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ON MAPS COBORDANT TO EMBEDDINGS 

BY M.A. AGUILAR AND G. PASTOR 

1. Introduction 

Let Mn and Nn+k be closed differentiable manifolds. We consider the 
problem of a given continuous map f: M - N, whether there is an embedding 
cobordant to f. In this article we first compute the number of cobordism 
obstructions to embeddings fork 2: (n + 1)/ 2 . Next we use a result of R. L. W. 
Brown [Br] to determine these obstructions in the cases k = n - l, n - 2. We 
use throughout homology and cohomology with Zrcoefficients. 

The second named author wishes to thank the University of Virginia for 
hospitality and support while part of this work was done. 

2. Cobordism Groups of Maps and of Embeddings 

We say that two maps fo: Mon -Non+k and /1: M1n - N1n+k are cobordant 
if there is a map F: V - W of compact manifolds such that a Vis diffeomorphic 
to the disjoint union of Mo and M1 , aw is diffeomorphic to the disjoint union 
of No and N1, F I Mo = fo and F I M1 = /1. Cobordism classes form an abelian 
group under disjoint union, which we denote by M(n, n + k). In this definition, 
if the term "map" is replaced by "embedding" we obtain the bordism group 
E(n, n + k) of embeddings. 

These groups were first studied by Stong [St] and Wall [Wa]. Using the 
Pontrjagin-Thom construction they showed that 

M(n, n + k) ~ ffn+k(QNMOk+N), N» k, and E(n, n + k) ~ ffn+k(MOk), 

Let i: --r,NMOk - MOk+N be the map induced by the inclusion Ok C Ok+N, 
and let i: MOk - r,,N MOk+N denote the adjoint of i. The forgetful homomorph
ism E(n, n + k) - M(n, n + k) is induced by i. If ld denotes the adjoint of 
the identity map r,,N MOk+N - r,,N MOk+N, by the naturality property of 
adjointness the following diagram commutes: 

Therefore, since i* is onto, i*: H*(QNMOk+N) - H*(MOk) is onto, and 

(2.1) 

is injective. By the natural isomorphism [C.F.] ff* (X) ~ H* (X) ®z2 ff*' one 
obtains that E(n, n + k) maps injectively into M(n, n + k). 
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If µ = (i1, • • •, i,) is a partition (possibly empty) define: 

l(µ)=r 
JµJ=i;+•·•+i, 
µ' = subset ofµ consisting of integers not of the form 2t - 1, and 
µ 11 = subset ofµ consisting of integers of the form 2t - 1. 

Stong showed that H*(QNMOk+N) is isomorphic to the polynomial ring 
advµ], with dim vµ = I µ I + k and µ satisfying 

(2.2) l (µII) < I µ I I + k. 

Let p (r) denote the number of partitions of r and let [ t] be the greatest 
integer less than or equal to t. 

LEMMA (2.3). The number of partitions µ of k + j not satisfying 2.2 is 
~ [j/2] ( ") 
£..i=O p i • 

Proof. Let 'P: W - WU {O} be given by 

"' ( ) {n, if n ¥- 2t - 1, 
..,, n = 2t-i - 1, if n = 2t - 1. 

Ifµ= (i1, • • •, i,), then we define 'P (µ) = '2:'P (is). Observe that 2'P (µ) = Iµ I + 
Jµ'l-l(µ 11 ).Then,ifJµI =k+j,l(µ 11 )~ Jµ'I +kifandonlyifk+j+ 
Iµ' I - 2'P (µ) ~ Iµ' I + k, showing that µ does not satisfy 2.2 if and only if 
2'P (µ) s j. Let O s i s [j /2] and let (n1, • • •, n,) be a partition of i. There is 
then a unique partition of k + j, µ = (i1, • • •, ir, 1, 1, • • •, 1) with 'P (is) = ns, 1 
s s s r. Then 2'P(µ) = 2i sj. □ 

PROPOSITION (2.4). (i) Let Os j s 2k and N » k. Then [*: Hi (MOk) -
Hi ( QN MOk+N) is an isomorphism. (ii) Let O < j < k and N » k. There are then 
short exact sequences 

o - H2k+j (MOk) - H2k+j (QNMOk+N) - cj - o 

where dim Ci= r\1i1 p(i)p(j- i) + L12<i<iP(i). 

