Boletín de la Sociedad Matemática Mexicana Vol. 33 No. 2, 1988

ON QUASI-METRIZATION OF BITOPOLOGICAL SPACES

By JANINA EWERT

Summary

We formulate the sufficient conditions under which for a bitopological space (X, τ_1, τ_2) there exist conjugate quasi-pseudo-metrics p and q inducing the given topologies τ_1 and τ_2 respectively. The main result is presented in Theorem 6; this generalizes the result of Kelly (Corollary 8).

A function $p: X \times X \to [0, \infty)$ is called quasi-pseudo-metric on a set X if p(x, x) = 0 for $x \in X$, and $p(x, y) \leq p(x, z) + p(z, y)$ for $x, y, z \in X$. If p satisfies the condition p(x, y) = 0 if and only if x = y, then p is said to be quasi-metric [3].

The function q given by q(x, y) = p(y, x) is also quasi-pseudo-metric; so we say that p and q are conjugate. Let us put

$$K(x,r,p) = \{y \in X : p(x,y) < r\},\ K(x,r,q) = \{y \in X : q(x,y) < r\}.$$

Then the families $\{K(x,r,p) : x \in X; r > 0\}$ and $\{K(x,r,q) : x \in X, r > 0\}$ form bases of some topologies \mathcal{P} and \mathcal{Q} on X. For any set $A \subset X$ we use the symbols \mathcal{P} -cl(A) and \mathcal{Q} -cl(A) to denote the \mathcal{P} -closure or \mathcal{Q} -closure of Arespectively. Moreover let us put $p(x, A) = \inf\{p(x, a) : a \in A\}, q(x, A) = \inf\{q(x, a) : a \in A\}$. Then we have \mathcal{P} -cl(A) = $\{x \in X : p(x, A) = 0\}$ and \mathcal{Q} -cl(A) = $\{x \in X : q(x, A) = 0\}$, [3].

Now let (X, τ_1, τ_2) be a bitopological space, i.e. the set X with two given topologies.

LEMMA (1). Let (X, τ_1, τ_2) be a bitopological space, p any quasi-pseudo-metric on X and $A \subset X$. If $p(x, \cdot) : X \to [0, \infty)$ is a τ_1 -upper semicontinuous function for every $x \in X$, then the function $p(\cdot, A) : X \to [0, \infty)$ is τ_1 -lower semicontinuous. If $p(\cdot, y) : X \to [0, \infty)$ is τ_2 -upper semicontinuous for every $y \in X$, then $q(\cdot, A) : X \to [0, \infty)$ is τ_2 -lower semicontinuous, where q(x, y) = p(y, x).

The proof of this Lemma is elementary, so it is omitted.

In a bitopological space (X, τ_1, τ_2) , the topology τ_1 is said to be regular with respect to τ_j if for every τ_i -open set $U \subset X$ and every $x \in U$ there exists $U_1 \in \tau_i$ such that $x \in U_1 \subset \tau_j - \operatorname{cl}(U_1) \subset U$. A bitopological space (X, τ_1, τ_2) is said to be pairwise regular if τ_i is regular with respect to τ_j for $i, j \in \{1, 2\}, i \neq j$. [3]. (X, τ_1, τ_2) is called pairwise normal if for any τ_1 -closed set A and τ_2 -closed set B with $A \cap B = \emptyset$ there exist disjoint sets $U \in \tau_1, V \in \tau_2$ such that $A \subset V$ and $B \subset U$, [3].

LEMMA (2). [3, Th. 2.7]. Let (X, τ_1, τ_2) be a pairwise normal bitopological space. Then for any τ_2 -closed set A and τ_1 -closed set B with $A \cap B = \emptyset$ there

JANINA EWERT

exists a function $g: X \to [0, 1]$ which is τ_1 -upper semicontinuous and τ_2 -lower semicontinuous such that g(x) = 0 for $x \in A$ and g(x) = 1 for $x \in B$.

LEMMA (3). [2, Lemma 2.3]. A bitopological space (X, τ_1, τ_2) is pairwise normal if and only if for every τ_1 -closed set M and τ_j -open set W such that $M \subset W$, $i, j \in \{1, 2\}, i \neq j$, there exists a sequence $\{W_n : n \ge 1\}$ of τ_j -open sets such that $M \subset \bigcup_{n=1}^{\infty} W_n$ and $\tau_1 - \operatorname{cl}(W_n) \subset W$ for $n \ge 1$.

