ON MAPS COBORDANT TO EMBEDDINGS

BY M.A. AGUILAR AND G. PASTOR

1. Introduction

Let M^n and N^{n+k} be closed differentiable manifolds. We consider the problem of a given continuous map $f: M \to N$, whether there is an embedding cobordant to f. In this article we first compute the number of cobordism obstructions to embeddings for $k \ge (n + 1)/2$. Next we use a result of R. L. W. Brown [Br] to determine these obstructions in the cases $k = n - 1$, $n - 2$. We use throughout homology and cohomology with \mathbb{Z}_2 -coefficients.

The second named author wishes to thank the University of Virginia for hospitality and support while part of this work was done.

2. Cobordism Groups of Maps and of Embeddings

We say that two maps $f_0: M_0^n \to N_0^{n+k}$ and $f_1: M_1^n \to N_1^{n+k}$ are cobordant if there is a map $F: V \to W$ of compact manifolds such that ∂V is diffeomorphic to the disjoint union of M_0 and M_1 , ∂W is diffeomorphic to the disjoint union of N_0 and N_1 , $F \mid M_0 = f_0$ and $F \mid M_1 = f_1$. Cobordism classes form an abelian group under disjoint union, which we denote by $M(n, n+k)$. In this definition, if the term "map" is replaced by "embedding" we obtain the bordism group $E(n, n + k)$ of embeddings.

These groups were first studied by Stong [St] and Wall [Wa]. Using the Pontrjagin-Thom construction they showed that

$$
M(n, n+k) \cong \mathcal{N}_{n+k}(\Omega^N MO_{k+N}), \quad N \gg k, \quad \text{and} \quad E(n, n+k) \cong \mathcal{N}_{n+k}(MO_k).
$$

Let i: $\Sigma^{N}MO_{k} \to MO_{k+N}$ be the map induced by the inclusion $O_{k} \subset O_{k+N}$, and let $\hat{i}: MO_k \to \Omega^N MO_{k+N}$ denote the adjoint of *i*. The forgetful homomorphism $E(n, n + k) \to M(n, n + k)$ is induced by *i*. If *id* denotes the adjoint of the identity map $\Omega^{N}MO_{k+N} \to \Omega^{N}MO_{k+N}$, by the naturality property of adjointness the following diagram commutes:

$$
H^*(\Sigma^N MO_k) \xleftarrow{i^*} H^*(\Sigma^N \Omega^N MO_{k+N})
$$

$$
i^* \longrightarrow \qquad \qquad \int \hat{i} d^*
$$

$$
H^*(MO_{k+N})
$$

Therefore, since i^* is onto, $\hat{i}^*: H^*(\Omega^N MO_{k+N}) \to H^*(MO_k)$ is onto, and

$$
(2.1) \qquad \qquad \hat{i}_{\ast} \colon H_{\ast}(MO_k) \to H_{\ast}(\Omega^N MO_{k+N})
$$

is injective. By the natural isomorphism [C.F.] $\mathcal{N}_*(X) \cong H_*(X) \otimes_{\mathbb{Z}_2} \mathcal{N}_*$, one obtains that $E(n, n + k)$ maps injectively into $M(n, n + k)$.

If $\mu = (i_1, \dots, i_r)$ is a partition (possibly empty) define:

 $l(\mu)=r$

$$
|\mu|=i_i+\cdots+i_r
$$

 μ' = subset of μ consisting of integers not of the form $2^{t} - 1$, and

 μ'' = subset of μ consisting of integers of the form $2^t - 1$.

Stong showed that $H^*(\Omega^N MO_{k+N})$ is isomorphic to the polynomial ring $\mathbb{Z}_2[\nu_\mu]$, with dim $\nu_\mu = |\mu| + k$ and μ satisfying

$$
l(\mu'') < |\mu'| + k.
$$

Let $p(r)$ denote the number of partitions of r and let $[t]$ be the greatest integer less than or equal to t.

LEMMA (2.3). The number of partitions μ of $k + j$ not satisfying 2.2 is $\sum_{i=0}^{[j/2]} p(i)$.

