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INTERCHANGE OF LARGE TIME AND SCALING LIMITS
IN STABLE DAWSON-WATANABE PROCESSES:
A PROBABILISTIC PROOF

By A. WAKOLBINGER
1. Introduction and formulation of the result

Consider a population of individuals in R%, each of which carries unit mass,
evolving in time as follows: Initially, the individuals’ positions form a Poisson -
process with intensity measure p. Each particle performs symmetric stable
motion with exponent a € (0, 2] for a random lifetime which is exponentially
distributed with paramter V. At the end of this lifetime it branches into a
random number N of particles, all of them obeying (independently) the dyna-
mics just described, starting at the parent particle’s final position. The ran-
dom offspring number N is assumed to have moment generating function
EsN = s+ 1(1—s)1*8, g € (0,1]. Mathematically, this gives rise to a stochas-
tic process Xt” v taking its values in the counting measures on R

For a fixed constant v, and n = 1,2, ..., we consider the rescalings X}* :=
%Xt" Anfay of the process Xt)m (where A denotes Lebesgue measure on R?).
This means that each particle carries mass 1/n, the lifetime parameter is nBy,
and the initial particles positions form a Poisson process with intensity n).
Note that due to criticality of the branching and homogeneity of the motion
there holds EX]* = A, where E¢ denotes the expectation of a random mea-

sure £.
The following facts are known (for (1.1) and (1.4) see [GW], (1.2) see [MRC],
(1.3) and (1.5) see [GRCW] Theorem 1):

(1.1)Fort — oo, X[ converges in distribution towards a random measure X2 .

(1.2)For n — oo, XT* converges in distribution towards a random measure X;,
and EXt =A.

(1.3)Fort — oo, X; converges in distribution towards a random measure X,.
(14 EXY =)Xifd>a/pf,and EXZ =o0ifd < a/p.
(1.5)EXo = Aifd > a/f, and EXo =o0ifd < a/p.

(where o denotes zero measure on R%.)

The measure-valued process (X;) is called stable Dawson-Watanabe pro-
cess; it has first been introduced and studied by Watanabe [W] and Dawson
[D]. By examining the Laplace transforms of X* one can prove in a rather
straightforward way the following

THEOREM (1.6). ([GRCW], Thm. 2) The large time and scaling limits
(1.1) and (1.2) interchange, i.e. X%, converges for n — oo in distribution
towards X .
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In this paper we give a probabilistic proof of the preceding theorem which
relies on a convergence theorem for infinitely divisible random measures due
to Kallenberg (stated as Lemma (2.3) below) and on a representation of the
canonical Palm distributions of X}* obtained in [GW] (see Remark 3 below).

2. Some tools from the theory of infinitely
divisible random measures

LEMMA (2.1). ([KI, p. 45) Let £ be an infinitely divisible random measure on
RY, with distribution P. Then there exists a uniquely determined vp € M :=
set of locally finite measures on RY, and a uniquely determined measure Up
on M having the properties Up({0}) = 0 and [ Up(dp)(1 — ¢{#9)) < oo for all
g € F, := set of continuous nonnegative functions on R% with compact support,
such that

(2.2) Ee~(69) = ¢~(vpia)e= [ Up(dn)(1—e=(0)) (f € F).

Notation. Let ¢, P,vp and Up be as in Lemma 1. For all measurable B C R?
and F C M one puts

Ca(B x F) = vp(B)ir(0) + [ #(B)1r ()Up (dp)

Note that the first marginal ofCj is

Cp(Bx M) = vp(B)+ [ o(B)UP (ds) = EE(B),

i.e. the intensity measure of ¢. In case E¢ is locally finite, let (P;) »cRd be a
regular desintegration of Cjz with respect to its first marginal E¢ =: Ap, and
let for each b € R? fb be a random measure having distribution ﬁb We will
call & a canonical Palm random measure at b. For each f € F, such that
(Ap, f) > 0, let £; be the random measure which arises from & when the

point b is chosen at random with probability distribution (A—lﬁ f(B)Ap(db);
P
note that £ haf distribution Py := zrl’ﬁ [ Py(-)f(b)Ap(db).
We will call £; a canonical Palm random measure of €, randomized by f.

LEMMA (2.3). ([K], Lemma 10.8) Let ¢, &y, &2, . . . be infinitely divisible ran-
dom measures having locally finite intensity measures. Then any two of the
following statements implies the third:

1) &, — ¢ in distribution,

2)E‘I_<€k)f)7E(Eaf) forall f € F, ‘

3) (€x); — & in distribution for all f € F, with (p, f) > 0.

