Boletin de la Sociedad Matematica Mexicana Vol. 33 No. 2, 1988

ON QUASI-METRIZATION OF BITOPOLOGICAL SPACES

By JANINA EWERT

Summary

We formulate the sufficient conditions under which for a bitopological space (X, τ_1, τ_2) there exist conjugate quasi-pseudo-metrics p and q inducing the given topologies τ_1 and τ_2 respectively. The main result is presented in Theorem 6; this generalizes the result of Kelly (Corollary 8).

A function $p: X \times X \rightarrow [0, \infty)$ is called quasi-pseudo-metric on a set X if $p(x, x) = 0$ for $x \in X$, and $p(x, y) \leq p(x, z) + p(z, y)$ for $x, y, z \in X$. If p satisfies the condition $p(x, y) = 0$ if and only if $x = y$, then *p* is said to be quasi-metric [3].

The function *q* given by $q(x, y) = p(y, x)$ is also quasi-pseudo-metric; so we say that *p* and *q* are conjugate. Let us put

$$
K(x,r,p) = \{y \in X : p(x,y) < r\},\newline K(x,r,q) = \{y \in X : q(x,y) < r\}.
$$

Then the families $\{K(x, r, p) : x \in X; r > 0\}$ and $\{K(x, r, q) : x \in X; r > 0\}$ form bases of some topologies P and Q on X. For any set $A \subset X$ we use the symbols $\mathcal{P}\text{-}\mathrm{cl}(A)$ and $\mathcal{Q}\text{-}\mathrm{cl}(A)$ to denote the $\mathcal{P}\text{-}\mathrm{closure}$ or $\mathcal{Q}\text{-}\mathrm{closure}$ of A respectively. Moreover let us put $p(x, A) = \inf\{p(x, a) : a \in A\}, q(x, A) =$ inf{ $q(x, a) : a \in A$ }. Then we have \mathcal{P} -cl(A) = { $x \in X : p(x, A) = 0$ } and $\mathcal{Q}\text{-}cl(A) = \{x \in X : q(x, A) = 0\},\;[3].$

Now let (X, τ_1, τ_2) be a bitopological space, i.e. the set X with two given topologies.

LEMMA (1). Let (X, r_1, r_2) be a bitopological space, p any quasi-pseudo-metric *on X* and $A \subset X$. If $p(x, \cdot) : X \to [0, \infty)$ is a τ_1 -upper semicontinuous function *for every* $x \in X$, then the function $p(\cdot, A) : X \to [0, \infty)$ is τ_1 -lower semicontin*uous. If* $p(\cdot, y) : X \to [0, \infty)$ *is r₂-upper semicontinuous for every* $y \in X$ *, then* $q(\cdot, A): X \to [0, \infty)$ *is r₂*-lower semicontinuous, where $q(x, y) = p(y, x)$.

The proof of this Lemma is elementary, so it is omitted.

In a bitopological space (X, r_1, r_2) , the topology r_1 is said to be regular with respect to τ_j if for every τ_i -open set $U \subset X$ and every $x \in U$ there exists $U_1 \in \tau_i$ such that $x \in U_1 \subset \tau_j - cl(U_1) \subset U$. A bitopological space (X, τ_1, τ_2) is said to be pairwise regular if τ_i is regular with respect to τ_j for $i, j \in \{1, 2\}, i \neq j$. [3]. (X, τ_1, τ_2) is called pairwise normal if for any τ_1 -closed set A and τ_2 -closed set B with $A \cap B = \emptyset$ there exist disjoint sets $U \in \tau_1$, $V \in \tau_2$ such that $A \subset V$ and $B\subset U$, [3].

LEMMA (2). [3, Th. 2.7]. *Let* (X, τ_1, τ_2) *be a pairwise normal bitopological space. Then for any r₂-closed set A and r₁-closed set B with* $A \cap B = \emptyset$ *there*

exists a function q: $X \rightarrow [0, 1]$ *which is r₁-upper semicontinuous and r₂-lower semicontinuous such that* $g(x) = 0$ *for* $x \in A$ *and* $g(x) = 1$ *for* $x \in B$.