Proof. Let $\varphi: \mathbb{N} \to \mathbb{N} \cup \{0\}$ be given by

$$
\varphi(n) = \begin{cases} n, & \text{if } n \neq 2^t - 1, \\ 2^{t-1} - 1, & \text{if } n = 2^t - 1. \end{cases}
$$

If $\mu = (i_1, \dots, i_r)$, then we define $\varphi(\mu) = \Sigma \varphi(i_s)$. Observe that $2\varphi(\mu) = |\mu| +$ $|\mu'|-l(\mu'')$. Then, if $|\mu|=k+j$, $l(\mu'') \geq |\mu'| + k$ if and only if $k+j+1$ $|\mu'| - 2\varphi(\mu) \geq |\mu'| + k$, showing that μ does not satisfy 2.2 if and only if $2\varphi(\mu) \leq j$. Let $0 \leq i \leq [j/2]$ and let (n_1, \dots, n_r) be a partition of i. There is then a unique partition of $k + j$, $\mu = (i_1, \dots, i_r, 1, 1, \dots, 1)$ with $\varphi(i_s) = n_s$, 1 $\leq s \leq r$. Then $2\varphi(\mu) = 2i \leq j$. \square

PROPOSITION (2.4). (i) Let $0 \le j \le 2k$ and $N \gg k$. Then $\hat{i}_* : H_j(MO_k) \to$ $H_i(\Omega^N MO_{k+N})$ is an isomorphism. (ii) Let $0 \le j \le k$ and $N \gg k$. There are then short exact sequences

 $0 \to H_{2k+i}(MO_k) \to H_{2k+i}(\Omega^N MO_{k+N}) \to C_i \to 0$

where dim $C_i = \sum_{i=0}^{\lfloor j/2 \rfloor} p(i)p(j-i) + \sum_{j/2 < i < j} p(i).$

Proof. We give the proof of (ii), part (i) being entirely analogous. A basis for $H^{2k+j}(\Omega^N NO_{k+N})$ is given by $\{\nu_\mu, \nu_{\mu_1}, \nu_{\mu_2}: |\mu| = k+j, |\mu_1| + |\mu_2| = j$ and μ satisfies 2.2.

Therefore dim $H_{2k+j}(\Omega^N MO_{k+N}) = \dim H^{2k+j}(\Omega^N MO_{k+N})$ is equal to $p(k + j) + \sum_{i=0}^{\lfloor j/2 \rfloor} p(i)p(j - i) - \sum_{i=0}^{\lfloor j/2 \rfloor} p(i)$. The result now follows from 2.1 and the Thom isomorphism $\tilde{H}_{2k+j}(MO_k) = H_{k+j}(BO_k)$. \Box

Considering the unoriented bordism exact sequence of the pair $(\Omega^{N}MO_{k+N},$ MO_k) [C-F] one obtains:

COROLLARY (2.5). (i) If $k \ge n$ then \hat{i}_* : $E(n, n + k) \rightarrow M(n, n + k)$ is an isomorphism.

(ii) If $n > k \geq (n + 1)/2$ *there are short exact sequences*

$$
0 \to E(n, n + k) \to M(n, n + k) \to \sum_{i=0}^{n-k} \mathcal{N}_i \otimes C_{n-k-1} \to 0.
$$

We recall that \mathscr{N}_* is isomorphic to a polynomial algebra $\mathbb{Z}_2 [x_2, x_4, x_5, x_6, x_8,$ \cdots] with one generator in each dimension not of the form $2^t - 1$. Using 2.5 one may compute the cokernels of $E(n, n + k) \rightarrow M(n, n + k)$ for $2k \geq n + 1$. For example the sequences

$$
0 \to E(n, 2n-1) \to M(n, 2n-1) \to \mathbb{Z}_2 \to 0 \qquad (n \ge 3)
$$

 (2.6) 0 $\rightarrow E(n, 2n - 2) \rightarrow M(n, 2n - 2) \rightarrow$

$$
\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to 0 \qquad (n \geq 5)
$$

are exact.

3. Stiefel-Whitney Numbers of Maps

Let $f: M^n \to N^{n+k}$ be a map. One has the Umkehr homomorphism $f_! : H^*(M)$ \rightarrow *H*^{*}(*N*) defined as follows. If $\alpha \in H^{i}(M)$, then $f_!(\alpha) = D_N f_*(\alpha \cap [M])$, where D_N denotes Poincaré duality for *N*, and [*M*] denotes the fundamental class of *M*. If $\mu = (i_1, \dots, i_p)$ is a partition, then w_{μ} denotes the product of Stiefel-Whitney classes $w_{i_1} \cdots w_{i_p}$. For any collection of partitions μ_0 , μ_1 , \cdots , μ_l with $|\mu_0| + |\mu_l| + \cdots + |\mu_l| + l \cdot k = n + k$, one has a Stiefel-Whitney number of f defined as

$$
(3.1) \qquad \langle w_{\mu_0}(N) f_! w_{\mu_l}(M) \cdots f_! w_{\mu_l}(M), [N] \rangle
$$

If $l > 0$, then this number can also be expressed as a class in $Hⁿ(M)$ evaluated on $[M]$, namely,

$$
(3.2) \qquad \langle f^*w_{\mu_0}(N)f^*f_!w_{\mu_1}(M)\cdots f^*f_!w_{\mu_{l-1}}(M)w_{\mu_l}(M),[M]\rangle.
$$

Stong showed that the cobordism class of f is determined by these numbers [St]. Let $W(f) = (f^*(W(N))/W(M)$ be the Stiefel-Whitney class of f in $H^*(M)$. The image of the homomorphism $E(n, n + k) \to M(n, n + k)$ is described by the following result.

