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AN EQUATION OF CONTACT VECTOR FIELDS
AND COMMUTATORS OF CONTACT DIFFEOMORPHISMS

By JAVIER PULIDO CEJUDO
Introduction

The problem of expressing any diffeomorphism, contact isotopic to the iden-
tity and compactly supported, as a product of commutators, is linearized; this
yields an equation of contact vector fields. This equation is translated into a
functional equation on the Heisenberg group and solved; the functional spaces
are adequate for the Heisenberg group structure (see [F,S]). This lmeanzed
problem in the non-contact case yielded [M1] and [M2]. The same procedure
holds for any odd dimensional Euclidean space but is not included here.

A contact form in R3 is a 1-form w that satisfies: w A dw is a never vanishing
form. For a OT-diffeomorphism f : R® — R3, we have the differential Df :
R3 x R® — R? x R2 that makes the following diagram commutative

TR3 = (R?®xR?) 2f, R3xm®
n n
Ly

R3 - R3

where II is the projection on the first factor.
Given a vector field X we associate to it the vector field fuX = DfoXof™1;
if u is a 1-form, we denote by

< #t, X >p= pp(Xp)
and define the pull-back f*u to be the 1-form

< f-”'aX >p=< [ X >f(p)

In this setting we say that a diffeomorphism f is contact if there exists a O
map A : R® = R* such that f*w = Aw, where Rt is the set of positive reals.
The support of a diffeomorphism f is defined as the closure of the set where

f(z) # =, ie.

* supp f = {z € R3|f(z) # z}.

Consider the contact form

w = dz + zdy — ydz,

let G denote the group of contact dlﬁ'eomorphlsms with compact support, for
which there exists F : [0,1] x R® = R®and A : [0,1] x R® — R, both in C"

and satisfying
35
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F;w = /\tw,

where F; = F(t,-), At = A(t, ), supp F} is compact for all t, Fo = id (identity
map) and F; = f. One has the following problem:

Find suitable f; € G, where = 1,...,n such that for all ¢ € G there exists
u; € G with

1) [ul)fl]"'[“n’fn] =9
where [u, f] = ufu~1f1.

For g =id we can choose u; =id. What happens when we perturb g slightly?
Let u,; be isotopic to the identify on G, then, by direct computation we get

a[uiuf ]"'[u’nnfn] = . .
2) : ot o _(i=z:1 fi Akio — tip)
where
3 i) = 2 (uip)  for pe RO,

Let X be a vector field and x a 1-form, let Lxu be the Lie derivative of
with respect to X; we say that X is a contact vector field if there exists a C”
map p : R® — R such that

Lyxyw = pw.

It can be proved that u,, is a contact vector field if and only if u;, is a contact
isotopy, hence we have the following problem:

Find suitable diffeomorphisms fi,..., fn such that for any contact vector
field Y there exist contact vector fields Xj, ..., X, with

Y= fX-X

In this paper we give a positive answer to this question precisely stated.
I wish to express my gratitude to John Mather and Roberto Moriy6n, whose
help was very important for the preparation of this paper.

§1. Preliminary

Given a vector field X, we define on the algebra of differential forms
A(R3) = @AP(R?) the Lie derivative Ly and the interior product #(X), in
the following way: ‘ ‘
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Let Lx be the only degree 0 derivation that satisfies

Lx) = dA\(X)
Lyd = dLx()\)

for every O-form A : R® — R.
" The interior product i(X) is the degree -1 antiderivation that, for a p-form
a and Xj,..., Xp_; vector fields, associates

i(X)a(X1,. .., Xp-1) = (X, X1,..., Xp-1).

Lx and i(X) are related by the Cartan formulae

Lx =di(X) +i(X)d
i[X,Y] =Lxi(Y) —i(Y)Lx

where Y is another vector field and [, ] the Lie bracket.

Note that for the vector field E = £ we have i(E)w = 1 and i(E)dw = 0.
For a 2n + 1 manifold equipped with a contact form w, a vector field E with
the properties above always exists and is called the characteristic vector field
(or Reeb’s vector field, see [1]).

Any vector field X can be written uniquely as

X = [{(X)uw]E + H(X)

where i(H(X))w = 0; [{(X)w]E is called the vertical part of X and H(X) the
horizontal part. ¢(X)w is called the vertical component, and we denote it by
v(X). Note that v(X) =< w, X >.

Let o denote the set of vector fields such that v(X) = 0 and S the set of
1-forms p for which i(E)u = 0. We define a : 0 — Sby X — ¢(X)dw.