LEMMA (3). [2, Lemma 2.3]. *A bitopological space* (X, *TI, Tz) is pairwise normal if and only if for every* τ_1 *-closed set M and* τ_i *-open set W such that M* \subset *W,* $i, j \in \{1, 2\}, i \neq j$, there exists a sequence $\{W_n : n \geq 1\}$ of τ_j -open sets such that $M \subset \bigcup_{n=1}^{\infty} W_n$ and $\tau_1 - \text{cl}(W_n) \subset W$ for

LEMMA (4). Let (X, τ_1, τ_2) be a pairwise regular bitopological space. If τ_1 has *a* τ_i -open base which is σ -locally finite in (X, τ_i) for $i, j \in \{1, 2\}$, $i \neq j$, then (X, τ_1, τ_2) *is pairwise normal.*

Proof. Let *M* be a τ_i -closed set, $W \in \tau_j$ and let $M \subset W$. By $B = \bigcup_{n=1}^{\infty} B_n \subset \tau_j$ we denote a base of τ_j such that \mathcal{B}_n is τ_i -locally finite for $n \geq 1$. For every point $x \in M$ we choose $n = n(x) \geq 1$ and $U(x) \in \mathcal{B}_{n(x)}$ such that $x \in U(x) \subset$ $\tau_1-\mathrm{cl}(U(x))\subset W$. Let us put $W_n=\cup\{U(x):n(x)=n\}$. Then we have $W_n\in\tau_j$, $\tau_i - \text{cl}(W_n) = \cup \{\tau_i - \text{cl}(U(x)) : n(x) = n\}, M \subset \bigcup_{n=1}^{\infty} W_n \text{ and } \tau_i - \text{cl}(W_n) \subset W \text{ for } n$ $n \geq 1$. Thus from Lemma 3, (X, τ_1, τ_2) is pairwise normal.

LEMMA (5). Assume that (X, τ_1, τ_2) is a bitopological space and $\{p_n : n \geq 1\}$ *is a sequence of quasi-pseudo-metrics on X which all are bounded by* 1. *Let*

$$
p(x,y) = \sum_{n=1}^{\infty} 2^{-n} p_n(x,y)
$$

$$
q_n(x,y) = p_n(y,x) \text{ and } q(x,y) = p(y,x).
$$

If the following two conditions (1), (2) *are satisfied*

- (1) $p_n(x, \cdot) : X \to [0,1]$ *is* τ_1 *-upper semicontinuous and* τ_2 *-lower semicontinuous for* $x \in X$, $n \geq 1$;
- (2) *for each* τ_1 -clossed set $A \subset X$ and a point $x \notin A$ there exists $n \geq 1$ such *that* $p_n(x, A) > 0$;

then the topology $\mathcal P$ *induced by the quasi-pseudo-metric p coincides with* τ_1 . *If the following two conditions* (3), (4) *are satisfied*

- (3) $p_n(\cdot, y) : X \to [0, 1]$ *is* τ_1 -lower semicontinuous and τ_2 -upper semicontin*uous for* $y \in X$, $n \geq 1$;
- (4) *for each* τ_2 *-closed set B* $\subset X$ *and a point* $y \notin B$ *there exists n* ≥ 1 *such that* $q_n(y, B) > 0;$

then the topology Q induced by q coincides with τ_2 *.*

Moreover, if conditions (1), (2) (or (3), (4)) *hold and both* τ_1 *and* τ_2 *are* T_1 *topologies, then p and q are quasi-metrics inducing* τ_1 (resp. τ_2).

Proof. It is evident that *p* and *q* are quasi-pseudo-metrics. Moreover, if (1) (or (3)) is satisfied, then $p(x, \cdot); X \to [0, 1]$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous for $x \in X$ (resp. $p(\cdot, y) : X \to [0, 1]$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous).

Assume that (1) and (2) hold and let $x \in \tau_1 - \text{cl}(A)$. Then for some $n \geq 1$ we have $p_n(x, \tau_1 - \text{cl}(A)) = r > 0$. Hence

$$
p(x, A) \ge p(x, \tau_1 - \mathrm{cl}(A)) \ge 2^{-n} p_n(x, \tau_1 - \mathrm{cl}(A)) = 2^{-n} r > 0.
$$

So we have shown that the condition $p(x, A) = 0$ implies $x \in \tau_1 - \text{cl}(A)$. According to Lemma 1 the function $p(\cdot, A) : X \to [0, 1]$ is τ_1 -lower semicontinuous. Let us put $\Box = \{(a,1]: 0 \le a < 1\} \cup \{(0,0,1]\}$ and $f(x) = p(x,A)$; then $f : (X, \tau_1) \to ([0, 1], \mathcal{I})$ is a continuous function. For a point $x \in \tau_1-cl(A)$ we have $f(x) \in f(r_1 - \text{cl}(A)) \subset \mathcal{I} - \text{cl}(f(A))$. Because $f(A) = \{p(z, A) : z \in A\}$ $\{0\}$ and \Box - cl($\{0\}$) = \cap { $[0, \epsilon]$: $0 < \epsilon \leq 1$ } = {0} we obtain $f(x) = 0$. Thus from the condition $x \in \tau_1 - \text{cl}(A)$ it follows $p(x, A) = 0$. Consequently $x \in \tau_1 - \text{cl}(A)$ if and only if $p(x, A) = 0$. It means that the topology $\mathcal P$ induced by p coincides with τ_1 .

