Boletín de la Sociedad Matemática Mexicana Vol. 33 No. 2, 1988

INTERCHANGE OF LARGE TIME AND SCALING LIMITS IN STABLE DAWSON-WATANABE PROCESSES: A PROBABILISTIC PROOF

BY A. WAKOLBINGER

1. Introduction and formulation of the result

Consider a population of individuals in \mathbb{R}^d , each of which carries unit mass, evolving in time as follows: Initially, the individuals' positions form a Poisson process with intensity measure ρ . Each particle performs symmetric stable motion with exponent $\alpha \in (0, 2]$ for a random lifetime which is exponentially distributed with paramter V. At the end of this lifetime it branches into a random number N of particles, all of them obeying (independently) the dynamics just described, starting at the parent particle's final position. The random offspring number N is assumed to have moment generating function $Es^N = s + \frac{1}{2}(1-s)^{1+\beta}$, $\beta \in (0,1]$. Mathematically, this gives rise to a stochastic process $X_t^{\rho,V}$ taking its values in the counting measures on \mathbb{R}^d . For a fixed constant γ , and $n = 1, 2, \ldots$, we consider the rescalings $X_t^n :=$

For a fixed constant γ , and n = 1, 2, ..., we consider the rescalings $X_t^n := \frac{1}{n}X_t^{n\lambda,n^{\beta}\gamma}$ of the process $X_t^{\lambda,\gamma}$ (where λ denotes Lebesgue measure on \mathbf{R}^d). This means that each particle carries mass 1/n, the lifetime parameter is $n^{\beta}\gamma$, and the initial particles positions form a Poisson process with intensity $n\lambda$. Note that due to criticality of the branching and homogeneity of the motion there holds $EX_t^n = \lambda$, where $E\xi$ denotes the expectation of a random measure ξ .

The following facts are known (for (1.1) and (1.4) see [GW], (1.2) see [MRC], (1.3) and (1.5) see [GRCW] Theorem 1):

- (1.1) For $t \to \infty$, X_t^n converges in distribution towards a random measure X_{∞}^n .
- (1.2) For $n \to \infty$, X_t^n converges in distribution towards a random measure X_t , and $EX_t = \lambda$.

(1.3) For $t \to \infty$, X_t converges in distribution towards a random measure X_{∞} .

(1.4)
$$EX_{\infty}^{n} = \lambda$$
 if $d > \alpha/\beta$, and $EX_{\infty}^{n} = o$ if $d \le \alpha/\beta$.

(1.5) $EX_{\infty} = \lambda$ if $d > \alpha/\beta$, and $EX_{\infty} = o$ if $d \le \alpha/\beta$.

(where o denotes zero measure on \mathbf{R}^d .)

The measure-valued process (X_t) is called stable Dawson-Watanabe process; it has first been introduced and studied by Watanabe [W] and Dawson [D]. By examining the Laplace transforms of X_t^n one can prove in a rather straightforward way the following

THEOREM (1.6). ([GRCW], Thm. 2) The large time and scaling limits (1.1) and (1.2) interchange, i.e. X_{∞}^{n} converges for $n \to \infty$ in distribution towards X_{∞} .

A. WAKOLBINGER

In this paper we give a probabilistic proof of the preceding theorem which relies on a convergence theorem for infinitely divisible random measures due to Kallenberg (stated as Lemma (2.3) below) and on a representation of the canonical Palm distributions of X_t^n obtained in [GW] (see Remark 3 below).

2. Some tools from the theory of infinitely divisible random measures

LEMMA (2.1). ([K], p. 45) Let ξ be an infinitely divisible random measure on \mathbf{R}^d , with distribution P. Then there exists a uniquely determined $\nu_P \in M :=$ set of locally finite measures on \mathbf{R}^d , and a uniquely determined measure U_P on M having the properties $U_P(\{o\}) = 0$ and $\int U_P(d\rho)(1 - e^{\langle \rho, g \rangle}) < \infty$ for all $g \in F_c :=$ set of continuous nonnegative functions on \mathbf{R}^d with compact support, such that

