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ON THE S1RUCTURE OF ASSOCIATIVE ALGEBRAS 
WITH CONJUGATION 

JERZY F. PLEB.ANSKI1) AND MACIEJ PRZANOWSKI2) 

lntroduction 

Let A be an algebra with unity element eo of dimension n+ 1 (n ~ 0) over a 
field F and let c : A -+ A be a linear mapping, called a conjugation on A, such 
that 

(1.1) c(c(z)) = z, 

(1.2) z + c(z) = t(z)eo, t(z) E F, 

(1.3) zc(z) = c(z)z = n(z)eo, n(z) E F, 

(1.4) c(zy) = c(y)c(z) 

for all z, y E A. 

Then the pair ( A, c) is called an algebra with conjugation of dimension n + 1 
over F. 

The elements t(z), n(z) .E Fare called the trace and the norm of z, respec­
tively. 

Algebras with conjugation have been examined extensively by Albert [1], 
Schafer [2], [3], and Adem [4] in the context of the Cayley-Dickson process 

1) On leave of absence from the University of Warsaw, Warsaw, Poland. 

2) This autor is grateful to all the members of the Departament of Physics of the Centro de 
Investigaci6n y de Estudios Avanzados del IPN for their warm hospitality during his stay at the 
Centro. 
Permanent address: InstytutFizyki, PolitechnikaLxlzca, W6lczafiska219, 93-005L6df, Poland. 
This work was supported in part by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) 
and by the Centro de Investigaci6n y de Estudios Avanzados del IPN (CINVESTA V), Mexico, D.F., 
Mexico. 

1 



2 JERZY F. PLEBANSKI AND MACIEJ PRZANOWSKI 

which is, roughly speaking, an iterative process leading from one algebra with 
conjugation to another. More precisely, if ( A, c) is an algebra with conjugation 
of dimension n + 1 (n ~ 0) over F, then one defines an algebra A(0), where 
0 -I= e E F, of dimension 2(n + 1) over F which consists of all ordered pairs 
w = (x, y), x, y EA with addition and mutltiplication by scalars defined com­
ponentwise, and with the multiplication of pairs defined as follows 

Define then a linear mapping c1 : A(8) - A(8) by 

c1: A(8) 3 w = (x, y) i-. c1(w) = (c(z), -y) E A(8). 

One can easily verify that (A(8), c1) is an algebra with conjugation of di­
mension 2( n+ 1) over F. Thus, starting with some algebra with conjugation we 
can construct new algebras with conjugation by iteration, using the above des­
cribed method. This is just the Cayley-Dickson process. If one begins with the 
algebra (Feo, c), where c : Fe0 - Feo is now the identity transformation on 
Feo, i.e., c(z) = x for every x E Feo, then having k non-zero scalars 81, ... , ek 

9ne constructs knew algebras over F: A1 = Feo(E>1), A2 = A1(E>2), ... , Ak = 
Ak-1(E>k)· 

It is well known that A1, A2 and A3 are the algebras of generalized com­
plex, quaternion and Cayley numbers, respectively (see [1-5]). Therefore, a 
natural question is ifthere exists such a transparent interpretation when the 
initiating algebra is not, as before, (Feo, c) but some other algebra with con­
jugation. It is evident that at first we shoud have an algebra which we are to 
start with. This is the main theme of the present note. 

We intend to analyse the properties of associative algebras with conjugation 
and then we give the possible structures of these algebras. An algebra with 
conjugation (A, c) is said to be associative if A is associative. 

Our considerations are very closely related with the results of our previous 
work [6] concerning the classification of the so-called quaternionlike algebras. 
These algebras as introduced in Ref. [6] are, so to say, of the group-theoretical 
origin. Namely, we have searched for real or complex local Lie groups of 
some simple rational composition law of their elements.It has been shown 
that these groups are locally isomophic to the groups consisting of elements 
with norm (see Sec. 2) of some associative algebras which we have called qua­
ternionlike algebras. 

It appears that one of the groups considered is locally isomorphic to the 
group SU(2), and then the corresponding quaternionlike algebra is exactly 
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the well-known quaternion algebra. 