Applying these same arguments we can prove that under assumptions (3), (4) the topology Q induced by q is equal to τ_2 .

Now let (1), (2) be satisfied and let both τ_1 , τ_2 be T_1 -topologies. For any points $x, y \in X$, $x \neq y$, we have $x \notin \tau_1 - \text{cl}(\{y\}) = \{y\}$; so for some $n \geq 1$ it holds $p_n(x, y) = p_n(x, \{y\}) > 0$. Consequently $p(x, y) > 0$, and that finishes the proof.

THEOREM (6). Let (X, r_1, r_2) be a pairwise regular bitopological space such *that* τ_i *has a* τ_i -open base which is σ -locally finite in (X, τ_i) for $i, j \in \{1, 2\}$ $i \neq j$. Then there exist conjugate quasi-pseudo-metrics p,q inducing the given *topologies* r_1 , r_2 . Moreover, if both r_1 , r_2 are T_1 -topologies, then p, q are quasi*metrics.*

Proof. We use a method analogous to that in the proof of the Nagata - Smir- $\text{now metrization theorem [1, p. 351]. Let } \mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n \subset r_1 \text{ and } \mathcal{B}' = \bigcup_{n=1}^{\infty} \mathcal{B}'_n \subset \mathcal{B}'_n$ τ_2 be bases of τ_1 and τ_2 such that E'_n is τ_1 -locally finite and \mathcal{B}_n is τ_2 -locally finite for $n \geq 1$. Let $\mathcal{B}_n = \{U_s : s \in S_n\}$. For each pair (m, n) of natural numbers and each $s \in S_n$ we denote $V_s = \bigcup \{U' \in \mathcal{B}_m : \tau_2-\mathrm{cl}(U') \subset U_s\}$. Since \mathcal{B}_m is τ_2 locally finite we obtain $\tau_2 - \text{cl}(V_s) \subset U_s$. From Lemma 4 (X, τ_1, τ_2) is pairwise normal; so according to Lemma 2 there exists a function $f_s: X \to [0, 1]$ which is τ_1 -lower semicontinuous τ_2 -upper semicontinuous and such that $f_s(x) = 0$ for $x \in X \backslash U_s$ and $f_s(x) = 1$ for $x \in \tau_2$ -cl(V_s). For every point $x \in X$ we can choose a τ_2 -neighbourhood $U(x)$ and a finite set $S(x) \subset S_n$ such that $U_s \cap U(x) = \emptyset$ for $s \in S_n \backslash S(x)$. The family $\{U(x) \times U(y) : x, y \in X\}$ is then a $\tau_2 \times \tau_2$ -open cover of $X \times X$. For every member of this cover we define a function $g_{xy}: U(x) \times U(y) \rightarrow [0, \infty)$ assuming

$$
g_{xy}(x',x'')=\sum_{s\in S(x)\cup S(y)}\max\{0,f_s(x')-f_s(x'')\}.
$$

If $s' \in S_n \setminus (S(x) \cup S(y))$, then we have $U(x) \cup U(y) \subset X \setminus U_{s'}$, so $f_{s'}(U(x) \cup$ $U(y)$ = {0}. Therefore the above formula can be written in the from

$$
g_{xy}(x',x'')=\sum_{s\in S_n}\max\{0,f_s(x')-f_s(x'')\}.
$$

For each $x' \in U(x)$ the function $g_{xy}(x', \cdot) : U(y) \to [0, \infty)$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous and for $x'' \in U(y)$ the function $g_{xy}(\cdot, x'')$: $U(x) \rightarrow [0,\infty)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous. The family $\{g_{xy} : x, y \in X\}$ consists of compatible functions, so it implies that their common extension g_{mn} : $X \times X \rightarrow [0,\infty)$ is such that $g_{mn}(x, \cdot) : X \rightarrow$ $[0, \infty)$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous for $x \in X$ and $g_{mn}(\cdot, y) : X \to [0, \infty)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous. Now let ρ_{mn} : $X \times X \rightarrow [0, 1]$ be the function defined by letting $\rho_{mn}(x, y) =$ $min\{1, q_{mn}(x, y)\}.$

One readily sees that $\{ \rho_{mn} : m, n \geq 1 \}$ is a sequence of quasi-pseudometrics on *X* which are bounded by 1 and satisfy the condition (1) in Lemma 5.