(2.2)
$$Ee^{-\langle \xi,g\rangle} = e^{-\langle \nu_P,g\rangle} e^{-\int U_P(d\rho)(1-e^{-\langle \rho,g\rangle})} \qquad (f \in F_c).$$

Notation. Let ξ , P, ν_P and U_P be as in Lemma 1. For all measurable $B \subseteq \mathbf{R}^d$ and $F \subseteq M$ one puts

$$C_{ ilde{P}}(B imes F):=
u_P(B) \mathbb{1}_F(o) + \int
ho(B) \mathbb{1}_F(
ho) U_P(d
ho)$$

Note that the first marginal of $C_{\tilde{p}}$ is

$$C_{ ilde{P}}(B imes M)=
u_P(B)+\int
ho(B)U_P(d
ho)=E\xi(B),$$

i.e. the intensity measure of ξ . In case $E\xi$ is locally finite, let $(\tilde{P}_b)_{b\in\mathbb{R}^d}$ be a regular desintegration of $C_{\tilde{p}}$ with respect to its first marginal $E\xi =: \Lambda_P$, and let for each $b \in \mathbb{R}^d$ $\tilde{\xi}_b$ be a random measure having distribution \tilde{P}_b . We will call $\tilde{\xi}_b$ a canonical Palm random measure at b. For each $f \in F_c$ such that $\langle \Lambda_P, f \rangle > 0$, let $\tilde{\xi}_f$ be the random measure which arises from $\tilde{\xi}_b$ when the point b is chosen at random with probability distribution $\frac{1}{\langle \Lambda_P, f \rangle} f(b) \Lambda_P(db)$; note that $\tilde{\xi}_f$ has distribution $\tilde{P}_f := \frac{1}{\langle \Lambda_P, f \rangle} \int \tilde{P}_b(\cdot) f(b) \Lambda_P(db)$.

We will call $\tilde{\xi}_f$ a canonical Palm random measure of ξ , randomized by f.

LEMMA (2.3). ([K], Lemma 10.8) Let $\xi, \xi_1, \xi_2, \ldots$ be infinitely divisible random measures having locally finite intensity measures. Then any two of the following statements implies the third:

1) $\xi_k \rightarrow \xi$ in distribution,

2) $E\langle \xi_k, f \rangle \to E\langle \xi, f \rangle$ for all $f \in F_c$,

3) $(\tilde{\xi}_k)_f \to \tilde{\xi}_f$ in distribution for all $f \in F_c$ with $\langle \rho, f \rangle > 0$.

LEMMA (2.4). Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d. infinitely divisible random populations and put, for some $n \in \mathbb{N}, \eta := \frac{1}{n}(\xi_1 + \ldots + \xi_n)$. Then a version of $\tilde{\eta}_b$ is given by $\frac{1}{n}\tilde{\xi}_b$. *Proof*. Denote the distribution of ξ by P and that of η by Q. One checks easily that $U_Q = nU_P(\frac{\rho}{n} \in (\cdot))$.

Since $\nu_P = \nu_Q = o$, there results

 $C_{\tilde{Q}}(B \times F) = C_{\tilde{P}}(B \times \{\rho | n\rho \in F\})$ for all measurable $B \subseteq \mathbb{R}^d, F \subseteq M$, and hence $\tilde{Q}_b = \tilde{P}_b(\frac{\rho}{n} \in (\cdot))$. \Box

3. Proof of the theorem

Let us state at once that in the case $d \leq \alpha/\beta$ the assertion of the theorem is immediate from (1.4) and (1.5); therefore we assume in the rest of the paper that $d > \alpha/\beta$.

LEMMA (3.1). For each $n = 1, 2, ..., and each t \in [0, \infty]$, a family of canonical Palm random measures of X_t^n is given by $\frac{1}{n}(X_t^{\lambda, n^{\beta}\gamma})_b, \ b \in \mathbf{R}^d$.

Proof. This is immediate from Lemma (2.4), since $X_t^{n\lambda,n^{\beta}\gamma}$ equals in distribution the sum of *n* independent copies of $X_t^{\lambda,n^{\beta}\gamma}$.

Let $N_S^{x,V}$ denote a random population of individuals which arises after time s from one initial individual at site $x \in \mathbb{R}^d$ by the branching dynamics described in the introduction (with lifetime parameter V).