THEOREM (3.3). (R. L. W. Brown) *A map f:* $M^n \rightarrow N^{n+k}$ is cobordant to an *embedding if and only if*

(i) All Stiefel-Whitney numbers of f involving $w_i(f)$ are zero for $i > k$,

and

(ii) *All numbers of the form* 3.2 *are equal to*

$$
\langle f^* w_{\mu_0}(N) w_{\mu_1}(M) \cdots w_{\mu_l}(M) w_k(f)^{l-1}, [M] \rangle.
$$

These conditions are somehow redundant as there are relations among the Stiefel-Whitney numbers of maps. The object of this section is to establish the relations among the numbers described in 3.3 for $k = n - 1$, $n - 2$. We first recall the following Riemann-Roch type theorem (See [D]).

THEOREM (3.4). Let $f: M \rightarrow N$ be a continuous map and x a formal series in $H^*(M)$. *Then*

$$
Sqf_1(x) = f_1(Sq(x) \cdot w(f)) \text{ and}
$$

$$
Sqf_1(x) \cdot \bar{w}(N) = f_1(Sq(x) \cdot \bar{w}(M)).
$$

According to 3.3 a map $f: M^n \to N^{2n-1}$ is cobordant to an embedding if and only if the following numbers vanish: $\langle w_n(f), [M] \rangle$, $\langle f^*w_1(N)(f^*f_1(1) +$ $w_{n-1}(f)$), $[M]$), $\langle w_1(M)(f^*f_!(1) + w_{n-1}(f))$, $[M]$) and $\langle f^*f_!w_1(M) +$ $w_1(M)w_{n-1}(f), [M]$.

LEMMA (3.5). For any map $f: M^n \to N^{2n-1}$ the following relations hold:

- (i) $\langle w_n(f), [M] \rangle = 0$,
- (ii) $\langle f^*w_1(N)(f^*f_1(1) + w_{n-1}(f)), [M] \rangle = 0$, and
- (iii) $\langle f^*f_!w_1(M), [M] \rangle = \langle w_1(M)f^*f_!(1), [M] \rangle.$

Proof.

$$
\langle w_n(f), [M] \rangle = \langle f_! w_n(f), [N] \rangle
$$

\n
$$
= \langle Sq^n f_! (1), [N] \rangle \text{ by } 3.4,
$$

\n
$$
= 0 \text{ as } f_! (1) \in H^{n-1}(N);
$$

\n
$$
\langle f^* w_1(N) f^* f_! (1), [M] \rangle = \langle w_1(N) f_! (1) f_! (1), [N] \rangle
$$

\n
$$
= \langle w_1(N) Sq^{n-1} f_! (1), [N] \rangle
$$

\n
$$
= \langle w_1(N) f_! w_{n-1}(f), [N] \rangle \text{ by } 3.4,
$$

\n
$$
= \langle f^* w_1(N) \cdot w_{n-1}(f), [M] \rangle; \text{ and}
$$

\n
$$
\langle f^* f_! w_1(M), [M] \rangle = \langle f_! w_1(M) f_! (1), [N] \rangle
$$

\n
$$
= \langle w_1(M) f^* f_! (1), [M] \rangle. \square
$$

Hence, we have:

THEOREM (3.6). *A map f:* $M^n \to N^{2n-1}$ *is cobordant to an embedding if and only if* $\langle w_1(M)(f^*f_1(1) + w_{n-1}(f)), [M] \rangle = 0, (n \ge 3).$

We now consider the case $k = n - 2$. As in 3.5 (iii), it is very easy to verify that

$$
\langle f^* f_! w_2(M), [M] \rangle = \langle w_2(M) f^* f_! (1), [M] \rangle,
$$

(3.7) and
$$
\langle f^* f_! w_1(M)^2, [M] \rangle = \langle w_1(M)^2 f^* f_! (1), [M] \rangle,
$$

$$
\langle f^* w_1(N) f^* f_! w_1(M), [M] \rangle = \langle f^* w_1(N) \cdot w_1(M) f^* f_! (1), [M] \rangle.
$$