Proof. We give the proof of (ii), part (i) being entirely analogous. A basis 
for H 2k+i (QNNOk+N) is given by {vµ, Vµ1 , vµ2 : Iµ I = k + j, I µ1 I + I µ2 I = j and 
µ satisfies 2.2}. 

Therefore dim H 2k+i ( QNMOk+N) = dim H 2k+i ( QN MOk+N) is equal to 
p(k + j) + r\1J1 p(i)p(j - i) - r\1i1 p(i). The result now follows from 2.1 
and the Thom isomorphism H2k+i (MOk) = Hk+i (BOk). □ 

Considering the unoriented bordism exact sequence of the pair (QNMOk+N, 
MOk) [C-F] one obtains: 

COROLLARY (2.5). (i) If k ~ n then [*: E(n, n + k) - M(n, n + k) is an 
isomorphism. 



ON MAPS COBORDANT TO EMBEDDINGS 63 

(ii) If n > k ==:: (n + 1)/2 there are short exact sequences 

0 - E(n, n + k) - M(n, n + k) - L7~l ff;® Cn-k-1 - 0. 

We recall that ff* is isomorphic to a polynomial algebra LZ2 [x2 , x4 , x5 , x6 , x8 , 

•••]with one generator in each dimension not of the form 2t - 1. Using 2.5 
one may compute the cokernels of E(n, n + k) -M(n, n + k) for 2k ==:: n + 1. 
For example the sequences 

0 - E(n, 2n - 1) - M(n, 2n - 1) - &2 - 0 (n 2!: 3) 

(2.6) 0 - E(n, 2n - 2) - M(n, 2n - 2) -

&2 EB &2 EB &2 - 0 (n 2!: 5) 

are exact. 

3. Stiefel-Whitney Numbers of Maps 

Let/: Mn-Nn+kbe a map. One has the Umkehr homomorphism{!: H*(M) 
- H*(N) defined as follows. If a E Hi(M), then fi(a) = DNf*(a n [M]), 
where DN denotes Poincare duality for N, and [M] denotes the fundamental 
class of M. Ifµ = (ii, • • •, ip) is a partition, then wµ denotes the product of 
Stiefel- Whitney classes W;1 • • • w;,,. For any collection of partitions µ0 , µ 1 , 

• • ·, µz with I µo I + I µz I + · · · + I µ1 I + l • k = n + k, one has a Stiefel
Whitney number off defined as 

(3.1) 

If l > 0, then this number can also be expressed as a class in Hn(M) evaluated 
on [M], namely, 

(3.2) (f*wµ/N)f*{iwµ 1 (M) • • • f*{iwµ1-1(M)wµ 1(M), [M]). 

Stong showed that the cobordism class of f is determined by these numbers 
[St]. Let W(f) = (f*(W(N))/W(M) be the Stiefel-Whitney class off in 
H*(M). The image of the homomorphism E(n, n + k) - M(n, n + k) is 
described by the following result. 

THEOREM (3.3). (R. L. W. Brown) A map f: Mn - Nn+k is cobordant to an 
embedding if and only if 

(i) All Stiefel- Whitney numbers off involving w; ( f) are zero for i > k, 

and 

(ii) All numbers of the form 3.2 are equal to 

<f*wµ 0 (N)wµ 1 (M) · · · Wµ1 (M)wk(f) 1- 1, [M]). 

These conditions are somehow redundant as there are relations among the 
Stiefel-Whitney numbers of maps. The object of this section is to establish 
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the relations among the numbers described in 3.3 for k = n - l, n - 2. We 
first recall the following Riemann-Roch type theorem (See [D]). 

THEOREM (3.4). Let f: M ___,. N be a continuous map and x a formal series in 
H*(M). Then 

Sqf,(x) = f,(Sq(x) · w(f)) and 

Sq{i(x) . w(N) = {i(Sq(x) . w(M)). 