Remark (3.2). For each n = 1, 2, ... and each $t \in [0, \infty]$, a family of canonical Palm random populations of $X_t^{\lambda, n^{\beta}\gamma}$ is provided by [GW], Theorem 2.3 and Lemma 5.1, namely by

$$\delta_b + \int_{[0,t)} (\sum_{i=1}^{Z_s} N^{a_s,n^{\beta}\gamma}_{s,i}) \mu_{n^{\beta}}(ds)$$

where $\mu_{n\beta}$ is a random Poisson configuration on $[0, \infty)$ with intensity $n^{\beta}\gamma$, (a_s) is a random path of the basic process (i.e. symmetric stable motion with exponent α) starting in $b, Z_s, s > 0$, are random numbers with $P[Z_s = k] = (k+1)p_{k+1}, k = 1, 2, ..., (p_k)$ are the weights of the offspring distribution, $N_{s,i}^{x,n^{\beta}\gamma}, i = 1, 2, ..., x \in \mathbb{R}^d$, has the same distribution as $N_s^{x,n^{\beta}\gamma}$, and all these random objects are independent.

Combining Lemma (3.1) and Remark (3.2), we arrive at

PROPOSITION (3.3). Consider an arbitrary but fixed $f \in F_c$ with $\langle \lambda, f \rangle > 0$. For each n = 1, 2, ... and $t \in [0, \infty)$, a canonical Palm random measure of X_t^n , randomized by f, is given by

(3.4)
$$Y_t^n := \frac{1}{n} \delta_b + \frac{1}{n} \int_{[0,t]} (\sum_{i=1}^{Z_s} N_{s,i}^{a_s, n^\beta \gamma}) \mu_{n^\beta}(ds)$$

A. WAKOLBINGER

where **b** (which is the starting point of (a_s)) is randomly distributed according to the probability measure $(1/\langle \lambda, f \rangle) f(x) \lambda(dx)$.

For the rest of the paper we fix a function $f \in F_c$ such that $\langle \lambda, f \rangle > 0$.

Remark (3.5).

a) It follows from Lemma (2.3) together with (1.2) that, for any $t \in [0, \infty)$, $(\widetilde{X_t^n})_f = Y_t^n$ converges, for $n \to \infty$, in distribution towards the random measure $(\widetilde{X_t})_t =: Y_t$.

b) On the other hand, it follows from Lemma (2.3) together with (1.3) and (1.5) that $(\widetilde{X}_t)_f = Y_t$ converges, for $t \to \infty$, in distribution towards the random measure $(\widetilde{X}_{\infty})_f =: Y_{\infty}$.

c) It is clear from (3.4) that for all n = 1, 2, ... and all bounded $B \subseteq \mathbf{R}^d$ there holds

$$(3.6) Y_t^n(B) \nearrow Y_\infty^n(B).$$

Remark (3.7). The assertion of the theorem (in the case $d > \alpha/\beta$) now follows immediately from Proposition (3.8) below together with (1.5) and Lemma (2.3). Once again note that also in the case $d \leq \alpha/\beta$ the theorem holds true, since then all large time limits vanish due to (1.4) and (1.5).

PROPOSITION (3.8). Y_{∞}^{n} converges, for $t \to \infty$, in distribution towards Y_{∞} .

Proof. In view of Remark (3.5), we are faced with the following diagram of convergences:

$$\begin{array}{cccc} & Y_t^n & & & & Y_\infty^n \\ n \to \infty & & \downarrow & & & \\ & & & & \\ & & Y_t & & & & \\ & & & & t \to \infty & & Y_\infty^n \end{array}$$

We claim that also $Y_{\infty}^{n} \to Y_{\infty}$ holds true. In Lemma (3.11) below we will show:

(3.9) \forall bounded $B \subseteq \mathbf{R}^d \forall \varepsilon > 0 \exists t > 0 \forall n = 1, 2, \ldots : P[Y_{\infty}^n(B) - Y_t^n(B) \ge \varepsilon] \le \varepsilon$

(In this sense, convergence in t is uniformly in n.)