 ρ

Brown's theorem (3.3) now asserts that for a map $f: M^n \to N^{2n-2}$ to be cobordant to an embedding the following numbers must vanish:

 \mathbb{R}^n . \mathbb{R}^n

$$
\varphi_1(f) = \langle w_1(M)w_{n-1}(f), [M] \rangle
$$

\n
$$
\varphi_2(f) = \langle f^*w_1(N)w_{n-1}(f), [M] \rangle
$$

\n
$$
\varphi_3(f) = \langle f^*w_1(N)w_1(M)(f^*f_1(1) + w_{n-2}(f)), [M] \rangle
$$

\n
$$
\varphi_4(f) = \langle f^*w_2(N)(f^*f_1(1) + w_{n-2}(f)), [M] \rangle
$$

\n
$$
\varphi_5(f) = \langle f^*w_1(N)^2(f^*f_1(1) + w_{n-2}(f)), [M] \rangle
$$

\n
$$
\varphi_6(f) = \langle w_1(M)f^*f_1w_1(M) + w_1(M)^2w_{n-2}(f), [M] \rangle
$$

\n
$$
\varphi_7(f) = \langle w_2(M)(f^*f_1(1) + w_{n-2}(f)), [M] \rangle
$$

\n
$$
\varphi_8(f) = \langle w_1(M)^2(f^*f_1(1) + w_{n-2}(f)), [M] \rangle.
$$

It follows from 2.6 that five relations hold among these eight numbers. In fact,

LEMMA (3.8). *If f:* $M^n \rightarrow N^{2n-2}$ *is any map and the numbers* $\mathcal{C}_i(f)$ *are defined as above, then*

(i) $\varphi_2(f) = \varphi_4(f) = \varphi_5(f) = 0,$ (ii) $\varphi_1(f) = \varphi_6(f)$, and (iii) $\varphi_3(f) = n\varphi_6(f)$.

As an immediate consequence we have:

THEOREM (3.9). *A map f:* $M^n \to N^{2n-2}$ *is cobordant to an embedding if and only if the following numbers vanish:* $(n \geq 5)$

$$
\langle w_1(M) \cdot w_{n-1}(f), [M] \rangle
$$
,
\n $\langle w_2(M) \cdot (f^*f_1(1) + w_{n-2}(f)), [M] \rangle$, and
\n $\langle w_1(M)^2(f^*f_1(1) + w_{n-2}(f)), [M] \rangle$.

Proof of (3.8). In order to show that $\mathcal{P}_4(f) = \mathcal{P}_5(f)$ one can proceed as in 3.5 (ii). Similarly,

$$
\varphi_2(f) = \langle f^*w_1(N)w_{n-1}(f), [M] \rangle
$$

= $\langle w_1(N) f_1w_{n-1}(f), [N] \rangle$
= $\langle w_1(N)Sq^{n-1}f_1(1), [N] \rangle$, by 3.4
= 0 as $f_1(1)$ is an $(n - 2)$ -dimensional class.

To establish the last two relations we need:

LEMMA (3.10). *If* $f: M^n \to N^{2n-1}$ *is any map, then*

(i) $(f^*w_2(N) + w_1(M)^2)w_{n-2}(f) = w_1(M)w_{n-1}(f)$

 δ

66 M. A. AGUILAR AND G. PASTOR

(ii)
$$
f^*w_1(N)w_1(M)w_{n-2}(f) = \begin{cases} f^*w_2(N)w_{n-2}(f) & \text{if } n \text{ is even,} \\ w_1(M)^2w_{n-2}(f) & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Let $v_i(M)$ denote the *i*-th Wu class of M. Then $v_2(M) \cdot w_{n-2}(f)$ = $Sq^{2} w_{n-2}(f) = w_{2}(f) w_{n-2}(f) + n w_{1}(f) w_{n-1}(f)$ by the Wu formulae. Note that we omit the $\binom{-n}{2}w_n(f)$ term since $w_n(f) = 0$ by (i) of 3.5. But $w_2(f) = f^*w_2(N)$ $+ f^* w_1(N) w_1(M) + v_2(M)$, obtaining

$$
(3.11) \quad f^*w_2(N)w_{n-2}(f) = f^*w_1(N)w_1(M)w_{n-2}(f) + nw_1(M)w_{n-1}(f).
$$