This fact justifies, to some extent, the proposed name: quatemionlike al­
gebras. 

In Ref. [6] we have analyzed the structure of quaternionlike algebras and 
we have constructed many of these algebras. Then, in Ref. [7] we have found 
a close relation between the structure of quaternionlike algebras and the form 
of cross products of vectors satisfying the similar conditions as the usual cross 
product of vectors in 3-dimensional Euclidean vector space. Both in [6] and [7] 
we have dealt with quaternionlike algebras over the real or complex field. In 
the present note we generalize the definition of these algebras on an arbitrary 
field F whose characteristic is not 2, and then we show that the so defined 
quaternionlike algebras with suitably defined conjugation of their elements 
appear to be exactly the asociative algebras with conjugation (Sec. 2). 

We will now be able to find an interesting relation between the Clifford 
algebras and the associative algebras with conjugation (Sec. 3). 

Then in Sec. 4 the analysis of possible structures of associative algebras 
with conjugation is given. 

2. Quaternionlike algebras and associative algebras 
with conjugation 

In Secs. 2, 3 and 4 we assume that the characteristics of a field F is not 2. 

Let Q be an associative algebra with unity element co of dimension n+ 1 ( n ~ 
0) over a field F for which there exists a decomposition 

(2.1) Q = Feo EB V, 

where V is an n-dimensional vector subspace of Q such that 

(2.2) v2 E Feo, for every v EV. 

Then Q is called a quatemionlike algebra of dimension n + 1 over F. 

One can easily prove that the decomposition defined by (2.1) and (2.2), ifit 
exists, is unique. 

Let for any v E V, q( v) E F be a scalar defined as follows 
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(2.3} 

The mapping q : V 3 11 1-+ q( 11) E F is a quadratic form on V and the pair (V, q) 
is a quadratic space. 

Thus, the algebra Q is compatib/,e with q (see [81). 

If B denotes the bilinear form on V associated with q, then 

(2.4) 2B(11, ti,)eo = (q(11 + w) - q(11) - q(w))eo = 11w + w11, for 11, w EV. 

Now we would like to define a conjugation on a quatemionlike algebra Q. 
Let x be any element in Q. Then it can be uniquely represented in the form 
of 

(2.5) x = b(x)eo + a(x), 

where b(x) E F, a(z) EV. The element z E Q 

(2.6) z = b(x)eo - a(x) 

is called the conjugate of z, and the linear mapping c : Q -+ Q defined by 

(2.7) c(z) = z, for all z E Q 

is called de conjugation on Q. 

One finds easily that the conjugation on Q satisfies the conditions (1.1), 
(1.2) and (1.3) with 

(2.8) t(z) = 2b(z), n(z) = [b(z)]2 - q(a(z)), for z E Q. 
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Now, if z, y E Q then, c(zy) = c(y)c(z) if and only if c(a(z)a(y)) = a(y)a(z). 
Consequently, the conjugation on Q fulfills the condition (1.4) for all z, y E Q 
if and only if 

(2.9) c(uv) = vu, for all u, v EV. 

Before we consider this problem we must examine the consequences of the 
assumption that Q is associative. 

Therefore, we have 

u(vw) = (uv)w for all u, v, w EV. 

This implies 

(2.10) b(ua(vw)) = b(a(uv)w) 

and 

(2.11) b(vw)u + a(ua(vw)) = b(uv)w + a(a(uv)w). 

As vw + wv E Feo for any v, w EV (see (2.4)). 

(2.12) a(vw) = -a(wv). 

Substitutingu = winto (2.ll)and using(2.12) oneobtainsb(vu)u = b(uv)u. 
As this relation holds for all u, v E V, we conclude that 

(2.13) b(uv)=b(vu), forallu,vEV. 

From (2.4), (2.8) and (2.13) it follows: 

(2.14) t(uv) = t(vu) = 2b(vu) = 2B(v, u). 
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Then it is evident that for any x, y E Q 

(2.15) t(xy) = t(yx) = 2b(xy) = 2b(yx). 