Now consider, for any $g \in F_c$ with g < 1, the Laplace transforms $Ee^{-\langle Y_{\infty}^n, g \rangle}$; we claim that they converge towards $Ee^{-\langle Y_t, g \rangle}$. To this end we rewrite

$$\begin{aligned} |Ee^{-\langle Y_{\infty}^{n},g\rangle} - Ee^{-\langle Y_{t}^{n},g\rangle}| &= E[e^{-\langle Y_{t}^{n},g\rangle}(1 - e^{-\langle Y_{\infty}^{n} - Y_{t}^{n},g\rangle})] \\ &\leq E[1 - e^{-\langle Y_{\infty}^{n} - Y_{t}^{n},g\rangle}] \leq E[\langle Y_{\infty}^{n} - Y_{t}^{n},g\rangle \wedge 1] \\ &\leq \varepsilon + P[\langle Y_{\infty}^{n} - Y_{t}^{n},g\rangle \geq \varepsilon] \quad \text{for all } \varepsilon > 0. \end{aligned}$$

Now take according to (3.9) for any fixed $\varepsilon > 0$ the time t large enough such that

$$P[\langle Y_{\infty}^{n}-Y_{t}^{n},g\rangle\geq\varepsilon]\leq\varepsilon.$$

Hence results for this t:

$$(3.10) |Ee^{-\langle Y_{\infty}^{n},g\rangle} - Ee^{-\langle Y_{t}^{n},g\rangle}| \leq 2\varepsilon \quad (n = 1, 2, \ldots)$$

Since $\langle Y_s^n, g \rangle$ increases, for $s \to \infty$, towards $\langle Y_{\infty}^n, g \rangle$ (see Remark (3.5)c), we can in view of Remark (3.5)b) choose t so large that besides (3.10) also

$$(3.11) |Ee^{-\langle Y_{\infty}^{\infty},g\rangle} - Ee^{-\langle Y_{i}^{\infty},g\rangle}| < \varepsilon$$

holds true. Now we can apply the triangle inequality:

$$\begin{split} & \overline{\lim_{n \to \infty}} \left| E e^{-\langle Y_{\infty}, g \rangle} - E e^{-\langle Y_{\infty}^{n}, g \rangle} \right| \\ & \leq \left| E e^{-\langle Y_{\infty}, g \rangle} - E e^{-\langle Y_{t}, g \rangle} \right| \\ & + \overline{\lim_{n \to \infty}} \left| E e^{-\langle Y_{t}, g \rangle} - E e^{-\langle Y_{t}^{n}, g \rangle} \right| \\ & + \overline{\lim_{n \to \infty}} \left| E e^{-\langle Y_{t}^{n}, g \rangle} - E e^{-\langle Y_{\infty}^{n}, g \rangle} \right| \leq 3\varepsilon \end{split}$$

(Note that we applied (3.10) and (3.11) to estimate the first and third summand, respectively, and Remark (3.5)a) to guarantee that the second summand vanishes). Since $\varepsilon > 0$ was arbitrary, this yields the assertion.

We are thus left with the hard core in the proof of the theorem, namely

LEMMA (3.12). The convergence $Y_t^n \xrightarrow[t \to \infty]{t \to \infty} Y_{\infty}^n$ is uniform in the sense of (3.9).

Proof. 1. Without loss of generality we assume that $B \subseteq \mathbf{R}^d$ is a ball centered around the origin. Let $\epsilon > 0$ be fixed.

We intend to show:

$$(3.13) \quad \exists t > 0 \ \forall n = 1, 2, \ldots : P[\frac{1}{n} \int_{[t,\infty)} \sum_{i=1}^{Z_{\bullet}} N^{a_{\bullet},n^{\beta}\gamma}_{s,i}(B) \mu_{n^{\beta}}(ds) > \varepsilon] < \varepsilon.$$