Also, $0 = \text{Sq}^1 \text{Sq}^1 w_{n-2}(f) = v_1(M) \cdot \text{Sq}^1 w_{n-2}(f) = v_1(M)(w_1(f)w_{n-2}(f)) +$ $(n-1)w_{n-1}(f)$. As $w_1(f) = f^*w_1(N) + w_1(M)$, and $v_1(M) = w_1(M)$, one obtains

$$
(3.12) \t w_1(M)^2 w_{n-2}(f) = f^* w_1(N) w_1(M) w_{n-2}(f) + (n-1) w_1(M) w_{n-1}(f).
$$

The equations of 3.10 follow easily from 3.11 and 3.12. \Box

We prove now 3.8 (ii). Since $\text{Sq} f_1(v(M)) = w(N) f_1(1)$ by 3.4, it follows that $\operatorname{Sq}^{2} f_{1}(1) + \operatorname{Sq}^{1} f_{1}(v_{1}(M)) + f_{1}(v_{2}(M)) = w_{2}(N) f_{1}(1)$. Hence,

$$
\langle v_2(M) f^* f_1(1) + v_1(M) f^* f_1 v_1(M) + f^* f_1 v_2(M), [M] \rangle
$$

= $\langle Sq^2 f^* f_1(1) + Sq^1 f^* f_1(v_1(M)) + f^* f_1(v_2(M)), [M] \rangle$
= $\langle f^* w_2(N) f^* f_1(1), [M] \rangle$.

But by 3.7 $\langle f^*f_!(v_2(M), [M]) \rangle = \langle v_2(M) f^*f_!(1), [M] \rangle$, implying that

$$
(3.13) \qquad \langle w_1(M)f^*f_!(w_1(M)), [M] \rangle = \langle f^*w_2(N)f^*f_!(1), [M] \rangle.
$$

As $\varphi_4(f) = 0$,

$$
\varphi_{6}(f) = \varphi_{6}(f) + \varphi_{4}(f)
$$

= $\langle w_{1}(M) f^{*} f_{1} w_{1}(M) + w_{1}(M)^{2} w_{n-2}(f) + f^{*} w_{2}(N)(f^{*} f_{1}(1) + w_{n-2}(f)), [M] \rangle$
= $\langle (w_{1}(M)^{2} + f^{*} w_{2}(N)) w_{n-2}(f), [M] \rangle$ by 3.13, and
= $\langle w_{1}(M) w_{n-1}(f), [M] \rangle$ by 3.10 (i)
= $\varphi_{1}(f)$.

Finally, we prove 3.8 (iii). By 3.4, $Sq¹f₁(1) = f₁w₁(M) + f₁(1)w₁(N)$, so

$$
w_1(M) f^* f_! w_1(M) = \mathrm{Sq}^1 f^* f_! (1) f^* (w_1(N))
$$

=
$$
w_1(M) f^* w_1(N) f^* w_1(N).
$$

Therefore, if *n* is odd, then

$$
\varphi_3(f) = \langle f^* w_1(N) w_1(M) (f^* f_1(1) + w_{n-2}(f)), [M] \rangle
$$

= $\langle w_1(M) f^* f_1 w_1(M) + f^* w_1(N) w_1(M) w_{n-2}(f), [M] \rangle$
= $\langle w_1(M) f^* f_1 w_1(M) + w_1(M)^2 w_{n-2}(f), [M] \rangle$ by 3.10 (ii)
= $\varphi_6(f)$.

If *n* is even, then

$$
\langle f^*w_1(N)w_1(M)(f^*f_1(1) + w_{n-2}(f)), [M] \rangle
$$

= $\langle f^*w_2(N)(f^*f_1(1) + w_{n-2}(f)), [M] \rangle$

by 3.13 and 3.10 (ii) showing that

 $\varphi_3(f) = \varphi_4(f) = 0$ for *n* even. This completes the proof of 3.8. \Box

INSTITUTO DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO MEXICO, D.F. 04510 MEXICO

DEPARTAMENTO DE MATEMATICAS CENTRO DE lNVESTIGACION Y DE ESTUDIOS AVANZADOS DEL IPN MEXICO, D.F. 07000 MEXICO

REFERENCES

[Br] R. L. W. BROWN. *Stiefel-Whitney numbers and maps cobordant to embeddings*. Proc. Amer. Math. Soc. 48(1975), 245-250.

 $\hat{\nabla}$

[C-F] P. CONNER AND E. FLOYD. Differentiable periodic maps. Springer Verlag (1964).

[D] E. DYER. Cohomology theories. Benjamin (1969).

[St] R. STONG. *Cobordism of maps.* Topology 5(1969), 245-258.

[Wa] C. T. C. WALL. *Cobordism of pairs.* Comment. Math. Helv. 35(1961), 136-145.