We are now in a position to prove (2.9). Indeed 

c(uv) = b(uv)eo - a(uv), 
vu= b(vu)eo + a(vu). 

Using (2.12) and (2.13) to the last formula and comparing with c( uv) we find 
that (2.9) holds. Consequently, the condition (1.4) is satisfied for all x, y E Q. 

Thus we have proved the following 

PROPOSITION (2.1). If Q is an (n + 1)-dimensional (n 2:: 0) quaternionlike 
algebra over a field F and c : Q - Q is a conjugation on Q, then ( Q, c) is an 
associative algebra with conjugation. □ 

The converse proposition is also true. 

PROPOSITION (2.2) If (A, c) is an associative algebra with conjugation of 
dimension n + 1 (n 2::: 0) over a field F, then A is a quaternionlike algebra and 
c : A - A is the conjugation in the sense of this quaternionlike algebra. 

Proof. Define a vector subspace of A 

(2.16) V={vEA;v+c(v)=0}. 

From (1.1) and (1.4) one has y = c(eoc(y)) = yc(eo) for all y E A. Hence 
c(eo) = eo, and consequently eo fl. V. Therefore, 

(2.17) Fe 0 nv = {0}. 

Let x be any vector in A. Then 

(2.18) 
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As r 1[z + c(z)] E Feo (by (1.2) and r 1[.z - c(z)] EV (by (2.16) and (1.1)), 
the formulae (2.17) and (2.18) imply· 

(2.19) A= FeoEBV. 

Let now v be an arbitrary vector in V. Then, by (1.3), we have 

(2.20) v2 = -vc(v) E Feo, 

From (2.19) and (2.20) it follows that A is a quaternionlike algebra. 

Foranyz EA 

z = b(z)eo + a(z), b(z) E F, a(z) EV. 

From the definition ofV, (2.16), and the definition of z, (2.6), we have · 

c(.z) = b(z)eo - a(.z) = z. 

The proof is thus completed. □ 

The conclusion of propositions 2.1 and 2.2 can be stated as follows: the 
quaternionlike algebra is in fact the same notion as the associative algebra 
with conjugation . 

Now we intend to point out some properties of quaternionlike algebras 
which are of great interest from the group-theoretical point of view. 

Let Q be as before, an (n + !)-dimensional (n ~ 0) quaternionlike algebra 
over a field F. Define the following subset of Q 

(2.21) H = {z E Q;zz = lea}. 

In other words, H consists of all elements of Q with the unity norm. The 
properties of the conjugation on Q, (1.1) (1.3) and (1.4), assure that H forms a 
group with the multiplication of its elements as inherited form the algebraic 
structure of Q. 
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Moreover, let V be defined acoorcling to (2.1) and (2.2). We define the mul­
tiplication o on V, o : V x V -+ V, as follows 

(2.22) vow= vw - wv = 2a(v, w), for any 11, w EV. 

Then the pair (V, o) is a Lie algebra of dimension n over F. In particular, if 
F is a real or complex number field, then H with naturally defined topology 
and differential structure is, respectively, a real or complex n-dimensional Lie 
group, and (V, o) appears to be isomorphic to Lie algebra of H ( see Ref. [6]). 

3. Clifford algebras and quaternionlike algebras 

Given an ( n+ 1)-dimensional ( n ~ 0) quaternionlike algebra Q over a field F 
which decomposes according to (2.1) and (2.2), one defines the quadratic space 
(V, q), where q: V-+ Fis the quadratic form on V defined by (2.3). Then one 
can construct the Clifford algebra C (V, q) for (V, q). By the universal property 
of Clifford algebras there exists a unique homomorphism 'P : C(V, q) -+ Q 
such that 'P(v) = v for any v EV (see Ref. [8]). We can explicity write this ho-
momorphism. Indeed, let {e1 , ... , en} be an orthogonal basis for (V, q). Then, 
{ e~1 • ... • e~n; Ei = O, l; i = 1, ... , n} constitutes a basis for C(V, q). The ho-
momorphism 'P: C(v, q) -+ Q is defined as F-linear extension of the following· 
mapping 

(3.1) Ei = O, 1,. i = 1, . .. , n. 