Consider the subbundle F of TR® whose fiber over p in R® is Fp,={Xpe
p x R%wp(X,;) = 0} and the subbundle 5 of A1(R3) whose fiber over p is
Sp = {pp € pA}(R®)|up(Ep) = 0}; then o and S are the set of sections of
F and S respectively and a defines a bundle map which is actually a bundle
isomorphism. This follows from the fact that s(X)w = 0 and i(X)dw = 0 imply
1(X)(wAdw) = 0, and Fp and Sp having the same dimension.

o is called the set of horizontal vector fields and S the set of semi basic
forms, so a gives a continuous one to one correspondence between these two
sets.

In [B, P] we prove that the vertical component of a contact vector field com-
pletly determines the field. Though it is proved there for C* vector fields, the
proof is also valid fot the C" case.
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Given a C" map g from R? into R we associate to it the C"~! horizontal
vector field

Ag) = o ((i(E)dg)w — dg)

and the €™ 1 contact vector field

Bl9) = 9E + A(g).
This follows from the fact that
(¢(E)dg)w — dg

is semibasic.
Clearly v(8(g)) = ¢, and from the fact that the vertical component deter-
mines the contact vector field we also have

Alv(X)) = X.

By support of ¢ we mean

supp g = {p € R®|g(p) # 0},

and by support of X we mean

supp X = {p € R®|X(p) # 0}.

B establishes a correspondence between contact vector fields with compact
support and maps from R? into R with compact support. For g in the image
of C" (R3, R) by v, the degree of differentiability is preserved.

Ifh : R®x I — Ris an isotopy of the identity, we consider the one parameter
family of vector fields on R3

Ok

N,
ol

hs(p) (h;1(p))

and inversely, for a family of vector fields U,, we consider the flow # on R x I
and define the isotopy

hs(p) = HR3¢(P’ 0,s),

where Ilps is the projection on R3. Then, hs(p) = Us(p) and hy(p) is a contact
diffeomorphism if and only if Us(p) is also a contact vector field.
§2. Definitions and Notation

In R® we define the product

(z,9,2) - (a,b,¢) = (z+a,y+b,z+c+bz— ay),
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0 = (0,0,0) is the identify and (z, y, z)7! = (~z,—y, —2). R® with this product
becomes a nonabelian group called the Heisenberg group. We will denote it by
H.

Fix p in H and consider the diffeomorphisms Ty(¢) = ¢-pand pT(q) =p-q,
Tp lieson G but pT does not lie on G.

Consider p‘ with the 1’th coordinate equal to t and the others equal to 0.
Define X; = tTfOl‘i—l 2; then X = 3—+y3— and X; = "”3‘

Let A be a real number, A # 0. Define on H the scalar product A(z,y,2) =
(Az, Ay, A%z). Also define the element in G as A((z,¥, 2,)) = A(z, ¥, 2,).

Let B; denote the subset of the space of differential operators of the form
D* = X;, ...X;,, where X;. = Xj or X3 and k = 1,2,.... Let O, denote the
subspace spanned by By Moreover, define Gy = {C° maps from H into R with
compact support} and Gi = {v € Go|D*v € Gy for all D* in By}. On G and
G we have the norms:

| v llo=sup |v(p)| and
pEH

lvlli=sup || D*vlo.
D*eB,

Note that the subspace of G whose elements have fixed support is a Banach

space.
For f in G and v in G}, we define fy,v = Av o f~1, where f*w = Aw, in
particular Tpev = vo T, ! and A,v = A?vo 471

Note that f* preserves G and

@) I Toew =l v lles Il Auv = 42"* |l |l -

Since

(2) X;i(voTp) = (X;v)oTp, Xi(voA) = (X;v)oA, fori=1,2,pin Hand A > 0.
On H we define the “normlike” function

|*|lg: H— Rt (z,y,2) | = Vit 4yt + 22,
This function satisfies:

(3 i) |plg>0and|p|g =0iffp=0,
ii) |Splg = |S|lp|lg and
iii) there exists a constant C such that |[p + q|g < C(|p|g + lalg),
whenever p and ¢ arein H and S is a real number.
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Let us denote B¢(0) = B¢(0,0,0) = {p € H|lplg < €} and B¢(q) =
T, (B¢ (0)). | _

Given A > 0 we define E4; = {v € G| f[gv =0, supp v € B40} and for
'7;7;(t) =p -p;-, Ef(,k ={veGfv oqg(t)dt =0 forall pin H}.

When k is fixed, we just write E4 and Ef;, respectively.

