ON DUAL ALGEBRAS AND ALGEBRAIC OPERATORS

By CARLOS HERNÁNDEZ-GARCIADIEGO AND SALVADOR PÉREZ-ESTEVA

1. **Introduction**

Let K be a separable complex Hilbert space of dimension less than or equal to \aleph_0 . Denoting by $C_1(K)$ the trace class of $L(K)$ with the trace norm, we know we can identify the dual of $C_1(K)$ with $L(K)$ by the bilinear functional

$$
\langle T, S \rangle = Tr(TS), \ T \in L(K), \ S \in C_1(K).
$$

A dual algebra is a subalgebra of $L(K)$ that contains the identity and is closed in the weak^{*} topology on $L(K)$.

If \perp *A* is the preannihilator of *A* in $C_1(K)$, then *A* is the dual space of $Q =$ $C_1(K)/\sqrt{\frac{1}{2}}$ (Bercovici et al [1] Prop 1.19). The duality is given by

$$
\langle S, [\mathbf{L}] \rangle = Tr(S\mathbf{L}), \ S \in A, [\mathbf{L}] \in Q,
$$

where $[L]$ is the class Q of an element $L \in C_1(K)$.

If *A* is a dual algebra, $M_n(A)$ is the subalgebra of $L(K^n)$ whose elements are $n \times n$ matrices with entries in A. By Bercovici et al ([1].2.2), $M_n(A)$ is a dual algebra and its predual $Q_{M_n}(A)$ can be identified with the space $M_n(Q_A)$ of matrices with entries in $Q_{A'}$ where Q_A denotes the quotient $C_1(K)/\perp A$.

We denote by A_T the dual algebra generated by $T \in L(K)$.

If *x*, *y* are vectors in *K*, and we denote by $x \otimes y$ the rank-one operator defined by

$$
(x\otimes y)(u)=x,\ u\in K.
$$

For each $A \in A$, we have

$$
\langle A, [x \otimes y] \rangle = Tr(A(x \otimes y)) = \langle Ax, y \rangle.
$$

Scott Brown $[2]$ showed that for some subnormal operator T , the predual Q_T of A_T consists enterely of elements of the form $[L] = [x \otimes y]$. Many results on invariant subspaces were originated by this idea.

We say that an operator T is algebraic if $P(T) = 0$ for some polynomial P.

Definition 1. ([1] 2.01) Let $A \subset L(K)$ be a dual algebra and let *n* be a cardinal number such that $1 \le n \le \aleph_0$. Then A is to be said to have property (A_n) provided every $n \times n$ system of simultaneous equations of the form

$$
[x_i\otimes y_j]=[{\rm L}_{ij}], \ \ 0\leq i,j
$$

(where the $[L_{ij}]$ are arbitrary fixed elements from Q_A) has solution $\{x_i\}_{0\leq i < n}$, ${y_1}_{0 \leq i \leq n}$ consisting of a pair of sequences of vectors from K.

The main objective of this paper is to characterize the algebraic operators which have property (A_n) , but not property (A_{n+1}) .

2. Main Theorem

THEOREM 1. Let $T \in L(K)$ be an algebraic operator whose minimal poly*nomial is* $P(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_s)^{m_s}$, let $K_i = \ker(T - \lambda_i)^{m_i}$ and $r_i = \dim(K_i \ominus (T - \lambda_i)^{m_i-1}(K_i)).$ If $n = \dim\{r_1, \ldots, r_S\} < \infty$, then A_T has pro*perty* (A_n) *and not property* (A_{n+1}) . *In particular this is true for every operator on a finit;e dimensional space.*

We will give some preliminary results before proving the theorem.

Definition 2. Let *A* be a subalgebra of $L(K)$ and let $\{x_1, \ldots, x_n\}$ be a subset of *K*. Then $\{x_1, \ldots, x_n\}$ will be said to be *A*-independent if

$$
\sum_{i=1}^n T_i x_i = 0, T_i \in A
$$

implies $T_i = 0 \quad \forall i = 1, \ldots, n$.

If $x \in K$ and A is an algebra, write $Ax = \{TX : T \in A\}.$

LEMMA 1. Suppose that $T \in L(K)$ is nilpotent of order m, and $r =$ $\dim(\ker T^{m-1})^{\perp} < \infty$, then there is no A_T-independent subset of K with $r + 1$ *vectors.*

Proof. Let $\{x_1, \ldots, x_{r+1}\} \subset K$, we can write $K = \text{Ker } T^{m-1} \oplus (\text{Ker } T^{m-1})^{\perp}$, so $x_i = y_i + z_i$ with $y_i \in \text{Ker } T^{m-1}$ and $z_i \in (\text{Ker } T^{m-1})^{\perp}$, for $i = 1, ..., r + 1$.

