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A NOTE ON THE REGULARIZATION THEOREM OF 
CONTINUOUS LINEAR RANDOM FUNCTIONALS ON Y 

BY VICTOR PEREZ-ABREU* 

0. I»troduction 

Regular versions of continuous linear random functionals (c.l.r.f.) are useful 
in the study of nuclear spaced vah1ed processes. In Ito and Nawata (1983) a 
regularization theorem is proved for c.1.r,f.'s on a vector space E with a 
multihilbertian topology. This result is used in Ito (1984) to prove the results 
of Sazonov (1958), Minlos (1963) and Kolmogorov (1959) on the characteristic 
functionals of probability measures on duals of vector spaces with multihil­
bertian topologies. 

In the present note we give a proof of the regularization theorem for c.l.r.f.'s 
on countably Hilbertian ntlclear spaces (CHNS) of a special type, of which 
the Schwartz space Y is an example. The main difference with Ito and 
Nawata's work is that we use the Minlos Theorem as the starting point. We 
think that this approach is useful for those readers familiar with Minlos' work 
on the construction of probability measures on duals of CHNS's. 

In order to establish notation, in Section 1 we present CHNS's and the 
Minlos Theorem. In Section 2 a proof of the Regularization Theorem is given. 
For applications of this theorem the reader is referred to the works by 
Kallianpur (1986) and Perez-Abreu (1988). 

1. Nuclear Spaces and the Bochner-Minlos Theorem 

Let <I> be a Frechet space whose topology is given by an increasing sequence 
II • II n, n ;;a, 0 of Hilbertian norms. Let <I>n be the Hilbert space completion of <I> 
w.r.t. II • II n and let <I>n' be the dual (Hilbert) space of <I>n-For f E <I>n' let 

11/11-n = SUPll</>lln;;,1 lf[</>]I. 
Since <I> is a Frechet space then 

and its topology is given by the metric 

(1.2) ( ) ~"' 1 11 <t> - f II n .,. ~ 
p <P, If' = .:.,n=l 2n 1 + JI <P - If' II n' <P, 'I' E '¼'. 

Since for n < m, II <I> II n < II <I> II m V <I> E <I>, then <I>m C <I>n and <I>n' C <I>m '. The 
space ( <I>, p) is called a Countably Hilbertian space. It is called nuclear if for 
each n ;;a, 0 there exists m > n such that the canonical injection 

i: <I>m~<I>n 
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is a Hilbert-Schmidt operator, i.e., if l<t>j L .. 1 is a complete orthonormal system 
(CONS) in <I>m the following condition holds: 

LJ=l II <f>j II n 2 < OO. 

Let cI>' be the topological dual space of cI> with the strong topology. Then 

An important property of CHNS's is the "validity of the Bochner property" 
expressed in the following theorem. It is an extension of the classical Bochner' s 
theorem for finite dimensional spaces. 

THEOREM (Bochner-Minlos). Let ( <I>, II • II n, n ;;a, 0) be a countably Hilbertian 
nuclear space and µ,; cI> ---+ <C be a function satisfying the following properties: 

i) µ,(0) = 1 
ii) µ, is positive definite on <I> i.e., '<In ;;a, land a1 , ···,an E <C, ¢1 , • • ·, <l>n E <I> 

L;,j aJijµ,(<f>i - <t>j) ;;a: 0. 

Then µ, is the characteristic functional of a unique probability measure µ on 
(<I>', $(4>')), i.e., 

(1.3) 

if and only ifµ, is continuous at zero in the topology 6f <I>. Moreover ifµ, is cI>P-. 
continuous for some p > 0 there exists q > p such that 

(1.4) µ(<I>/)=l. 

The proof of this theorem was given in Minlos (1963). The reader is also 
referred to the book by Hida (1980). 