(The multiplication in Clifford algebra is denoted by the fat dot "• "). 

Now, the natural question arises: is the Clifford algebra O(V, q) a quater­
nionlike algebra? The answer to this question reads: C(V, q) is a quaternion­
like algebra if and only if n = dim V:::; 2. 

This answer follows from a more general proposition: 

PROPOSITION (3.1.) Let V' be a vector space of dimension n over a field F 
and let q1 : V' -+ F be a quadratic form on V'. Then, the Clifford algebra 
C(V', q1) for the quadratic space (V', q1) is a quatemionlikealgebra if and only 
ifn:::; 2. 

Proof. For n = O, the proposition trivially holds. 

Consider n ~ 1. 
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Assume that O(V', q') is a quaternionlike algebra . Therefore, there exists 
a decomposition 

(S.2) O(V', q1) = Feo EB W, 

where W is a (2" - !)-dimensional vector subspace of O(V', q') such that 

(S.S) u, • u, E Feo, for every u, E W. 

Let { e~, ... , e~} be an orthogonal basis for (V', q1). We can prove that W is 
spanned by 

(S.4) { IE1 fEn 0 1 • 1 n J. } e 1 • ... • e n ; Ei = , ; i = , ... , n; E Ei , 0 . 
i=l 

n 
Indeed, take any :,; = e'l

1 • .•• • e'::, Ei = 1, 0; i = 1, ... , n; E Ei "I-0. 

i=l 
According to (3.2) we can find d E F such that 

(S.5) z = deo + (:,;- deo), with z- deo E W. 

By (3.3) and (3.5) 

(S.6) (z - deo) • (:,; - deo) = z •:,; - 2d + d2eo E Feo. 

However, (3.6) holds if and only if d = 0. Consequently z E W and W is 
spanned by the set (3.4). 

Consider now the case n ~ S 

From the above obtained results one infers that the vector e~ +e~ •e~ belongs 
to W. On the other hand 
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which contradicts (3.3). Therefore, the Clifford algebra C(v', q1) for dim V' = 
n ~ 3 is not a quaternionlike algebra. 

Consider n = 2. 

The vector subspace W of C(V', q1) as defined by (3.2) and (3.3) must be 
spanned by { e~, e~, e~ • e~}. One can easily verify that any vector being a linear 
combination of e~, e~, e~ •e~ really satisfies (3.3). Therefore, for n = 2, C(V', q1) 

is a quaternionlike algebra for any (V', q1). In th case of n = 1, the proof that 
C (V', q1) is a quaternionlike algebra for any (V', q1) is trivial. Thus the proof 
of our proposition is complete. □ 

If dim V' = 1 then the structure of the Clifford algebra C (V', q1) is deter­
mined by 

(3.8) I I '( I ) . e1 • e1 = q e1 eo, 

and it is evident that any quaternionlike algebra of dimension 2 over F is 
isomorphic to some 2-dimensional Clifford algebra over F. 

Of course, a !-dimensional quaternionlike algebra over Fis Feo and it is 
also a !-dimensional Clifford algebra over F. Let now dim V' = 2. If { e~, e~} 
is an orthogonal basis for (V', q1) then { e~, e~, e~ • e~} is a basis for the vector 
space W defined by (3.2) and (3.3). Define e~ E Was follows, e~ = e~ • e~. The 
structure of C(V', q1) is now determined by 

(3.9) 

e' • e1 - e1 1 2 - 3, 

The problem which arises is, whether every quaternionlike algebra of di­
mension 4 over F is isomorphic to some 4-dimensional Clifford algebra over F. 

In order to solve this problem we must explore the conditions (2.10) arid (2.11). 
We intend to make it for an arbitrary (n+ !)-dimensional (n ~ 1) quaternion­
like algebra Q over F and then we consider the case n = 3. 

First, one easily finds that (2.11) together with (2.12) imply 

(3.10) a(ua(vw)) + a(wa(uv)) + a(va(wu)) = 0 for all u, v, w EV. 