We denote by G* the set of compactly supported contact vector fields X for

which the vertical component v(X) lies in G;. For X in G* we define || X ||i=||
v(X) || Let C* denote the C* contact vector fields with compact support.

3. Main Result and Lemmas Needed for the Proof
In this section we will state the main result as

THEOREM (1). Let k > 28, then there exist real numbers L, M such that for
every Y in C¥, wecan find Y; in CH? fori=1,...,5 with

3
Y= Z:I(Tp;"’j —Yj)+ LY — Yy + MY — Ys.
J:

We will see that this theorem is a consequence of

PROPOSITION(1). Let k > 28, then there exist real numbers L, M such that
given vin Gy we can find u; in Gy, s = 1,...,5 with

3
v= ETp‘.'“f —uj + Leuz — uy + Myug — us.
i=1 "’

Since [ X1, X2] = —23‘9;, we have that G, is contained in C*/2. If we are given
X in G, then v(X) lies in G;. Use Proposition (1) to find 4 in G} such that

3
v(X) = Z Tp“'.. u; —uj + Leug —ug + Moug — us.
j=1

Define Y¥; = B(u;) (see §1). Since C*/2 lies in G}z and the vertical part
characterizes the contact vector field, then, from the aditivity of § and the
definition f,u = v(f.(B(u))), we get Theorem 1.

From the above discussion we see that our main task is to prove Proposition
1. In order to do so we will need the following lemmas whose proofs we omit
here but can be found in full detail in [P].

LEMMA (3.1). (Interpolation lemma): Let vbe an elementof Gyandj <1< k
non negative integers, then there exists a universal constant C (just depends
on k) such that

k—1 -
fel,<Cllvlly7Nolly™ -
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LEMMA (3.2). There exists a constant C such that for all v,w in G},

| ow lle< Ol @ lloll w e + Il @ llell  flo)-

Note that if we consider

Fo = {ve C°(H)|sup |v(p)| < oo},
pEH

Fp,={ve C%H)|Xv e Fy forall X in Oy
andfk = FyN---N Fy,

then the same assertion follows for v in F;, and we get Lemma 3.1’ and Lemma
3.2',

LEMMA (8.3). If visin E4 then wecan find v;in E i 4 and a constant C such
that
i) v=vi+vy+ v3
i) [[vuk<Clvle o

LEMMA (3.4). Let vin Ei and define ;®, = EZ vo Tl‘;j then ;®, satisfies

1€
D =00,
i) [ ;@0 1< CA v [
i) [y (@0 ©73)(t)dt =0 for all pin H
iv) || j®v [lo< CA* | ;8 ||2k and
“ j@g ”()S C AFtL ” jQU “2 k+1. o

LEMMA (3.5). The family { B4(1,m, n)|(l,m, n,) € Z%} is a locally finite cover
of H and if X, (1,m,n) denotes the characteristic function, then there exists a

constant C such that £Xp,(1,m,n) < C the sum taken over all (I,m,n)inZ3. ©

LEMMA (3.6). There is a partition of unity {1/;,,}5’:’:1 on H satisfying:
i) For each h in N there exists g, = (lp, mp,np) in Z3 such that supp ¢¥n C
By(qn)-
ii) Let V4 = {h € N||gz| < 44} then B,4(0) is contained in the union, taken
over all hin Vy, of By4(qp).
iti) {¢} can be indexed in such a way that the intersection of By4(qp) with
B4 (0) is empty whenever h > C A* for some constant C; moreover, if the former
intersection is nonempty for some h, then it is so for all b' less than h.
iv) For each k there exists Cy, such that for all hin N we have || ¢, ||[y< C¢. ©

§4. Proof of Theorem 1.

We have pointed out in §3, that Theorem 1 follows from Proposition 1.
Hence we will prove Proposition 1. This in turn will follow by the Observation
and by modifying the proof of the Claim below.
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Observation: Let v be an element in G with support contained in B4 (0)
and s v # 0, then there exist ¥in G and vin E4 such that v = A ¥ -7+ 9.

Proof: Let hg : R® — R with supp hg contained in [-1,1]% and fR3 ho # 0,
then [ps AZhgo A™1 = A® [ps ho.
Define

(A% —1) fgs ho

then [ps(A?ho A™1—h) =1.Leta= [psv,v=ahand ¥ = v— A5 — ¥, then
supp v is contained in B4 (0) and [ps v = 0.

h

Claim: Given v in E 4, there exist constants C, Cand uy,..., u5, e in G such
that
a) Y3 Tpoeuy —ui + (A/4)eug —ug + 20us —ug = v —e
b) || wi [k, <C|vlki=1,...,5
o) || e lx< CARZ[*/2] || y ||, moreover e lies in E4.

