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ON DUAL ALGEBRAS AND ALGEBRAIC OPERATORS 

By CARLOS HERNA.NDEZ-GARCIADIEGO AND SALVADOR PEREZ-ESTEVA 

1. Introduction 

Let K be a separable complex Hilbert space of dimension less than or equal 
to No. DenotingbyC1(K} thetraceclassofL(K} with the trace norm, we know 
we can identify the dual of C1 ( K) with L( K) by the bilinefil' functional 

< T, S >= Tr(TS}, TE L(K), SE C1(K}. 

A dual algebra is a subalgebra of L(K) that contains the identity and is 
closed in the weak* topology on L( K}. 

If .l A is the preannihilator of A in C1(K}, then A is the dual space of Q = 
C1(K)/.l A (Bercovici et al [1] Prop 1.19). The duality is given by 

< S, [L] >= Tr(SL), S E A, [L] E Q, 

where [L] is the class Q ofan element LE C1(K). 
If A is a dual algebra, Mn(A} is the subalgebra of L(Kn) whose elements 

are n x n matrices with entries in A. By Bercovici et al ([1].2.2), Mn(A) is a 
dual algebra and its predual QM" ( A) can be identified with the space Mn( QA) 
of matrices with entries in QA, where QA denotes the quotient C1(K)/.l A. 

We denote by Ar the dual algebra generated by TE L(K). 

If x, 'II are vectors in K, and we denote by x® 'II the rank-one operator defined • 
by 

(x®y)(u)=<u,y>x, uEK. 

For each A E A, we have 

< A,[x® y] >= Tr(A(x® y)) =< Ax,y >. 

Scott Brown [2] showed that for some subnormal operator T, the predual 
Qr of Ar consists enterely of elements of the form [L] = [x®,]. Many results 
on invariant subspaces were originated by this idea. 

We say that an operator Tis algebraic if P(T) = 0 for some polynomial P. 

Definition 1. ([1] 2.01) Let A c L( K} be a dual algebra and let n be a cardi­
nal number such that 1 :£ n :£ No, Then A is to be said to have property (An) 
provided every n x n system of simultaneous equations of the form 

[xi® Y;] = [4;], 0 :£ i,j < n 

(where the [4;] are arbitrary fixed elements from QA) has solution {z.loSi<m 
{?11}0:::;i<n consisting of a pair of sequences of vectors from K. 
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The main objective of this paper is to characterize the algebraic operators 
which have property (An), but not property (An+1). 

2. Main Theorem 

THEOREM 1. Let TE L(K) be an algebraic operator whose minimal poly­
nomial is P(A) = (A - A1)m1 •••(A - As)ms, let Ki = ker(T - Ai)m; and 
ri = dim(Ki e (T-Ai)m;--:l(Ki)- If n = Min{r1, ... , rs}< oo, then AT has pro­
perty (An) and not property (An+1)- In particular this is true for every operator 
on a finit;e dimensional space. 

We will give some preliminary results before proving the theorem. 

Definition 2. Let A be a subalgebra of L(K) and let {z1, ... , zn} be a subset 
of K. Then {z1, ... , Zn} will be said to be A-independent if • 

n 

L71Zi = 0, T; EA 
i=l 

implies T; = 0 Vi = 1, ... , n. 

If z EK and A is an algebra, write Ax= {TX: TE A}. 

LEMMA 1. Suppose that T E L(K) is nilpot;ent of order m, and r = 
dim(kerTm-l ).L < oo, then there is noAT-independent subset of K with r + 1 
vectors. 

Proof. Let {z1, ... ,Zr+1} c K, we can writeK = Ker Tm-lm(Ker F- 1).L, 
so zi = Yi+ zi with Yi E Ker Tm-land Zi E (Ker Tm-l ).1, for i = 1, ... , r + 1. 

{ z1, ... , zr+ 1} is linearly dependent, so there exist scalars a1, ... , ar+ 1, not 
all equal to zero, such that 

so 

Tm-1 Tm-1 0 a1 z1 + • • • + ar+l Zr+l = • 

Thus {z1, ... , Zr+1} is AT-dependent. 

LEMMA 2. Let A be a dual algebra of L(K) and let {z1, ... , zn} be an A­
independent subset of K. Suppose B = Ax1 + • • • + Axn is dosed in K. Then 
A has property (An)-

Proof. Let z = (z1, ... , Zn) E Kn, then 

n 

Mn(A)z = {(yl,··•,Yn): Yi= L71;z;, 71; EA}= BffiBffi ···ffi B 
j=l 
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is closed in Kn because Bis closed in K. Let T = (Ti;) E Mn(A) and suppose 

T(x) = O, then I:i=l Ti;z; = 0 Vi= 1, ... , n. 
Since {z1, ... , xn} is A-independent, we have ~i = O, for i, j = 1, 2, ... , n; 

thus, T = 0. By Bercovici et al ([3], 2.06), Mn(A) has property (A1) and by 
([3], 2.3) A has property (An), 

COROLLARY 1. Let TE L(K) be such that Tm = 0 and rm-l =/= 0. If n = 

dim (Kerrm-l )..l then there exists an AT-independent set of n vectors. Hence 
AT has proper-ty (An), 

Proof. Since Tis nilpotent of order m, then AT is the linear span of { I, T, 
T 2, ... , Tm-l }. Let {z1, ... , xn} be a basis for K eKer rm-l_ Itis well known 
that the set 

{z1,,,,, Xn, Tx1, .. ,, Txn, ... Tm- 1x1, ... , rm-lxn} 

is linearly independent. Therefore {x1, ... , xn} is AT-independent. Since AT 
is finite dimensional, we trivialy have that ATx1 + • • • + ATxn is closed in K. 
Then by lemma 2, AT has proper-ty (An). 