There are special cases of CHNS's that occur frequently in practical prob­
lems as in Neurophysiology (Kallianpur and Wolpert (1984)), Chemistry 
(Kotelenez (1986) ), Physics (Daletski (1967) and Miyahara (1981)) and infi­
nite particle systems (Bojdecki and Gorostiza (1986) ). These spaces, of which 
the space of rapidly decreasing functions is an example, are constructed in the 
following manner (see Kallianpur (1986) for details): Let A = -L be the 
selfadjoint infinitesimal generator of a strongly continuous contraction semi­
group (Tt)t.,. 0 on a separable Hilbert space H. Assume that for some r1 > 0 the 
r1-th power of the resolvent R(>,; AY 1 is a Hilbert-Schmidt operator on H. 
Then there is a complete orthonormal set {1h L .. 1 in H such that 

where O ,;;; A1 ,;;; \ 2 ,;;; • • • and LJ=I (1 + Aj )- 2r, < oo. Define 

(1.5) 4> ={¢EH: LJ=I (1 + Aj)2r(¢, 1/;j )H 2 < oo Vr E ~l 
and for r E ~and¢, I/; E 4>, 



(1.6) 

(1.7) 
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( ¢, 1/1 )r = LJ=l (1 + Aj )2r ( ¢, Vii )H( VI, 1/lj )H, 

II¢ II/ = < ¢, ¢ >r• 
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Let <I>r be the II · 11 r-completion of <I>. Then I <I>, II • II r, r ~ Ol is a countably 
Hilbertian nuclear space with the following important properties: 

i) Let 'P-r = <I>/, r > 0 ( 'Po = H). Then 'P-r and 'Pr are in duality under the 
pairing 

ii) The injection of <I>s into 'Pr is a Hilbert-Schmidt map ifs> r + r1 . 

iii) Finite linear combinations of I fi b .. 1 are dense in <I> and in every <I>r; 
moreover I fi t .. 1 is an orthogonal system in each <I>r and therefore 

(1.8) 

is a complete orthonormal system for,<I>r, r E ~-

A CHNS as in (1.5) will be called special. The Schwartz space 5" may be 
constructed as above using the Laplacian operator (see Kallianpur (1986) for 
details). 

From now on we will only consider CHNS of special type, being the property 
(1.8) useful in the proof of the Regularization Theorem. 

2. The Regularization Theorem 

Let (Q, §, P) be a complete probability space and (<I>, II• llp, p ~ O) be a 
special countably Hilbertian nuclear space. Let Lo ( Q) be the linear space of 
all real valued random variables on Q with the metric of convergence m 
probability given by 

(2.1) d(X, Y) =E(l A IX-YI) 

THEOREM. (Regularization of continuous linear random functionals). Let 
Y( • ): <I> - Lo(fl) be a continuous linear random functional, that is, if ¢n - ¢ 
in <I> then Y(¢n) - Y(¢) in L0 (Q). Then there exists a unique <I>'-valued 
random variable Y such that 

(2.2) ¥[¢] = Y(¢) a.s. \/¢ E <I>. 

Y is unique in the sense that if X is another <I>' -valued version then Y = X a.s. 

Proof. For ¢ E <I> define 

(2.3) 

Then clearly µ ( ¢) satisfies the conditions: 

i) µ(O) = 1 
ii) µ is positive definite. 



72 

For ¢ E <I> define 

(2.4) 
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V(¢) = E(l A I Y(¢) I). 

Then since I eiz - 11 ::;;; I z I A 2 ::;;; 2(1 A I z I ), 

(2.5) Iµ(¢) - 1 I ::;;; 2V(¢), ¢ E <I>. 

Hence since V(¢) is continuous on <I>,µ(¢) is continuous at zero on <I> and 
therefore by Bochner-Minlos theorem µ is the characteristic functional of a 
unique probability measure µ on ( <I> ', iJJ ( <I> ' ) ) i.e. 

(2.6) µ(<I>')=l. 

. Thus using (2.3) and (1.3) 

(2.7) µ(</>) = E(eiY(q,)) = ( eiZ[q,J dµ(Z) V¢ E <I>. J.,,, 
For q > 0 let {¢j b..,1 be as in (1.8). Then for all n ~ 1 andx 1, • • •, Xn E ~ from 
(2.7) we have 

(2.8) E(exp(i LJ=I Xj Y(¢j ))) = ( eiI'J-,xjZ[q,j] dµ(Z). J.,,, 

Next, integrating both sides of (2.8) w.r.t. to the measure 

II n 1 -x.2/za2 d d ( 2 0) 
j=l (2-ira-2)1/2 e J X1 • • • Xn U > 

and applying Fubini's theorem we have that 

E(exp(- ~2 LJ=l Y(¢j)2)) = l, e-(a2/2)I'/-1Z[q,jf dµ(Z). 