Since $\xi_{s,i}^n := N_{s,i}^{0,n^{\theta}\gamma}(B)$ obeys, by symmetry of the motion,

$$P[m{\xi}^{m{n}}_{m{s},m{i}}>r]\geq P[N^{m{x},m{n}^{m{m{\beta}}}m{\gamma}}_{m{s},m{i}}(B)>r] \ \ ext{for all } x\in \mathbf{R}^d, \ r\geq 0,$$

it suffices to show:

$$(3.14) \qquad \exists t > 0, \ \forall n = 1, 2, \ldots : P[\frac{1}{n} \int_{[t,\infty)} (\sum_{i=1}^{Z_s} \xi_{s,i}^n) \mu_{n^{\beta}}(ds) > \varepsilon] < \varepsilon$$

Denoting by (T_s) the semigroup of the basic process, we have by criticality of the branching and by the scaling property of the stable motion:

(3.15)
$$E\xi_{s,i}^n = T_s \mathbf{1}_B(0) = T_1 \mathbf{1}_{s^{-1/\alpha}B}(0) \le c_B s^{-d/\alpha} \text{ for all } s \ge 1,$$

where the constant c_B depends only on B.

2. To illustrate what is going on, we first consider the case $\beta = 1$. In this case, the offspring distribution simply is given by $p_0 = p_2 = \frac{1}{2}$, i.e. the branching is binary. Hence $Z_s \equiv 1$, and using (3.15) we get for all n = 1, 2, ...

$$Erac{1}{n}\int_{[t,\infty)}\xi^n_{s,i}\mu_n(ds)\leq rac{1}{n}c_B\int_{[t,\infty)}s^{-rac{d}{lpha}}nds=c_Brac{lpha}{d-lpha}t^{-rac{d}{lpha}+1}$$

Hence, by Markov's inequality,

(3.16)
$$P[\frac{1}{n}\int_{[t,\infty)}\xi_s\mu_n(ds)>\varepsilon]\leq \frac{1}{\varepsilon}c_B\frac{\alpha}{d-\alpha}t^{-\frac{d}{\alpha}+1}$$

In order to guarantee (3.14) it thus suffices to choose t large enough so that the right hand side of (3.16) is smaller than ε .

This completes the proof in the case $\beta = 1$.

3. In the case $0 < \beta < 1$, a straightforward argument like that in step 2 fails, since then the random numbers Z_s are not integrable any more. Their distribution $q_k := P[Z_s = k] = (k+1)p_{k+1}$, however, obeys a power law of the following form:

There exist positive constants c_1, c_2 such that

(3.17)
$$c_1 k^{-(\beta+1)} \le q_k \le c_2 k^{-(\beta+1)} \quad (k=1,2,\ldots)$$

(3.18) can be checked, e.g., by expanding the moment generating function of (q_k) , which is $1 - \frac{1+\beta}{2}(1-s)^{\beta}$, into a binomial series.

Now we turn to the proof of (3.14) in the case $0 < \beta < 1$:

In view of the estimate (3.15), it is reasonable to divide the support of the random Poisson configuration $\mu_{n\beta}$ into two parts, namely:

50

those points s for which $Z_s > s^{d/\alpha}$, forming $\mu_{n\beta}^1$,

and those points s for which $Z_s \leq s^{d/\alpha}$, forming $\mu_{n\beta}^2$.

 $\mu_n^1\beta$ can be considered a "random thinning" of $\mu_n\beta$, and hence has the same distribution as a random Poisson configuration Φ_1 with intensity measure $h(s)n^\beta\lambda(ds)$, where $h(s) := P[Z_s > s^{d/\alpha}]$. Denoting by Φ_2 a random Poisson configuration with intensity measure $(1 - h(s))n^\beta\lambda(ds)$ (independent of Φ_1), we note that $\Phi_1 + \Phi_2$ equals $\mu_n\beta$ in distribution, and moreover:

$$rac{1}{n}\int_{[t,\infty)}(\sum_{i=1}^{Z_s}\xi_{s,i}^n)\mu_{n^{eta}}(ds) ext{ is equal in distribution to}$$

$$(3.18) \qquad \frac{1}{n} \int_{[t,\infty)} (\sum_{i=1}^{\bar{Z}_{\bullet}} \xi_{s,i}^{n}) \Phi_{1}(ds) + \frac{1}{n} \int_{[t,\infty)} (\sum_{i=1}^{\bar{Z}_{\bullet}} \xi_{s,i}^{n}) \Phi_{2}(ds) =: G_{t}^{n} + H_{t}^{n},$$

where \bar{Z}_s is assumed to have distribution $P[Z_s \in (\cdot)|Z_s > s^{d/\alpha}]$, and \underline{Z}_s is assumed to have distribution $P[Z_s \in (\cdot)|Z_s < s^{d/\alpha}]$, the random variables \underline{Z}_s , \bar{Z}_s all being independent.