 $\{z_1,\ldots,z_{r+1}\}\$ is linearly dependent, so there exist scalars $\alpha_1,\ldots,\alpha_{r+1}$, not all equal to zero, such that

$$
\alpha_1z_1+\cdots+\alpha_{r+1}z_{r+1}=0
$$

so

$$
\alpha_1 T^{m-1} x_1 + \cdots + \alpha_{r+1} T^{m-1} x_{r+1} = 0.
$$

Thus $\{x_1, \ldots, x_{r+1}\}$ is A_T -dependent.

LEMMA 2. Let *A* be a dual algebra of $L(K)$ and let $\{x_1, \ldots, x_n\}$ be an *Aindependent subset of K. Suppose* $B = Ax_1 + \cdots + Ax_n$ *is closed in K. Then A has property* (A_n) *.*

Proof. Let $\overline{x} = (x_1, \ldots, x_n) \in K^n$, then

$$
M_{n}(A)\overline{x} = \{(y_1,\ldots,y_n): y_i = \sum_{j=1}^{n} T_{ij}x_j, T_{ij} \in A\} = B \oplus B \oplus \cdots \oplus B
$$

is closed in K^n because *B* is closed in *K*. Let $\tilde{T} = (T_{ij}) \in M_n(A)$ and suppose $\tilde{T}(\overline{x}) = 0$, then $\sum_{i=1}^{n} T_{ij} x_i = 0 \quad \forall i = 1, ..., n$.

Since $\{x_1, \ldots, x_n\}$ is A-independent, we have $T_{ij} = 0$, for $i, j = 1, 2, \ldots, n$; thus, $\tilde{T} = 0$. By Bercovici et al ([3], 2.06), $M_n(A)$ has property (A_1) and by ([3], 2.3) *A* has property (A_n) .

COROLLARY 1. Let $T \in L(K)$ be such that $T^m = 0$ and $T^{m-1} \neq 0$. If $n =$ $\dim (\text{Ker} T^{m-1})^{\perp}$ *then there exists an A_T-independent set of n vectors. Hence* A_T has property (A_n) .

Proof. Since T is nilpotent of order m, then A_T *is the linear span of* $\{I, T, I\}$ T^2, \ldots, T^{m-1} . Let $\{x_1, \ldots, x_n\}$ be a basis for $K \ominus \mathrm{Ker}\; T^{m-1}$. It is well known *that the set*

$$
\{x_1, \ldots, x_n, Tx_1, \ldots, Tx_n, \ldots T^{m-1}x_1, \ldots, T^{m-1}x_n\}
$$

is linearly independent. Therefore $\{x_1, \ldots, x_n\}$ *is A_T-independent. Since* A_T *is finite dimensional, we trivialy have that* $A_Tx_1 + \cdots + A_Tx_n$ *is closed in K. Then by lemma 2,* A_T has property (A_n) .

LEMMA 3. *kt* K_1 *and* K_2 *be Hilbert spaces and* $T = S \oplus 0 \in L(K_1 \oplus K_2)$. A_T *has property* (A_n) *if and only if* A_s *has the same property.*

Proof. Observe that if $x_i = r_i \oplus s_i$, $y_i = w_i \oplus z_i$, where $r_i, w_i \in K_1$ and $s_i, z_j \in K_2$, then $\langle Tx_i, y_j \rangle = \langle Sr_i, w_j \rangle$. Now the result follows by some straight forward computation.

LEMMA 4. Let $S \in L(K)$ be a nilpotent operator of order 2. If dim $(K \ominus$ $S(K)$ = *r* then A_S does not have property (A_{r+1}) .

Proof. Since $S^2 = 0$, $A_S = {\alpha I + \beta S : \alpha, \beta \in \mathbb{C}}$; then Q_S has dimension 2, and is generated by the functionals

$$
\varphi_1(\alpha I + \beta S) = \alpha, \n\varphi_2(\alpha I + \beta S) = \beta.
$$

Notice that $[x \otimes y] = \varphi_1$ if and only if

$$
\langle x, y \rangle = \langle Ix, y \rangle = \varphi_1(I) = 1,
$$

\n
$$
\langle Sx, y \rangle = \varphi_1(S) = 0;
$$

\nand
$$
[x \otimes y] = \varphi_2 \text{ if and only if}
$$

\n
$$
\langle x, y \rangle = \langle Ix, y \rangle = \varphi_2(I) = 0,
$$

\n
$$
\langle Sx, y \rangle = \varphi_2(S) = 1.
$$

Hence

 $[x \otimes y] = \varphi_2$ implies $[Sx \otimes y] = \varphi_1$, $[x \otimes y] = \varphi_1$ implies $[Sx \otimes y] = 0$.

4 HERNANDEZ-GARCIADIEGO AND PEREZ-ESTEVA

Consider the $(r + 1) \times (r + 1)$ system of equations

$$
[x_i \otimes y_i] = \varphi_1, \qquad i = 1, \ldots, r+1,
$$

\n
$$
[x_i \otimes y_{i+1 \text{mod } r+1}] = \varphi_2 \qquad i = 1, \ldots, r+1,
$$

\n
$$
[x_i \otimes y_j] = 0, \qquad \text{for the remaining } j's.
$$

Since all the columns of the system are different, all the x_i 's are distinct and the same can be said about the y_i 's.