Hence, applying the dominated convergence theorem when n ---+ oo 

E( exp(- ~2 r1=1 Y(</>j )2)) = 1, e-(a2/2)I1-1Zl¢j]2 dµ(Z). 

Next for each Z E <I>q' 

Li=I Z[</>j]2 < 00 • 

Then applying again the dominated convergence theorem when u ---+ 0 

P(LJ=I Y(¢j) 2 < 00 ) = µ(LJ=I Z[</>j]2 < oo) = µ(<I>/). 

Hence if Oq = {w: r7=1 (Y(¢j )(w) )2 < oo}, P(Qq) = µ( <I>q' ). 
Define 

(2.9) 

where { tbj b..,1 is the CONS of <I> q' dual to I ¢j b..,1 . Then 1\ ( w) E <I> q' V w and 
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P(YqE<Pq', Yq[c/>j] = Y(c/>j)Yj) = µ(<I>/). 

Next we shall show that P(Yq[c/>] = Y[cp]) = µ(<I>q' )Yep E <I>. From (2.9) we 
have Yq(w)[cpi] = Y(cpi)(w) w E nq. Then since 

L1=1 (ct>, c/>i )qc/>i- ct> in <I> as n - oo 

and Y(-) is continuous from <I> to L0 (Q), 

LJ=1 (ct>, c/>j )q Y(cpi) - Y(cp) in probability as n - oo, cp E <I>. 

But on the other hand 

P(L'J=l (ct>, c/>j)qY(c/>j) = LJ=l Jj[cp]Yq[c/>j] - Yq[cp]) = µ(<I>/). 
n-.oo 

Then, taking an appropriate subsequence, 

(2.10) P(Yq[cp] = Y(cp)) = µ(<I>q') Yep E <I>. 

Next define n° = U nq. Then since <I>q' c <l>p', p > q, we can take nq c nP 
and therefore by (2.6) P(n°) = 1. 

Define 

Observe that Y is well defined since we are assuming CHNS's of special 
type with property (1.8). 

Then P(Y E <I>')= 1. So it remains to show that Y[cp] = Y(cp) a.s. Y ct> E <I>. 
But this follows from (2.10) since for each cp E <I> 

P(Y[ct>] = Y(ct>)) = P(u;=1 {Yq[c/>] = Y(ct>)l), 

liIDq-.ooP(Yq[c/>] = Y(cp)} = limq_.ooµ(<l>/) = 1. 

Uniqueness. Suppose that Xis another <I>' -valued version. To prove that 

Y[ cp] = X[ cp] a.s. Y ct> E <I>. 

Let nn = {w En: Y(w)[ct>n] = X(w)[ct>n11, then P(nn) = 1 where {ct>nln .. 1 C <I> 
is a dense set in <I>. Let 0* = n;:'=1 nn then P(fl*) = 1 and if wE0* and ct> E <I>, 
3{ct>nklk .. l C {ct>nln .. 1 such that cl>nk -k-.oo cl>, then X(w)[ct>nk] = Y(w)[ct>n.] -k-.oo 

Y(w)[cp]. Hence P(Y= X) = 1. Q.E.D. 

Some easy but very useful consequences of the Regularization Theorem are 
the following two results. 

COROLLARY 1. Let Y(-): <I>-Lo(Q) be a continuous linear random functional 
which is <l>P-continuous for some p ;a,: 1. Then there exists q > p and a unique 
<I> '-valued random variable Y such that 

Y[cp] = Y(cp) a.s. Yep E <I> 

and P(Y E <I>q') = 1. 
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Proof. It follows by the second part of the Bochner-Minlos Theorem, (1.4) 
and (2.10). 

COROLLARY 2. Let r > 0 and assume that Y( • ): 4> - L,(Q) is a continuous 
linear random functional. Then there exists a unique 4' '-valued random variable 
Y such that ¥[¢] = Y(¢) a.s. 'v ¢ E 4> and E(Y[<t> ]Y < oo '<I ¢E4>. If in addition 
Y is 4'p-continuous for some p > 0 there exists q > p such that P(Y E 4>q') = 1. 

Remark. In a personal communication S. Ramaswamy has shown me an­
other proof of the Regularization Theorem using the results of L. Schwartz on 
Radonifying maps. I think that the proof given in the present paper is more 
constructive and easier to understand in the case of CHNS's of special type. 
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