According to 3.3 a map f: Mn___,. N 2n-i is cobordant to an embedding if and 
only if the following numbers vanish: ( Wn(f), [Ml), <f*w 1(N)(f*f,(l) + 
Wn-1(/)), [M]), (w1(M)(f*f,(l) + Wn-d/)), [Ml) and <f*f,w1(M) + 
W1(M)Wn-1(/), [Ml). 

LEMMA (3.5). For any map f: Mn -N 2n-i the following relations hold: 

(i) ( Wn(f ), [M]) = 0, 

(ii) ( f*w1(N)(f*f,(l) + Wn-df)), [M]) = 0, and 

(iii) (/*fiwi(M), [Ml)= (w1(M)f*{!(l), [Ml). 

Proof. 

( Wn(/), [M]) = (/1Wn(/), [N]) 

= ( Sqn /! (1), [N]) by 3.4, 

= 0 as f, (1) E Hn-i (N); 

( f*w1 (N) f*/! (1), [M]) = ( W1 (N) f, (1) f, (1), [N]) 

= (w1(N)Sqn-l/i(l), [N]) 

= ( W1 (N) f, Wn-1 ( f ), [N]) by 3.4, 

=(f*w1(N) • Wn-1<f),[M]); and 

<f*f,w1(M), [M]) = (f,w1(M)/!(l), [N]) 

= < W1 (M) f* f, (1), [M]). □ 

Hence, we have: 

THEOREM (3.6). A map f: Mn___,. N 2n-i is cobordant to an embedding if and 
only if (w 1(M)(f*f,(1) + Wn-1<f)), [M]) = 0, (n 2::: 3). D 

We now consider the case k = n - 2. As in 3.5 (iii), it is very easy to verify 
that 

(3.7) and 

<f*f,w2(M), [M]) = ( w2(M) f*f, (1), [Ml), 

<f*f,wi(M) 2, [M]) = ( wi(M) 2f*{i(l), [M]), 

<f*w1(N) f*f,w1 (M), [M]) = (/*w1 (N) · w1(M) f*/i(l), [M]). 
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Brown's theorem (3.3) now asserts that for a map f: Mn - N 2n-2 to be 
cobordant to an embedding the following numbers must vanish: 

'P1(/} = ( W1(M)wn-1(/}, [M]) 

'P2(/} = (/*w1(N)Wn-1(/}, [M]) 

'Pa(/}= (f*w1(N)w1(M)(/*f!(l) + Wn-2(/)), [M]) 

'P4(f} = (/*w2(N)(f*f!(l) + Wn-2(/)), [M]) 

'Ps(/} = (/*w1(N) 2(/*f!(l) + Wn-2(/)), [M]) 

'P6(/} = (w1(M)f*/!w1(M) + W1(M)2Wn-2(/), [M]) 

'P7(/) = ( W2(M}(f*f,(l) + Wn-2(/}}, [M]) 

'Ps(/) = (w1(M} 2(/*fi(l) + Wn-2(/)), [M]). 

It follows from 2.6 that five relations hold among these eight numbers. In 
fact, 

LEMMA (3.8). If f: Mn - N 2n-2 is any inap and the numbers 'P;(f) are 
defined as above, then 

(i) 'P2(/} = 'P4(/) = 'Ps(/} = 0, 
(ii) 'P1(/) = 'P6(/}, and 
(iii) 'Pa(/}= n<P6(f). 

As an immediate consequence we have: 

THEOREM (3.9). A map f: Mn - N 2n- 2 is cobordant to an embedding if and 
only if the following numbers vanish: (n 2: 5) 

( W1 (M} • Wn-1 ( /), [M]), 

(w2(M) • (/*f!(l) + Wn-2(/)), [M]), and 

( W1 (M}2(/*f! (1} + Wn-2(/) }, [M]). 