4. In order to estimate the summand H_t^n , first note that by (3.17) one has for all $s \ge 1$:

$$E[\underline{Z}_s] = E[Z_s|Z_s \le s^{d/\alpha}] \le \frac{1}{P[Z_s \le s^{d/\alpha}]} \sum_{k=1}^{s^{d/\alpha}} kc_2 k^{-(\beta+1)}$$
$$\le \frac{1}{c_1} \sum_{k=1}^{s^{d/\alpha}} c_2 k^{-\beta} \le c_3 s^{\frac{d}{\alpha}(1-\beta)}$$

with a suitable constant $c_3 > 0$ (independent of s).

Hence results by Wald's identity (similar as in step 2):

$$EH_t^n \leq \frac{1}{n} \int_{[t,\infty)} c_2 E[\underline{Z}_s] \cdot E[\xi_{s,i}^n] n^\beta ds \leq c_B \cdot c_3 \int_{[t,\infty)} s^{-\frac{d\beta}{\alpha}} ds,$$

which leads, by Markov's inequality to:

 $(3.19) \qquad \exists T > 0 \ \forall t \geq T \ \forall n = 1, 2, \ldots : \quad P[H_t^n > \varepsilon] < \varepsilon.$

5. We now turn to estimate the first summand G_t^n in (3.18). By (3.17) there holds for all $s \ge 1$

. .

$$(3.20) h(s) = P[Z_s > s^{d/\alpha}] \le c_4 s^{-\frac{a\beta}{\alpha}}$$

for a suitable constant c_4 (independent of s), hence Φ_1 is, on the interval $[1, \infty)$, "stochastically thinner" than a random Poisson configuration $\mu_n^*\beta$ with intensity measure $c_4 s^{-\frac{d\beta}{\alpha}} \lambda(ds)$. Writing, for abbreviation,

$$\eta^n_s := \sum_{i=1}^{\bar{Z}_s} \xi^n_{s,i},$$

we thus observe, for all $t \ge 1$ and n = 1, 2, ...

(3.21)
$$P[G_t^n \ge \epsilon] \le P[\int_{[t,\infty)} \eta_s^n \mu_{n\beta}^*(ds) \ge \epsilon].$$

6. In view of (3.18), (3.19) and (3.21), the proof will be complete if we succeed to show:

(3.22)
$$\exists t > 0 \ \forall n = 1, 2, \ldots : P[\int_{[t,\infty)} \eta_s^n \mu_{n^\beta}^*(ds) \ge \varepsilon] \le \varepsilon.$$

Indeed, then we have, using step 1, for this t and all n = 1, 2, ...:

$$P[Y_{\infty}^{n}(B) - Y_{t}^{n}(B) \ge 2\varepsilon] \le P[G_{t}^{n} + H_{t}^{n} \ge 2\varepsilon] \le P[G_{t}^{n} \ge \varepsilon] + P[H_{t}^{n} \ge \varepsilon] \le 2\varepsilon$$

(note that t in (3.22) can be taken, without loss of generality, larger than T figuring in (3.19)).

7. We now proceed to show (3.22). Let, for $m = 1, 2, ..., t_m$ be such that

$$\int_{t_m}^{\infty} s^{-\frac{d\beta}{\alpha}} ds = \frac{1}{m}.$$

Let $\mu_n^{(m)}\beta$ be a random Poisson configuration with intensity measure $m \cdot n^{\beta}s^{-\frac{d\beta}{\alpha}}\lambda(ds)$. Obviously, $S_{m,n} := \int_{[t_m,\infty)} \eta_s^n \mu_{n\beta}^{(m)}\beta(ds)$ arises, in distribution, as a sum of m independent copies $L_{m,n}^{(1)}, \ldots, L_{m,n}^{(m)}$ of $L_{m,n} := \frac{1}{n} \int_{[t_m,\infty)} \eta_s^n \mu_{n\beta}^*(ds)$.