LEMMA 3. kt K1 and K2 be Hilbert spaces and T =SEBO E L(K1 EB K2). AT 
has property (An) if and only if As has the same proper-ty. 

Proof. Observe that if z; = ri EB si, Yi = w; EB z;, where ri, w; E K 1 and 
s;, z; E K2, then < Tx;, Yi >=< Sr;, w; >. Now the result follows by some 
straight forward computation. 

LEMMA 4. Let S E L(K) be a nilpotent operator of order 2. If dim (Ke 
S(K)) = r then As does not have proper-ty (A,.+1). 

Proof. Since S 2 = 0, As = {or.I+ f3S : a, f3 EC}; then Q s has dimension 2, 
and is generated by the functionals 

<p1(or.I + /JS) = a, 

'P2(al + /3S) = {3. 

Notice that [x (8) y] = <p1 if and only if 

Hence 

< x, 11 >=< Ix, y >= <p1(I) = 1, 

< Sx, 11 >= <p1(S) = O; 

and [x (8) 11] = <p2 if and only if 

< x, y >=< Ix, y >= <p2(I) = O, 

< Sx, y >= 'P2(S) = 1. 

[x@ y] = <p2 implies [Sx (8) y] = 'Pl, 
[x (8) 11] = 'Pl implies [Sx ® y] = 0. 
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Consider the (r + 1) x (r + 1) system of equations 

[zi ® Yi] = 'Pl, i = 1, ... , r + 1, 
[zi ® Yi+l(mod r+l)] = 'P2 i = 1, • • •, r + 1, 
[xi® Yi] = 0, for the remaining j's. 

Since all the columns of the system are different, all the z;'s are distinct and 
the same can be said about the y/s. 
By lemma 1, {z1, ... , Xr+1} is As-dependent, so there exists {Si = aJ + 
.BiSh$i$r+1 not all of them zero such that 

where in particular 

[z ® 11;] = 0, i + 1, ... , r-+ 1; 

but 

[z ® Y;] = n;-1'P2 + /3;-11P1 + n;'Pl, 

where j- 1 must be understood as j- l(mod r + 1). 

Thus 

a;-1 = O, 

/3;-1 +a;= 0. 

This contradicts the fact that some S; is not zero. Therefore the system can­
not be solved and As does not have property (Ar+1)-

Proofofthe Theorem 1. Tis similar to T1EB· • ·EB Ts operating on K1EB· • ·EB Ks 
where each Tj has a unique eigenvalue >.i and each ( Ti->.i) is nilpotent oforder 
mi. By corollary 1 and its proof, a basis { xi1, ... , xir J of Kie Ker(~ - >.i) m;- l 
is a system of r; A(T;-A;)-independent vectors and hence AT-independent. Let . 
Bi= {xii, ... , Zin} (i = 1, ... , ,) be a subset of n vectors from such a system. 

Let B = {y1, ... , Yn} where 11; = (x;;, ... , x6;) (i = 1, ... , n). We shall see 
that B is AT-independent. 

Assume that 

n 

L P;(T)y; = O;. 
j=l 

then for i = 1, ... , ,, we have 

n 

Z: P;(Tj)xi; = o. 
i=l 
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By our choice of the zi;'s it follows that 

P;(ti) = 0 for j = 1, ... , n i = 1, ... , s. 

From lemma 2, it follows that AT has property (An)­
Now we prove that AT does not have property (An+1)-

5 

Without loss of generality, suppose n = r1, and let Q(A) = (>. - >.1)m1 -' 1 
(>. _ >.2)m2 ..• (>._>..,)ms; 

where 

Q(T1) = (T1 - A1)mi-l. •• (T1 - >.s)ms = (T1 - >.1)m1 - 1W, 

W being an invertible operator which commutes with T1. Q(T1) is nilpotent 
of order 2, and dim(K1 e Q(T1)(K1)) = n. From Lemmas 3 and 4 it follows 
that Aq(T) does not have property (An+1)-Since Aq(T) is a subalgebra of AT, 
([1] 2.04) indicates that AT does not have that property either. 

Remark. In Barria et al [4] it is proved that if T E T(H) is algebraic, the 
conditions of Theorem 1 are satisfied if and only if every system of equations 
[Li;] = [xi® Y;] 1 :5 i, j :5 n can be solved, where each Lij has finite rank 
(Property Bn,n). 
Since AT has finite dimension the topologies weak* and WOT coincide, then, 
from ([3] 1.7), properties (Bn,n) and (An) are equivalent 
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