ASSOCIATIVE ALGEBRAS WITH CONJUGATION 11 

Notice that (3.10) is exactly the Jacobi identity in the Lie algebra (V, o) 
(compare (2.22)). Then (2.11) is equivalent to 

(3.11} b(uv)w - b(vw)u = a(va(uw)), for all u, v, w EV. 

Let {e1, ... ,en} constitute a basis forV. Define scalars bi;, a}k E F, i,:i, k = 
1, ... ,nby 

(3.12) b(eie;)=bij i,:i=1, ... ,n. 

(3.13} 
n . 

a(e;ek) = .E a1kei, :i, k = 1, ... , n. 
1=1 

From (2.12) and (2.13) it follows that 

(3.14) 

With (3.12), (3.13) and (3.14) we can write the conditions (3.11) and (2.10) 
in the form of 

(3.15) 

and 

(3.16} 

where 5j is the Kronecker delta in F. 

Now, the conditions (3.15) are equivalent to the following ones: 
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(3.17) 

(3.18) 

Then (3.17) implies 

(3.19) 

b n k m 
iJ" = E a- a "k m=l ,m 3 

i, j, k = 1, ... , n, j -I k, 

n l m E a-ma3-k=O i,j,k,l=l, ... ,n, lfk, 
m=l 1 

Multiplying (3.15) by ath and summing up over indices k and i, using (3.16) 
and (3.19) we obtain 

(3.20) 

Consider now the consequences of the above presented results for n = 3. Then 
one can put (see Ref. [6]): 

(3.21) 

where d.'1 = d1i and / 1, i, l = 1, 2, 3, are elements in F and E1jk, l, ;, k = 1, 2, 3, is 
the "totally antisymetric Levi-Ci vita symbol" in F( E 123= 1 E F). From (3.19) 
and (3.21), by subtituting them into (3.15), one finds that the conditions (3.15) 
are satisfied if and only if 

(3.22) ·1 d' = 0 or ft = 0, i, l = 1, 2, 3. 

Then the conditions (3.16) are satisfied for any af1 and fi, i, l = 1, 2, 3. Assume 
/1 = 0, l = 1, 2, 3. In this case one can find a basis { e1, e2, e3} for V such that 
either 
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(3.23} eiej = 0 i, j = 1, 2, 3, 

the trivial case, or for some d1, d2 E F 

(3.24} 

Assume now, il = 0 i, l = 1, 2, 3, and, at least, one of scalars Ji, h, his 
non-zero.· Then we can choose a basis { e1, e2 , e3 } for V so that 

(3.25) 

The formulae (3.23), (3.24) and (3.25) present all strucutres for 4-dimen­
sional quaternionlike algebras over a field F. Comparing these formulae with 
(3.9) we arrive at the following proposition: 

PROPOSITION (3.2). There exist only two non-isomorphic quaternionlike 
algebras of dimension 4 over a field F which are not isomorphic to any 4-
dimensional Clifford algebra over F. The structures of these algebras are de­
fined by (3.23) and (3.25). □ 

4. The structures of associative algebras with conjugation of 
dimension -I 1,2,4 

Let Q be (n + 1)-dimensional (n -I 0, 1, 3) quaternionlike algebra over F 
which decomposes according to (2.1) and (2.2). We assume that the characte­
ristic of Fis neither 2 (as before) nor a divisor of n - 3. Then from (3.20) one 
infers 

(4.1} 



14 JERZY F. PLEBANSKI AND MACIEJ PRZANOWSKI 

Multiplying (3.15) by bhi and summing up over index i, employing also (4.1) 
we obtain 

{4.2) 

The conditions (4.2) imply that there exists a basis { e1, ... , n} for V such that 
the matrix (bi;, i, j = 1, ... , n, is of the following diagonal form 

{4.3) {bi; = diag {O, ... , bn), bn E F. 