Now assume the contrary of (3.22) , which would imply the existence of a sequence $m_j\to\infty$ and a sequence n_j such that

$$(3.23) P[L_{m_j,n_j} \ge \varepsilon] > \varepsilon \quad (j = 1, 2, \ldots).$$

Let r > 0 be a lower bound for the probability of $\frac{N\varepsilon}{2}$ successes in N cointosses with success probability ε . (Note that such a strictly positive lower bound actually exists, since by the law of large numbers there holds P[number of successes $> \frac{N\varepsilon}{2}] \longrightarrow 1$). From (3.23) there results

$$P[S_{m_j,n_j} \ge \varepsilon \frac{m_j \varepsilon}{2}] = P[L_{m_j,n_j}^{(1)} + \cdots + L_{m_j,n_j}^{(1)} \ge \varepsilon \frac{m_j \varepsilon}{2}] \ge r.$$

This would imply that the family of random variables $\{S_{m,n}\}_{m,n\in\mathbb{N}}$ is not tight. To guarantee (3.22) it is thus sufficient to show that $\{S_{m,n}\}_{m,n\in\mathbb{N}}$ actually is tight.

8. We now turn to the proof of tightness of $\{S_{m,n}\}_{m,n\in\mathbb{N}}$. In step 9 below we will show:

$$(3.24) \qquad \exists c_5 > 0 \ \forall s \geq 1 \ \forall k = 1, 2, \dots \ \forall n = 1, 2, \dots : P[\eta_s^n \geq k] \leq c_5 k^{-\beta}.$$

Having (3.24) at hand, it is possible to estimate the random variables η_s^n by an upper bound "in distribution". To this end, let K be large enough such that

$$\sum_{j=K+1}^{\infty} c_5 \beta j^{-(\beta+1)} \leq 1,$$

put $\pi_j := c_5 \beta j^{-(\beta+1)}$ if j > K, $\pi_K := 1 - \sum_{j=K+1}^{\infty} \pi_j$, $\pi_j := 0$ if j < K, and let $(\chi_s)_{s \ge 1}$ be a family of i.i.d. random variables, each with distribution $(\pi_j)_{j=1,2,\ldots}$. Since by (3.24) for all $k = 1, 2, \ldots, s \ge 1$ and $n = 1, 2, \ldots$ there holds

$$P[\chi_s \geq k] \geq P[\eta_s^n \geq k],$$

tightness of $\{S_{m,n}\}_{m,n\in\mathbb{N}}$ will follow from tightness of

$$rac{1}{n}\int_{[t_m,\infty)}\chi_s\mu_{n^{eta}}^{(m)}(ds),\quad m,n\in {f N}.$$

To check tightness of the latter family, note that $\mu_{n^{\beta}}^{(m)}([t_m,\infty))$ is a Poisson random variable with mean n^{β} . It is thus enough to show that the family

$$\varsigma_n := \frac{1}{n} \sum_{j=1}^{N_n} \chi_j, \quad n = 1, 2, \ldots$$

is tight, where N_n is a Poisson random variable with mean n^{β} .

But
$$\varsigma_n = \frac{(N_n)^{1/\beta}}{n} \frac{1}{(N_n)^{1/\beta}} \sum_{j=1}^{N_n} \chi_j$$
 converges, for $n \to \infty$,

A. WAKOLBINGER

in distribution, since χ_{s} is in the domain of normal attraction of a totally asymmetric stable law with exponent β .

Hence $\{\varsigma_n\}_{n\in\mathbb{N}}$ is tight, and so is $\{S_{m,n}\}_{m,n\in\mathbb{N}}$.