LEMMA (2.4). Let €, &1, €2, .. . bei.id. infinitely divisible random populations

and put, for some n € N, 5 := %(51 +...&pn). Then a version of 1 is given by

1z
&b
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Proof . Denote the distribution of ¢ by P and that of n by Q. One checks
easily that Ug = nUp (£ € (+)).
Since vp = vg = o, there results

Cs(BxF)= Cp(B x {p|np € F}) for all measurable B C R, F C M,
B(ge(). o

3. Proof of the theorem

and hence C}b

Let us state at once that in the case d < /g the assertion of the theorem is
immediate from (1.4) and (1.5); therefore we assume in the rest of the paper
that d > a/f.

LEMMA (3.1). Foreach n = 1,2,...,and eacht € [0, o], a family of canonical
Palm random measures of X' is given by %(X?’"M)b, b€ R,

ni nﬂq

Proof . This is immediate from Lemma (2.4), s1nce X, equals in distri-

bution the sum of n independent copies of X;" 1,

Let N ; " denote a random population of individuals which arises after time

s from one initial individual at site z € R by the branching dynamics describ-
ed in the introduction (with lifetime parameter V').

Remark (3.2). Foreachn =1,2,... and each t € [0, oo, a family of canonical

Palm random populations of X:‘ nfy is provided by [GW], Theorem 2.3 and
Lemma 5.1, namely by

8 N2y o (d
H—/{;ﬂ(Z )bys (ds)

where p,,4 is a random Poisson configuration on [0, 00) with intensity nf~,

(as) is a random path of the basic process (i.e. symmetric stable motion with

exponent o) starting in b, Z,, s > 0, are random numbers with P[Z, = k] =

(k+ 1)pr+1, k¥ = 1,2,..., (px) are the weights of the offspring distribution,
B~y . . . B

N7 =12, ...,z € R% has the same distribution as N> 7, and all these

38y (1
random obJects are independent.

Combining Lemma (3.1) and Remark (3.2), we arrive at

PROPOSITION (3.3). Consider an arbitrary but fixed f € F, with (), f) > 0.
Foreachn =1,2,...andt € [0,00), a canonical Palm random measure of X},
randomized by f, is given by

Zs

(3.4) Y= 26 + ;1; /[0 t)(Z N“""p’)nnp(ds)
vl oi=1
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where b (which is the starting point of (a,)) is randomly distributed according
to the probability measure (1/(X, f)) f(z)A(dz).

For the rest of the paper we fix a function f € F; such that (A, f) > 0.
Remark (3.5).
a) It follows from Lemma (2.3) together with (1.2) that, for any ¢ € [0, c0),

(i'\f) ¢ = Y;* converges, for n — oo, in distribution towards the random mea-
sure (Y})t =: Y.

b) On the other hand, it follows from Lemma (2.3) together with (1.3) and (1.5)
that (X;) s = Y: converges, for t — oo, in distribution towards the random
measure ()’(\o;)f =: Yoo

c) It is clear from (3.4) that for all n = 1,2,... and all bounded B C R? there
holds

(3.6) Y/(B) /. YZ(B).

t— o0

Remark (3.7). The assertion of the theorem (in the case d > «/8) now fo-
llows immediately from Proposition (3.8) below together with (1.5) and
Lemma (2.3). Once again note that also in the case d < «/f the theorem
holds true, since then all large time limits vanish due to (1.4) and (1.5).

PROPOSITION (3.8). Y converges, for t — oo, in distribution towards Y.

Proof . In view of Remark (3.5), we are faced with the following diagram of
convergences:

Ytn

n— oo l

Yn

o o]

t—oo0

i —— Y2
t—oo

We claim that also Y — Yo holds true. In Lemma (3.11) below we will show:

(3.9) Vbounded B C R%e>03t>0Vn = 1,2,...: P[Y2(B)-Y*(B) > €| <¢

(In this sense, convergence in t is uniformly in n.)

Now consider, for any g € F, with g < 1, the Laplace transforms Ee=~{YZ:9),
we claim that they converge towards Ee~(Y:9) To this end we rewrite

IEC_(Yo’clﬂg) — Ee—<Y,",g)| — E[e_(ygnag>(1 _ C-(Y;—Y‘",g))]
< E[1- VS Y0 < B(YE - Y7, 0) A1
<e+P(YE -Y g)>¢] foralle>o0.
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Now take according to (3.9) for any fixed € > 0 the time ¢ large enough such
that
P[(Yo - Y 9) 2¢]<e

Hence results for this ¢:

(3.10) |Ee=Y2t) — Be=(Y"0)| <26 (n=1,2,...)