Proof of Claim: From Lemma (3.3) we can write v = vy + vg + v3 with v; in
Ei 4- Let us fixa C* function b: R — R satisfying supp b contained in [-1, 1]

and b(t) + b(t + 1) = 1 for all ¢ in the interval [—1,0]. Define
b1((z, v, 2)) = ¥(z)
ba((z,v,2)) = b(y)
ba((z,4, 2)) = b(2)
and construct e; = b; ;4y,. It follows from Lemmas 3.2, 3.3. and 3.4 that
) |l ¢ [lx< CAP A o |

and supp e; is contained in By4 (0), furthermore, if we define #; = v; —e;, then
J-%’. = 0; it is not difficult to see that this last condition implies the existence
of i; in Gy such that (Tp;)«éi; — 4; = 9; and

@ || %5 lle< CA || 55 Il
therefore
@) || 4 [lx< CASE ||y ||

Note that supp #; is contained in supp #;, which in turn is contained in
supp vj.

So far we have expressed v; in the desired form module an error ¢;; we seek
now to express e; in the desired form module an error supported in B4(0).
Let {®}3Z, be the partition of unity of Lemma (3.6). Define ¢, = $pe; =
(®1b1)j v, then || ejp < CAZHE/Z | o |,
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Note e; = 35 ejh, ejp = 0 for all h > .C’(4A)4, supp e, is contained in
By(qs) and |gs| > 44 implies ¢;;, = 0. We will now “translate” each e;; until
we end with &;), in G} having support in B4(0), and é;), equal to e;, module a
sum of terms of the form Tp Lu—u3=1238anduin G k In order to do this
we first realize that for each g;, = (I, m,n) in Z3 and g, - p1 pgps Im _ .
To simplify the notation we suppose I, m, n are all positive; let N = |I| + |m| +
[n] + [§||m] and write

9h0 = 4h
-1
qh1 =4h" Py
_ -1
dnt —4h " Py
_ -1
dhi = 9n " Py

-1 -1
dhl+1 =9qnh Py * P2

-1 -
Qhi+m =qn Py ‘P

S - -1
Ghi+m+1 =4dn Py Py - P3

m p;n—-lm =0

-1 -

9h,N =4h"P1 P2

leti=1,2,...,N, hence iij;; = T(;ll ).c_,,'h has support in By(gy, ;) and from
n Tk,

(1) in section 0 we know
@ || #jmi le=l ejn &, i,

) || @jni k< CAZHE | o ||y

Observe that
4 +m
ein =2 Tpyiijhi — Gjhi + D Tpaeiijhi — Gjhi
i=1 i=l+1
N
+ Z Ty iijhN — UinN + Ejh
i=l+m

with &;, = ;5. Note that in order to solve the problem when at least one of
the coordinates of (I, m,n) is negative, one considers the equality T, 1Tpu —
Tpu = Tp(—u) — (—u). Note also that supp é;, is contained in B4(0) and
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®) || & llx< CAPTE || o |,

To proceed with the proof of the claim, let P be the natural with the prop-
erty By(gp) N Bga(0) # ¥ and By(gp+1) N B4(0) = ¥, we know that P is less
or equal to C A%, we also know that |g,| < CA forall h = 1,..., P, therefore
l, < CA, my < CAandn, < CA? andso N < CAZ. Let us define

3 P U

wp =G+ ) Y G
j=1h=1i=1
3 P l;.+m;.

up=iig+ Y D Y ik
i=1h=li=lp+1
3 P N

ug=dz+y > >

j=1h=1i=lj +mp+1
and
P
E=> > én
j=1h=1
therefore we have
(D || uj s CASFR] | o |
with support of u; contained in B¢ 4(0) for j = 1,2,3, and
®) || & le< c 4B v |

with supp & contained in By (0), moreover

3
Zij.uj —u; =v—¢.
j=1

If we define € = (A/4)4(—€) we get
O) || 2 ll< cCAM= 2 o |

with supp € contained in B,4(0) and
3
Z Tpjsu; —u; + (A/4)e(—€) — (—€) =v—¢.
ot
Note the constant in (9) is 4¥~2 times the constant in (8).