9. It remains to close the gap in the previous step, namely to show (3.24). Note that $\eta_s^n = A_s^n \cdot D_s^n$ $(s \ge 1, n = 1, 2, ...)$, where

$$A^n_s := \frac{1}{\bar{Z}_s} \sum_{i=1}^{\bar{Z}_s} \xi^n_{s,i} s^{d/\alpha}, \quad D_s := \bar{Z}_s s^{-d/\alpha}.$$

In order to estimate the distribution of D_s , choose in view of (3.17) a constant $c_6 > 0$ such that

$$(3.25) \qquad \forall s \ge 1 \ \forall x \ge 1 : P[Z_s \ge x] \ge c_6 x^{-\beta}.$$

By (3.17) and (3.25) we have for all j = 1, 2, ...

$$P[D_{s} \in [j, j+1)] = P[\bar{Z}_{s} \in [js^{d/\alpha}, (j+1)s^{d/\alpha})]$$

= $P[Z_{s} \in [js^{d/\alpha}, (j+1)s^{d/\alpha})|Z_{s} \ge s^{d/\alpha}]$
 $\le c_{2} \sum_{i=[js^{d/\alpha}]}^{[(j+1)s^{d/\alpha}]+1} i^{-(\beta+1)} \frac{1}{c_{6}} sd^{\beta/\alpha}$
 $\le \frac{c_{2}}{c_{6}} (j[s^{d/\alpha}])^{-(\beta+1)} (s^{d/\alpha}+1)sd^{\beta/\alpha}$

 $\leq c_7(j+1)^{-(b+1)}$ for a suitable $c_7 > 0$ independent of j and s.

Hence results, for all k = 1, 2, ...

$$P[\eta_{s}^{n} \geq k] = P[A_{s}^{n}D_{s} \geq k] \leq \sum_{j=2}^{\infty} P[D_{s} \in [j-1,j)]P[A_{s}^{n} \geq \frac{k}{j}|D_{s} \in [j-1,j)]$$

(3.26)
$$\leq \sum_{j=2}^{k} c_{7} j^{-(\beta+1)} \frac{j}{k} E[A_{s}^{n}|D_{s} \in [j-1,j]] + \sum_{j=k+1}^{\infty} c_{7} j^{-(\beta+1)}.$$

Since the conditional expectation $E[A_s^n | \bar{Z}_s]$ is, due to (3.15), bounded by c_B , and since moreover

$$\sum_{j=2}^k j^{-\beta} \leq \int_1^k x^{-\beta} dx = \frac{1}{1-\beta} k^{1-\beta}$$

54

and

$$\sum_{j=k+1}^{\infty} j^{-\beta+1} \leq \int_{k}^{\infty} x^{-\beta+1} dx = \frac{1}{\beta} k^{-\beta},$$

the validity of (3.24) follows directly from (3.26), and the proof of the lemma is complete. $\hfill\square$

The preceding lemma closes the gap in the proof of Proposition (3.8), which, in view of Remark (3.7), finishes the proof of the theorem.

Acknowledgement: I thank Luis Gorostiza for having drawn my attention to this problem; also, I thank him, Sylvie Roelly-Coppoletta and especially Reinhard Lang for stimulating and constructive discussions.

INSTITUT FÜR MATHEMATIK Johannes Kepler Universität Linz Linz, A-4040 Austria

REFERENCES

- [D] D. A. DAWSON, The critical measure diffusion process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 40, 125-145, 1977.
- [GRCW] L. G. GOROSTIZA, S. ROELLY-COPPOLETTA AND A. WAKOLBINGER, Sur la persistance du processus de Dawson-Watanabe stable. L'intervertion de la limite en temps et de la renormalisation, in Sem Probabilité XXIV, 1988/89, J. Azéma, P. A. Meyer, M. Yos (Eds), p. 275-281, Lecture Notes in Mathematics, Springer, 1990.
- [GW] L. G. GOROSTIZA AND A. WAKOLBINGER, Persistence criteria for a class of critical branching particle systems in continuous time, to appear in Ann. Probability.
- [K] O. KALLENBERG, Random Measures, 3rd ed., Akademie Verlag, Berlin, and Academic Press, New York, 1983.
- [MRC] S. MÉLEARD AND S. ROELLY-COPPOLETTA, Discontinuous measure-valued branching processes and generalized stochastic equations, to appear in Math. Nachr.
- [W] S. WATANABE, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ. 8, 141-167, 1968.