By lemma 1, $\{x_1, \ldots, x_{r+1}\}$ is \overline{A}_S -dependent, so there exists $\{S_i = \alpha_i I +$ $\beta_i S_{1 \leq i \leq r+1}$ not all of them zero such that

$$
z = S_1 x_1 + \cdots + S_{r+1} x_{r+1} = 0,
$$

where in particular

$$
[z\otimes y_j]=0, \ \ j+1,\ldots,r+1;
$$

but

 $[z \otimes y_i] = \alpha_{i-1} \varphi_2 + \beta_{i-1} \varphi_1 + \alpha_i \varphi_1,$

where $j-1$ must be understood as $j-1 \pmod{r+1}$.

Thus

$$
\alpha_{j-1} = 0,
$$

$$
\beta_{j-1} + \alpha_j = 0.
$$

This contradicts the fact that some S_i is not zero. Therefore the system cannot be solved and A_S does not have property (A_{r+1}) .

Proof of the Theorem 1. T is similar to $T_1 \oplus \cdots \oplus T_S$ operating on $K_1 \oplus \cdots \oplus K_S$ where each T_i has a unique eigenvalue λ_i and each $(T_i - \lambda_i)$ is nilpotent of order m_i . By corollary 1 and its proof, a basis $\{x_{i1},...,x_{ir_i}\}$ of $K_i \ominus \text{Ker}(T_i - \lambda_i)^{m_i-1}$ is a system of $r_i A_{(T_i - \lambda_i)}$ -independent vectors and hence A_T -independent. Let $B_i = {x_{i1}, \ldots, x_{in}} (i = 1, \ldots, s)$ be a subset of *n* vectors from such a system.

Let $B = \{y_1, \ldots, y_n\}$ where $y_j = (x_{ij}, \ldots, x_{sj})$ $(j = 1, \ldots, n)$. We shall see that B is A_T -independent.

Assume that

$$
\sum_{j=1}^n P_j(T)y_j=0;
$$

then for $i = 1, \ldots, s$, we have

$$
\sum_{j=1}^n P_j(T_i)x_{ij}=0.
$$

By our choice of the x_{ij} 's it follows that

$$
P_j(t_i) = 0
$$
 for $j = 1, ..., n$ $i = 1, ..., s$.

From lemma 2, it follows that A_T has property (A_n) .

Now we prove that A_T does not have property (A_{n+1}) . Without loss of generality, suppose $n = r_1$, and let $Q(\lambda) = (\lambda - \lambda_1)^{m_1-1}$ $(\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_s)^{m_s};$

$$
Q(T)=\left(\begin{array}{cc} Q(T_1)&0\\0&0\end{array}\right),
$$

where

$$
Q(T_1)=(T_1-\lambda_1)^{m_1-1}\cdots(T_1-\lambda_S)^{m_S}=(T_1-\lambda_1)^{m_1-1}W,
$$

W being an invertible operator which commutes with T_1 . $Q(T_1)$ is nilpotent of order 2, and $dim(K_1 \ominus Q(T_1)(K_1)) = n$. From Lemmas 3 and 4 it follows that $A_{Q(T)}$ does not have property (A_{n+1}) . Since $A_{Q(T)}$ is a subalgebra of A_T , ([1] 2.04) indicates that A_T does not have that property either.

Remark. In Barria et al [4] it is proved that if $T \in T(H)$ is algebraic, the conditions of Theorem 1 are satisfied if and only if every system of equations $[L_{ij}] = [x_i \otimes y_j]$ $1 \leq i, j \leq n$ can be solved, where each L_{ij} has finite rank (Property $B_{n,n}$).

Since A_T has finite dimension the topologies weak* and WOT coincide, then, from ([3] 1.7), properties $(B_{n,n})$ and (A_n) are equivalent

Acknowledgment. We wish to thank Domingo Herrero for his comments and suggestions.

lNSTITUTO DE MATEMATICAS UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO MÉXICO, D.F. 04510 MÉXICO

REFERENCES

- [1] H. BERCOVICI, C. FoIAS AND C. PEARCY, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS-NSF, Regional Conerence Series in Mathematics, 56, 1985.
- [2] S. BROWN, *Some invariant subspaces for subnormal operators,* Integral Equations and Operator Theory 1, (1978) 310-333.
- [3] H. BERCOVICI, C. FoIAS AND C. PEARCY, *Dilation thenry and systems of simultaneous equations in the predual of an operator algebra I.* Michigan Math. J. (1983), 335-354.
- [4] J. BARRIA, H.W. KIM AND C. PEARCY, *Algebraic operators, reflexivity and the properties* $(B_{m,n})$. Preprint.
- [5] D. HADWIN AND E. NORDGREN, *Subalgebras of reflexive algebras*, J. Operator Theory 7 (1982), 2-23.