In order to end up with the proof of the claim, we want to write € as a sum
of an element in E, plus terms of the desired form. For this purpose, fix f
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in G; with [ f; = 1 and supp f; contained in By(0) , let D = A/2 and define
— _De — : — Db — D5
fD—I—E%sothatffD—I.SmoefD.h—D Jh=D

we get

I /o le< D> * | 11 Ik i,
| fp llk< €D37%

and supp fp is contained in Bp (0). Let
_Jz Ik
" J@dp-fp) B-U
so |A| < CA* || € ||o. Therefore if we define e = — A(2.fp — fp) we get

Il elle<ll & +IAl | 2D — fD lle<ll € l|&
+CA* || 2 llloll fp lle<ll & Il +CA* || Z lo
<[|ellg +CA|E|g< (L+C)A | E |, ie.

(10) [ e [le< CA || Z [|ks
hence

D) || ¢ [le< cA= /2 | v ||y
where Cis the constant in (9) times the constant in (10). Define u4 = —é€ and
us = Afp. The claim is proved.

Proof of Proposition 1: We will find real numbers L, M for which the hypoth-
esis of the Theorem in the Appendix are fulfilled. This will be achieved by a
suitable modification in the proof of the claim.

Let ¢ be the constant in (11) and fix L > max (4¢,2). Since given A such
that supp v is contained in B4(0), there exists n € N such that 4L" > A.
We can assume that 4L™ = A. We copy the proof of the claim with this last
assumption to get ¢ = L?e = L,(L?™ "e), therefore if C' is the constant in (8)
we obtain the mequahty

IZ k< (E%)? "(u:")”“‘/”lo' lolls-
Now;, since

I &l < (LY F/28HE S | o |, .
< (L2 gk=30t ||y |,
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we obtain
O [z lle< "L o |,
where C" = 4¥—2(" is the constant in (9).

We proceed with the proof of the Proposition by repeating the steps of the
proof of the claim, but with (9’) instead of (9), so we get
(11" |l e o< 4(2) B2 o
< 4LV /2 ||y .
We know k > 28, if we define p = 4C’L12‘["/2], thenp < 1.
Let ug = —(6+ Loé+ ...+ L7 1), thensince L > 2,1+ L2 %k 4+ ... +

(Lz_"’)""l < 2 for all n and we get

|l ua lle< 2] elle
so by (8) we obtain
(12) || ug [lx< CABHE | o ||
Let ug = Afp then

Il us k=l Afp ll= 1Al | fp < C4* | 2 o D737* < CAF/ | v |y,

ie,
(13) || us ||g< CAV-R/2 | o ;.

Finally let M = 2 and K be the largest of the constants in (7), (11) and (12),
then we have proved that ‘

3
Zij.uj—uj+L.u4—u4+M.u5—u5 =v—e, J5=12,8
=1

with || u; [k< K || v and | e[lx<p | v p<1.

Appendix

THEOREM: Let B be a Banach space with norm, || ||, let P: Bx B— Bbea
linear operator for which, given v in B, there exist constants p < 1 and K > 0,
and u,w elements of B such that || P(u,w) —v|<p|lv]and | u|< K| v|,
| w|l< K || v |l. Then P is surjective.

Proof': Let v = ¢g be an element in B. Find ug, wg according to the hypoth-
esis of the Theorem with respect to the constants p and K. Define —e; =
P(ug, wg) — 9. Use the same method to define inductively u;, w; and ¢;,;;
therefore we have || u; ||[< Kp* || v |, | wi||< Kp* || v | and || e;41[I< 2"t | v .
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Let u™ = Y0 u; and w" = Y7 w;, then {u"} and {w"} are Cauchy sequences
and || P(u",w™) — v || is bounded by || en+1 ||, which approaches 0 as n tends
to co. Let u and w be the respective limits of {u"} and {w"}, so we end up with
P(u,w) =v.

DEPARTAMENTO DE MATEMATICAS

FacuLTAD DE CIENCIAS

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
CIUDAD UNIVERSITARIA

Mexico, D.F. MExico

REFERENCES

[B1] D.E.BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509(1976).

[B,P] A. BANYAGA AND J. PULIDO, On the group of contact diffeomorphisms of R**+1, Bol. Soc.
Mat. Mexicana, 23, 2(1978), 43-47.

[FS] G.B.FoLLAND AND E. M. STEIN, Estimates for the 8 complex and analysis on the Heisenberg
group, Comm. on Pure and Applied Math. XXVII(1974), 429-522.

[M1] J.N. MATHER, Commutators of diffeomorphisms I, Comment. Math. Helv. 49, 4(1974), 512-
528.

[M2] , Commutators of diffeomorphisms II, Comment. Math. Helv. 50,(1975), 33-40.

[P] J. PuLiDo CEJUDO, An equation of contact vector fields and the group of contact diffeomor-
phisms. Ph.D Thesis, Princeton University, June 1981.