Proof of (3.8). In order to show that 'P4(/} = 'P5(/) one can proceed as in 
3.5 (ii). Similarly, 

'P2(/) = (/*w1(N)Wn-d/}, [M]) 

= (wi(N)f!Wn-1(/), [N]) 

= ( W1 (N}Sqn-l f, (1}, [N]), by 3.4 

= 0 as f! (1) is an (n - 2)-dimensional class. 

To establish the last two relations we need: 

LEMMA (3.10). If f: Mn - N 2n-i is any map, then 

(i) (/*w2(N) + W1(M)2}Wn-2(/} = W1(M}wn_i(f) 
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( 1•1·) f* ( ) (M) (/) _ {f*w2(N)wn-2(f) if n is even, 
W1 N W1 Wn-2 - W1 (M)2 Wn-2 ( /) if n is odd. 

Proof. Let v;(M) denote the i-th Wu class of M. Then v2(M) • Wn-2(/) = 
Sq 2 Wn-2(f) = w2(/)Wn- 2(f) + nw 1 (f)wn-i (f) by the Wu formulae. Note that 
we omit the (2n)wn(f) term since Wn(f) = 0 by (i) of 3.5. But w2(/) = /* w2(N) 
+ f*w1(N)w1(M) + v2(M), obtaining 

I 

Also, 0 = Sq1Sq1Wn-2(/) = V1(M) • Sq1Wn-2U) = V1(M)(w1(/)Wn-2(/) + 
(n - l)Wn-1(/)). As wi(f) = f*w1(N) + w1(M), and v1(M) = W1(M), one 
obtains 

(3.12) W1(M)2Wn-2(/) = f*w1(N)w1(M)Wn-2U) + (n - l)w1(M)Wn-1(/). 

The equations of 3.10 follow easily from 3.11 and 3.12. □ 

We prove now 3.8 (ii). Since Sq/, (v(M)) = w (N) f, (1) by 3.4, it follows that 
Sq2 /, (1) + Sq1 ti (v1 (M)) + /, (v2 (M)) = W2 (N) /, (1). Hence, 

(v2(M)/*/,(l) + v1(M)f*f,v1(M) + f*f,v2(M), [M]) 

= (Sq 2/*/,(1) + Sq1/*f,(v1(M)) + /*/,(v2(M)), [M]) 

= U* W2 (N) f * t, (1), [M]). 

But by 3.7 (/*/,(v 2(M), [M]) = ( v2(M) f*f, (1), [M]), implying that 

(3.13) (w1(M)/*/,(wi(M)), [M]) = (f*w2(N)f*f,(l), [M]). 

As 'P4(f) = 0, 

'Pa(f) ='Pe(/)+ 'P4(/) 

= ( W1 (M) f*tiw1 (M) + W1(M)2Wn-2(/) 

+ /*w2(N)(/*/,(l) + Wn-2(/)), [M]) 

= ((w1(M) 2 + f*w2(N))wn-2U), [M]) by 3.13, and 

= (wi(M)Wn-1(/), [M]) by 3.10 (i) 

= 'P1 (/). 

Finally, we prove 3.8 (iii). By 3.4, Sq1 ti (1) = f, w1 (M) + f, (l)w 1 (N), so 

w1(M)f*f,w1(M) = Sq1/*/,(l)/*(w1(N)) 

= W1(M)f*w1(N)f*wi(N). 
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Therefore, if n is odd, then 

'Pa(/)= (/*w1(N)w1(M)(/*/,(l) + Wn-2(/)), [M]) 

= (w1(M)/*/,w1(M) + f*wi(N)w1(M)wn-2(/), [M]) 

= (w1(M)f*f,wi(M) + w1(M)2wn-2(/), [M]) by 3.10 (ii) 

= 'Ps(/). 

If n is even, then 

(/*w1(N)w1(M)(/*/,(l) + Wn-2(/)), [M]) 

= (/*w2(N)(/*/,(l) + Wn-2(/)), [M]) 

67 

by 3.13 and 3.10 (ii) showing that 

'Pa(/)= 'P4(/) = 0 for n even. This completes the proof of 3.8. □ 
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