Since (Y, g) increases, for s — oo, towards (Y2, g) (see Remark (3.5)c), we

can in view of Remark (3.5)b) choose t so large that besides (3.10) also

(3.11) IEC_(Y‘:’O'9> — Ee_(ygwag)l < €

holds true. Now we can apply the triangle inequality:

lim |Ee—(Yoo,9) _ Ee—(Y£,y)|

n—oo
S ‘EC_(Yooyg> — Ee_(yhg)l

+ m IEC_(th) — Ee_(Y‘"ag)l
n-—oo

+ lim IEC_(Y{"-‘J) - Ee“(yo'c',ay)l < 3e.
n—oo
(Note that we applied (3.10) and (8.11) to estimate the first and third sum-

mand, respectively, and Remark (3.5)a) to guarantee that the second sum-
mand vanishes). Since € > 0 was arbitrary, this yields the assertion. o

We are thus left with the hard core in the proof of the theorem, namely

LEMMA (3.12). The convergence Y* ——— Y2 is uniform in the sense of
(3.9). tmoo

Proof . 1. Without loss of generality we assume that B C R? is a ball cente-
red around the origin. Let € > 0 be fixed.
We intend to show:

Z,
(813) 3Ft>0VYn=1,2,...: P[%A )ZN::’nﬂl’(B)ﬂ.np(da) >e|<e.
too) =y

. 8 .
Since £} == N:"." 7(B) obeys, by symmetry of the motion,

P&y >r] 2 P[N,’,’,-"ﬂ’(B) >r] forallzeR?, r>0,
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it suffices to show:

Z,
(3.149) 3 >0, Yn=1,2,...: P[% ‘/[t )(Z riluna(ds) > el <e
) =1

Denoting by (T,) the semigroup of the basic process, we have by criticality of
the branching and by the scaling property of the stable motion:

(3.15) EE; =Ty1p(0) = Til,-1/ap(0) < cgs™%/* foralls > 1,

where the constant cg depends only on B.

2. To illustrate what is going on, we first consider the case § = 1. In

this case, the offspring distribution simply is given by pg = ps = %, i.e. the

branching is binary. Hence Z, = 1, and using (3.15) we get forall n =1,2,...

1
El E:,’I‘n(ds) < "CB/ svgnds =cp i t_§+1
n Jlteo) n [t,00) d—a

Hence, by Markov’s inequality,

(3.16) P[%/[. )f,un(ds) >e] < -i—cB
t,00

—Q

In order to guarantee (3.14) it thus suffices to choose t large enough so that
the right hand side of (3.16) is smaller than e.
This completes the proofin the case g = 1.

3. In the case 0 < B < 1, a straightforward argument like that in step 2
distribution g := P[Z, = k] = (k + 1) pg+1, however, obeys a power law of the
following form:

There exist positive constants ¢y, ¢5 such that

(3.17) etk ) < g <ok (B+D) (k=1,2,..)

(3.18) can be checked, e.g., by expanding the moment generating function of
(gx), which is 1 — #(1 — 5), into a binomial series.

Now we turn to the proof of (3.14) in thecase 0 < § < 1:
In view of the estimate (3.15), it is reasonable to divide the support of the
random Poisson configuration x4 into two parts, namely:
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those points s for which Z, > s%/%, forming Ko,
and those points s for which Z, < sl forming ui,.

,u,,llﬂ can be considered a “random thinning” of x4, and hence has the same
distribution as a random Poisson configuration ®; with intensity measure
h(s)nPA(ds), where h(s) := P[Z, > s%/2]. Denoting by ®; a random Poisson
configuration with intensity measure (1 — h(s))n?A(ds) (independent of &),
we note that ®; + ®; equals g, 5 in distribution, and moreover:

- / (Z €r ) n,e(ds) is equal in distribution to
[ty00) i=1

(3.18) —/ )Zf )81 (ds) + / Zfs-)% ds) = GT + HP,
’°° =1

where Z, is assumed to have distribution P[Z, € (-)|Z, > %), and Z, is
assumed to have distribution P[Z, € (-)|Z, < s%/?], the random variables Z,,
Z, all being independent. \

4. In order to estimate the summand H, first note that by (3.17) one has
forall s > 1:

g/

= d/a __1___ (B+1)
E[Za] E[Z,IZ, <s ] < P[Z < sd/a] Z kczk

d/a
15 d
< = E B < ¢aga(l-F)
S cok™P < e3s

with a suitable constant c¢3 > 0 (independent of s).

