX and the result follows.

COROLLARY (2.8). If νX is a C'-space and X is admissible, then X and νX are both C-spaces.

Proof. This follows from Lemmas (2.1), (2.6) and (2.7).

THEOREM (2.9). If X is a C-space (respectively C'-space) and every open and closed discrete subset of X is realcompact, then νX is a C-space (respectively C'-space).

Proof. Assume first that X is a C'-space. We wish to show that if A ⊂int($(\nu X)_{\rho}$) then A is discrete. Assume that A is open in νX . If Z is a zero-set in X which is contained in A ∩ X and $Z^* = cl_{\nu X}Z$, then $Z^* ∩ A$ is a G_{δ} -subset of A. Hence $Z^* ∩ A$ is open in νX . Since $Z = (Z^* ∩ A) ∩ X$, Z is open in X. Thus we have shown that A ∩ X is an open P-subspace of X. Since X is a C'space, A ∩ X is discrete, and so we have shown that if S is a zero-set in νX contained in A then S ∩ X is an open and closed discrete subset of X. However, $Z^* ∩ X$ is then realcompact and so $Z^* = cl_{\nu X}(Z^* ∩ X) = Z^* ∩ X$, and so Z^* ⊂ X. Thus A ⊂ X, so A is discrete and the result follows.

The corresponding result for C-spaces follows from Lemmas (2.1) and (2.7).

COROLLARY (2.10). Assuming that no measurable cardinals exist, a Tychonoff space X is a C'-space if and only if νX is a C'-space.

On the other hand, if D is a discrete space of Ulam-measurable cardinality, then D is a C'-space but νD is not. Furthermore, as the following example shows, νX may be a C-space even when X is not.

Example (2.11). Let $A \subset (\omega_2 + 1) \times (\omega + 1)$ be defined by $(\alpha, \beta) \in A$ if and only if 1) $\alpha = \omega_2$ and $\beta = \omega$, or 2) $\alpha \in \omega_2$, $\beta \in \omega$ and $\operatorname{cof} \alpha \neq \omega$.

The space X is obtained by adjoining a sequence of distinct isolated points convergent to each non-isolated, non C-point of $A \cap (\omega_2 \times \omega)$. X is not a Cspace since (ω_2, ω) is neither isolated nor a C-point. On the other hand, using standard arguments one can show that if Y denotes the space obtained from X by adjoining the points $\{(\omega_2, n): n \in N\}$ in the natural way, then X is Cembedded in Y and hence $\nu X = \nu Y$. Since Y is clearly a C-space it follows from Theorem (2.9) that νY and hence νX is a C-space.

Instituto de Matemáticas Universidad Nacional Autónoma de México México, D.F. 04510 México

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD IZTAPALAPA MÉXICO, D.F. 09340 MÉXICO

References

[C] W. WISTAR COMFORT, Personal communication, 1983.

- [G-J] L. GILLMAN AND M. JERISON, Rings of continuous functions. Princeton, N.J., Van Nostrand, 1960.
- [G-S] J. GINSBURG AND V. SAKS, Some applications of ultrafilters in topology, Pacific J. Math., 57(1975) No. 2, 403–418.
- [K] K. KUNEN, Weak P-points in N*, Colloq. Math. Soc. Janos Bolyai 23(1978), 741-749.
- [M] K. MORITA, Completion of hyperspaces of compact subsets and topological completion of openclosed maps. Gen. Topology & Applications, 4(1974), 217–233.
- [R] M. RUDIN, Lectures on set theoretic topology, CMBS Regional Conference Series in Mathematics, No. 23, 1975.