Now let *A* be a non-empty τ_1 -closed set and let $x \notin A$. We can choose $m, n \geq 1$ and $s \in S_n$, $s' \in S_m$ such that $x \in U_{s'} \subset \tau_2 - \text{cl}(U_{s'}) \subset U_s$ and $A \subset X \backslash U_s$. The function f_s defined for the pair (m, n) satisfies the conditions $f_s(x) = 1$ and $f_s(a) = 0$ for $a \in A$. It implies $\rho_{mn}(x, a) = 1$ for $a \in A$ and consequently $\rho_{mn}(x, A) = 1$. Thus we have shown that $\{\rho_{mn}: m, n \geq 1\}$ satisfies also (2) in Lemma 5. According to this Lemma quasi-pseudo-metrics ρ_{mn} generate the quasi-pseudo-metric p_1 on X such that $p_1(x, \cdot) : X \to [0, \infty)$ is τ_1 upper semicontinuous τ_2 -lower semicontinuous for $x \in X$ and $p_1(\cdot, y) : X \to Y$ $[0, \infty)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous. The topology \mathcal{P}_1 induced by p_1 coincides with τ_1 . Denoting by q_1 the conjugate quasi-pseudometric we have that the function $q_1(x,): X \to [0, \infty)$ is τ_2 -upper semicontinuous for every $x \in X$. Therefore the sets $K(x, r, q_1)$ are r_2 -open, what implies $\mathcal{Q}_1 \subset \tau_2$, where \mathcal{Q}_1 is the topology induced by q_1 . Now, beginning from the base \mathcal{B}' and using the same arguments we construct the quasi-pseudo-metric q_2 such that $q_2(x, \cdot)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous for $x \in X$ and $q_2(\cdot, y)$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous. Let $p_2(x, y) = q_2(y, x)$. Then the pair (p_2, q_2) of conjugate quasi-pseudo-metrics induces topologies \mathcal{P}_2 , \mathcal{Q}_2 such that $\mathcal{P}_2 \subset \tau_1$ and $\mathcal{Q}_2 = \tau_2$. Finally we define functions p, q by $p = p_1 + p_2$ and $q = q_1 + q_2$. Obviously p, q are conjugate quasi-pseudo-metrics. Let \mathcal{P}, \mathcal{Q} be the topologies induced by *p* and *q*. The evident inclusions $K(x, r, p) \subset K(x, r, p_1)$ and $K(x, r, q) \subset K(x, r, q_2)$ for $x \in X$, $r > 0$ imply $\tau_1 \subset \mathcal{P}$ and $\tau_2 \subset \mathcal{Q}$. Because $p(x, \cdot)$ is a τ_1 -upper semicontinuous function and $q(x, \cdot)$ is τ_2 -upper semicontinuous, the sets $K(x, r, p)$ are τ_1 -open and the sets $K(x, r, q)$ are r_2 -open for $x \in X, r > 0$. From this it follows $\mathcal{P} = r_1$ and $\mathcal{Q} = \tau_2$.

If τ_1 and τ_2 are T_1 -topologies, then by virtue of Lemma 5 the constructed functions p_1 and q_2 are quasi-metrics. Hence also p and q are quasi-metrics.

COROLLARY (7). Let (X, r_1, r_2) be a pairwise regular bitopological space such *that* τ_1 *has a* τ_i -open base which is *o*-discrete in $(X\tau_j)$ for $i \neq j$, $i, j \in \{1, 2\}$. *Then there exist conjugate quasi-pseudo-metrics inducing the given topologies.*

COROLLARY (8). [3, Th. 2.8]. *If* (X, r_1, r_2) *is a pairwise regular bitopological* space such that both τ_1 and τ_2 are second countable, then there exist conjugate *quasi-pseudo-metrics inducing the given topologies.*

PEDAGOGICAL UNIVERSITY SLUPSK, POLAND

REFERENCES

- [1] R. Engelking, General topology, Monografie Matematyczne, Polish Scientific Publishers, Warszawa 1977.
- [2] J. Ewert, Multivalued maps and bitopological spaces, Slupsk 1985 (Polish)
- [3] J. C. Kelly: Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.