LEMMA (4). Let (X, τ_1, τ_2) be a pairwise regular bitopological space. If τ_1 has a τ_i -open base which is σ -locally finite in (X, τ_j) for $i, j \in \{1, 2\}, i \neq j$, then (X, τ_1, τ_2) is pairwise normal.

Proof. Let M be a τ_i -closed set, $W \in \tau_j$ and let $M \subset W$. By $\mathcal{B} = \bigcup_{n=1}^{\mathcal{O}} \mathcal{B}_n \subset \tau_j$ we denote a base of τ_j such that \mathcal{B}_n is τ_i -locally finite for $n \geq 1$. For every point $x \in M$ we choose $n = n(x) \geq 1$ and $U(x) \in \mathcal{B}_{n(x)}$ such that $x \in U(x) \subset \tau_1 - \operatorname{cl}(U(x)) \subset W$. Let us put $W_n = \bigcup \{U(x) : n(x) = n\}$. Then we have $W_n \in \tau_j$, $\tau_i - \operatorname{cl}(W_n) = \bigcup \{\tau_i - \operatorname{cl}(U(x)) : n(x) = n\}, M \subset \bigcup_{n=1}^{\mathcal{O}} W_n$ and $\tau_i - \operatorname{cl}(W_n) \subset W$ for $n \geq 1$. Thus from Lemma 3, (X, τ_1, τ_2) is pairwise normal.

LEMMA (5). Assume that (X, τ_1, τ_2) is a bitopological space and $\{p_n : n \ge 1\}$ is a sequence of quasi-pseudo-metrics on X which all are bounded by 1. Let

$$p(x, y) = \sum_{n=1}^{\infty} 2^{-n} p_n(x, y)$$
$$q_n(x, y) = p_n(y, x) \text{ and } q(x, y) = p(y, x).$$

If the following two conditions (1), (2) are satisfied

- (1) $p_n(x, \cdot) : X \to [0, 1]$ is τ_1 -upper semicontinuous and τ_2 -lower semicontinuous for $x \in X$, $n \ge 1$;
- (2) for each τ_1 -clossed set $A \subset X$ and a point $x \notin A$ there exists $n \ge 1$ such that $p_n(x, A) > 0$;

then the topology \mathcal{P} induced by the quasi-pseudo-metric p coincides with τ_1 . If the following two conditions (3), (4) are satisfied

- (3) $p_n(\cdot, y) : \overline{X} \to [0, 1]$ is τ_1 -lower semicontinuous and τ_2 -upper semicontinuous for $y \in X$, $n \ge 1$;
- (4) for each τ_2 -closed set $B \subset X$ and a point $y \notin B$ there exists $n \ge 1$ such that $q_n(y, B) > 0$;

then the topology Q induced by q coincides with τ_2 .

Moreover, if conditions (1), (2) (or (3), (4)) hold and both τ_1 and τ_2 are T_1 -topologies, then p and q are quasi-metrics inducing τ_1 (resp. τ_2).

Proof. It is evident that p and q are quasi-pseudo-metrics. Moreover, if (1) (or (3)) is satisfied, then $p(x, \cdot); X \to [0, 1]$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous for $x \in X$ (resp. $p(\cdot, y) : X \to [0, 1]$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous).

Assume that (1) and (2) hold and let $x \in \tau_1 - \operatorname{cl}(A)$. Then for some $n \ge 1$ we have $p_n(x, \tau_1 - \operatorname{cl}(A)) = r > 0$. Hence

$$p(x, A) \ge p(x, \tau_1 - \operatorname{cl}(A)) \ge 2^{-n} p_n(x, \tau_1 - \operatorname{cl}(A)) = 2^{-n} r > 0.$$

So we have shown that the condition p(x, A) = 0 implies $x \in \tau_1 - cl(A)$. According to Lemma 1 the function $p(\cdot, A) : X \to [0, 1]$ is τ_1 -lower semicontinuous. Let us put $\mathfrak{T} = \{(a, 1] : 0 \leq a < 1\} \cup \{\emptyset, [0, 1]\}$ and f(x) = p(x, A); then $f : (X, \tau_1) \to ([0, 1], \mathfrak{T},)$ is a continuous function. For a point $x \in \tau_1 - cl(A)$ we have $f(x) \in f(\tau_1 - cl(A)) \subset \mathfrak{T} - cl(f(A))$. Because $f(A) = \{p(z, A) : z \in A\} = \{0\}$ and $\mathfrak{T} - cl(\{0\}) = \cap\{[0, \epsilon] : 0 < \epsilon \leq 1\} = \{0\}$ we obtain f(x) = 0. Thus from the condition $x \in \tau_1 - cl(A)$ it follows p(x, A) = 0. Consequently $x \in \tau_1 - cl(A)$ if and only if p(x, A) = 0. It means that the topology \mathfrak{P} induced by p coincides with τ_1 .