First consider the case: 

(4.4) (bn=0~b(uv)=0 foranyu,vEV. 

n . 
With the use of (4.4), (3.15) gives ~ akmal" = 0, i, j, k, l = 1, ... , n. Thus 

m=l J 
we have: the trivial case, i.e., 

(4.5) i, :i, k = 1, ... , n, 

or, there exist /, g, h E {1, ... , n} such that 

(4.6) 

but 

(4.7) 

In terms of Lie algebra (V, o) the trivial case (4.4), (4.5), corresponds to 
Abelian (V, o); the case defined by (4.4), (4.6) and (4.7) corresponds to nilpo­
tent Lie algebra (V, o) of the nilpotency index 2. 
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Consider now 

(4.8) bn =I= 0. 

Similary as in Ref. [6] one can prove that, with (4.3) and (4.8) the following 
conditions hold 

i, j, k, = 1, ... , n - 1, 

(4.9) 

Define the matrix A of order n - 1 

(4.10) A= (a~;), i, i = 1, ... , n - 1. 

Then the last formula of (4.9) can be written in the matrix form 

(4.11) 

where In-1 is the unity matrix of order n - 1. From the general theory of 
canonical forms of matrices (see [9]) it follows that ifa matrix A satisfies ( 4.11) 
then A is similar to the matrix of the following form 

0 

A'= 

0 Ar 

where matices Av, v = 1, ... , r take the form of 
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Av= (O 1): orAv=(d)withd 2 =bn;v=l, ... ,r. 
bn 0 

We must consider two cases. First, assume that there exists a scalar s E F 
such that 

(4.13) 

Then one can choose a vector en so that 

(4.14) 

Substituting (4.14) into the first set of matrices of (4.12) we have 

Av = ( O 1) which is similar to the matrix ( 1 O ) . 
1 0 0 -1 

Concluding, ifthere exists a scalars E F satisfying (4.13) then also exists 
a basis { e1, ... , en} for V such that ( 4.3) holds with bn = 1 and the matrix A 
defined by (4.10) is of the form 

ol 
(4.15) A= 

0 

j ,El= :!:1,i=l, ... ,n-1. 

En 

Let now bn be such that the equation (4.13) doesn't have solution in F. 
From the form of the matrix A' and (4.12) one infers that this can only occur 
if n - 1 is even. Then the matrices Av in ( 4.12) take the form of 

(4.16) Av= ( o 1), 
bn 0 

1 
V = 1, ... , 2(n - 1). 



ASSOCIATIVE ALGEBRAS WITH CONJUGATION 17 

Therefore, one can choose an independent set of vectors { e1, ... en-1} such 
that the matrix A defined by (4.10) takes the form of 

(4.17) 

where I½ ( n-l) is the unity matrix of order ½ ( n - 1). 

In terms of Lie algebra (V, o) the case of ( 4.8) corresponds to solvable but 
non-nilpotent (V,o). 

Thus, for n -f. O, 1, 3 and for a field F of the characteristics -f. 2 and a divisor 
of n - 3, an (n + 1)-dimensional quaternionlike algebra over Fis defined by 
one of the following conditions: 

(i) (4.4) and (4.5) 

(ii) (4.4), (4.6) and (4.7) 

(iii) (4.3) with (4.14); (4.9) and (4.15) with (4.10), 

(iv) (4.3) with bn E F such that Eq. (4.13) does not have solution in F; (4.9) 
and (4.17) with (4.10) 

Remark: One can easily verify that the 4-dimensional quaternionlike alge­
bra (3.23) is of type (i), the algebra (3.25) is of type (iii), the algebra (3.24) 
with d1 = d2 = 0 is of type (ii) and the algebra (3.24) with d1 = O, d2 -f. O(d1 -f. 
O, d2 = 0) is of type (iii) or (iv). 

For convenience, in our considerations we have dealt with quaternionlike 
algebras instead of associative algebras with conjugation. It is evident from 
Sec. 2 that these considerations concern quaternionlike algebras as well as 
associative algebras with conjugation. 

CENTRO DE l~TIGACION Y DE EsTUDIOS AVANZADOS DEL IPN 
MEXICO, D.F., MEXIco 07000 
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