Applying these same arguments we can prove that under assumptions (3), (4) the topology Q induced by q is equal to τ_2 .

Now let (1), (2) be satisfied and let both τ_1 , τ_2 be T_1 -topologies. For any points $x, y \in X$, $x \neq y$, we have $x \notin \tau_1 - \operatorname{cl}(\{y\}) = \{y\}$; so for some $n \geq 1$ it holds $p_n(x, y) = p_n(x, \{y\}) > 0$. Consequently p(x, y) > 0, and that finishes the proof.

THEOREM (6). Let (X, τ_1, τ_2) be a pairwise regular bitopological space such that τ_i has a τ_i -open base which is σ -locally finite in (X, τ_j) for $i, j \in \{1, 2\}$ $i \neq j$. Then there exist conjugate quasi-pseudo-metrics p, q inducing the given topologies τ_1, τ_2 . Moreover, if both τ_1, τ_2 are T_1 -topologies, then p, q are quasimetrics.

Proof. We use a method analogous to that in the proof of the Nagata - Smirnov metrization theorem [1, p. 351]. Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n \subset \tau_1$ and $\mathcal{B}' = \bigcup_{n=1}^{\infty} \mathcal{B}'_n \subset \tau_2$ be bases of τ_1 and τ_2 such that \mathcal{B}'_n is τ_1 -locally finite and \mathcal{B}_n is τ_2 -locally finite for $n \geq 1$. Let $\mathcal{B}_n = \{U_s : s \in S_n\}$. For each pair (m, n) of natural numbers and each $s \in S_n$ we denote $V_s = \cup \{U' \in \mathcal{B}_m : \tau_2 - \operatorname{cl}(U') \subset U_s\}$. Since \mathcal{B}_m is τ_2 -locally finite we obtain $\tau_2 - \operatorname{cl}(V_s) \subset U_s$. From Lemma 4 (X, τ_1, τ_2) is pairwise normal; so according to Lemma 2 there exists a function $f_s : X \to [0, 1]$ which is τ_1 -lower semicontinuous τ_2 -upper semicontinuous and such that $f_s(x) = 0$ for $x \in X \setminus U_s$ and $f_s(x) = 1$ for $x \in \tau_2 - \operatorname{cl}(V_s)$. For every point $x \in X$ we can choose a τ_2 -neighbourhood U(x) and a finite set $S(x) \subset S_n$ such that $U_s \cap U(x) = \emptyset$ for $s \in S_n \setminus S(x)$. The family $\{U(x) \times U(y) : x, y, \in X\}$ is then a $\tau_2 \times \tau_2$ -open cover of $X \times X$. For every member of this cover we define a function $g_{xy} : U(x) \times U(y) \to [0, \infty)$ assuming

$$g_{xy}(x',x'') = \sum_{s \in S(x) \cup S(y)} \max\{0, f_s(x') - f_s(x'')\}.$$

If $s' \in S_n \setminus (S(x) \cup S(y))$, then we have $U(x) \cup U(y) \subset X \setminus U_{s'}$, so $f_{s'}(U(x) \cup U(y)) = \{0\}$. Therefore the above formula can be written in the from

$$g_{xy}(x',x'') = \sum_{s \in S_n} \max\{0, f_s(x') - f_s(x'')\}.$$

For each $x' \in U(x)$ the function $g_{xy}(x', \cdot) : U(y) \to [0, \infty)$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous and for $x'' \in U(y)$ the function $g_{xy}(\cdot, x'') :$ $U(x) \to [0, \infty)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous. The family $\{g_{xy} : x, y \in X\}$ consists of compatible functions, so it implies that their common extension $g_{mn} : X \times X \to [0, \infty)$ is such that $g_{mn}(x, \cdot) : X \to$ $[0, \infty)$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous for $x \in X$ and $g_{mn}(\cdot, y) : X \to [0, \infty)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous. Now let $\rho_{mn} : X \times X \to [0, 1]$ be the function defined by letting $\rho_{mn}(x, y) =$ $\min\{1, g_{mn}(x, y)\}$.

One readily sees that $\{\rho_{mn} : m, n \ge 1\}$ is a sequence of quasi-pseudometrics on X which are bounded by 1 and satisfy the condition (1) in Lemma 5.

Now let A be a non-empty τ_1 -closed set and let $x \notin A$. We can choose $m, n \geq 1$ and $s \in S_n, s' \in S_m$ such that $x \in U_{s'} \subset \tau_2 - \operatorname{cl}(U_{s'}) \subset U_s$ and $A \subset X \setminus U_s$. The function f_s defined for the pair (m, n) satisfies the conditions $f_s(x) = 1$ and $f_s(a) = 0$ for $a \in A$. It implies $\rho_{mn}(x, a) = 1$ for $a \in A$ and consequently $\rho_{mn}(x, A) = 1$. Thus we have shown that $\{\rho_{mn} : m, n \geq 1\}$ satisfies also (2) in Lemma 5. According to this Lemma quasi-pseudo-metrics ρ_{mn} generate the quasi-pseudo-metric p_1 on X such that $p_1(x, \cdot) : X \to [0, \infty)$ is τ_1 upper semicontinuous τ_2 -lower semicontinuous for $x \in X$ and $p_1(\cdot, y) : X \to X$ $[0,\infty)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous. The topology \mathcal{P}_1 induced by p_1 coincides with τ_1 . Denoting by q_1 the conjugate quasi-pseudometric we have that the function $q_1(x, \cdot) : X \to [0, \infty)$ is τ_2 -upper semicontinuous for every $x \in X$. Therefore the sets $K(x, r, q_1)$ are τ_2 -open, what implies $\mathcal{Q}_1 \subset \tau_2$, where \mathcal{Q}_1 is the topology induced by q_1 . Now, beginning from the base \mathcal{B}' and using the same arguments we construct the quasi-pseudo-metric q_2 such that $q_2(x, \cdot)$ is τ_1 -lower semicontinuous τ_2 -upper semicontinuous for $x \in X$ and $q_2(\cdot, y)$ is τ_1 -upper semicontinuous τ_2 -lower semicontinuous. Let $p_2(x, y) = q_2(y, x)$. Then the pair (p_2, q_2) of conjugate quasi-pseudo-metrics induces topologies $\mathcal{P}_2, \mathcal{Q}_2$ such that $\mathcal{P}_2 \subset \tau_1$ and $\mathcal{Q}_2 = \tau_2$. Finally we define functions p, q by $p = p_1 + p_2$ and $q = q_1 + q_2$. Obviously p, q are conjugate quasi-pseudo-metrics. Let \mathcal{P}, \mathcal{Q} be the topologies induced by p and q. The evident inclusions $K(x, r, p) \subset K(x, r, p_1)$ and $K(x, r, q) \subset K(x, r, q_2)$ for $x \in X$, r > 0 imply $\tau_1 \subset \mathcal{P}$ and $\tau_2 \subset \mathcal{Q}$. Because $p(x, \cdot)$ is a τ_1 -upper semicontinuous function and $q(x, \cdot)$ is τ_2 -upper semicontinuous, the sets K(x, r, p) are τ_1 -open and the sets K(x, r, q) are τ_2 -open for $x \in X, r > 0$. From this it follows $\mathcal{P} = \tau_1$ and $\mathcal{Q} = \tau_2$.

If τ_1 and τ_2 are T_1 -topologies, then by virtue of Lemma 5 the constructed functions p_1 and q_2 are quasi-metrics. Hence also p and q are quasi-metrics.

COROLLARY (7). Let (X, τ_1, τ_2) be a pairwise regular bitopological space such that τ_1 has a τ_i -open base which is σ -discrete in $(X\tau_j)$ for $i \neq j, i, j \in \{1, 2\}$. Then there exist conjugate quasi-pseudo-metrics inducing the given topologies.

COROLLARY (8). [3, Th. 2.8]. If (X, τ_1, τ_2) is a pairwise regular bitopological space such that both τ_1 and τ_2 are second countable, then there exist conjugate quasi-pseudo-metrics inducing the given topologies.

PEDAGOGICAL UNIVERSITY SLUPSK, POLAND

References

- R. Engelking, General topology, Monografie Matematyczne, Polish Scientific Publishers, Warszawa 1977.
- [2] J. Ewert, Multivalued maps and bitopological spaces, Slupsk 1985 (Polish)
- [3] J. C. Kelly: Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.