Hence results by Wald’s identity (similar as in step 2):

EHP < 1/ A ch-csf L ds,
n Jt0) ’ [t.0)

which leads, by Markov’s inequality to:

(3.19) AT >0Ve>T Vn=1,2,...: P[H] >¢|<e.

5. We now turn to estimate the first summand G} in (3.18). By (3.17) there
holdsforalls > 1
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a8

(3.20) h(s) = P|Z, > s%/*]| < cqs™ =

for a suitable constant ¢4 (independent of s), hence ®; is, on the interval 1, 00),
“stochastically thinner” than a random Poisson configuration g}, § with inten-

d,
< A(ds). Writing, for abbreviation,

Z,
'];1 = Z é:;’;
i=1

sity measure c48™

we thus observe, forallt > 1andn=1,2,...

(3.21) PG} > €] < P| / nouta(ds) > ]

yOO

6. In view of (3.18), (3.19) and (3.21), the proof will be complete if we suc-
ceed to show:

(3.22) Id>0VYn=1,2,...: P[/ n;‘u;ﬁ(ds) >e|l<e.

t,00)

Indeed, then we have, using step 1, forthistand alln =1,2,...:

P|YZ(B) - Y*(B) > 2¢| < P|G} + H* > 2¢| < P|G} > €|+ P[H! > ¢] < 2¢
(note that ¢t in (3.22) can be taken, without loss of generality, larger than T'
figuring in (3.19)).

7. We now proceed to show (3.22). Let, form = 1,2,.. ., t, be such that

®© 4 1
/ 8 ads=—.
tm m

Let us,m)ﬂ be a random Poisson conﬁgﬁration with intensity measure m -
dB . . e e .
nf s~ "« A(ds). Obviously, Sy n:= f[tm, o) 17:‘,11.5::) B(ds) arises, in distribution, as

a sum of m independent copies LS,IL?,,, ey Lg,':f,{ of Ly n:= % f[tm,oo) nyusa(ds).

Now assume the contrary of (3.22) , which would imply the existence of a

sequence m; — oo and a sequence n; such that

(3.23) PlLmjn; >2¢€l>e (7=1,2,...).
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Let r > 0 be a lower bound for the probability of £ successes in N cointos-
ses with success probability . (Note that such a stnctly positive lower bound
actually exists, since by the law of large numbers there holds P[number of
successes > N¢| v 1). From (3.23) there results

— 00

m;
PlSmjn, 2 5—21—] PILO) i+ oo+ LG > 6———] >r.

This would imply that the family of random variables {Smn}m nen is not
tight. To guarantee (3.22) it is thus sufficient to show that {Sm,n}m neN ac-
tually is tight.

8. We now turn to the proof of tightness of {Sy n}m nen- In step 9 below
we will show:

(324) s >0Vs>1Vk=1,2,... Vn=1,2,...: P[p" > k] < csk™P.

Having (3.24) at hand, it is possible to estimate the random variables 57 by an
upper bound “in distribution”. To this end, let K be large enough such that

> esfi~ BT <1,

F=K+1

put m; := esBi~ Bt ifj > K, mg = 1— E;”:I(Jrl xj, = 0if j < K,
and let (xs)s>1 be a family of i.i.d. random variables, each with distribution
(75)j=1,2,...- Since by (3.24) for all k = 1,2,...,8 > 1l and n = 1,2,... there
holds :

Plxs 2 k| 2 P[ng > k],
tightness of {Sm n}m neN Will follow from tightness of

_1./ Xsl‘np (ds) m,n € N.
[tms00)

n

To check tightness of the latter family, note that /l. ([tm, o)) is a Poisson
random variable with mean n®. It is thus enough to show that the family

1 o
¢n :=;ij, n=12...
=1

is tight, where N, is a Poisson random variable with mean n?.

N,

NP 1
(Nn) o )1/,6 Z X; converges, for n — oo,
=1

But ¢n =
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in distribution, since x, is in the domain of normal attraction of a totally
asymmetric stable law with exponent 8.
Hence {¢n}neN is tight, and so is {Sm,n }m, neN-

9. It remains to close the gap in the previous step, namely to show (3.24).
Note that n? = A7.D* (s>1,n=1,2,...),
where

__Zen d/a D, := Zaa—-d/a.
*i=1

In order to estimate the distribution of D,, choose in view of (3.17) a cons-
tant cg > 0 such that

(3.25) Va>1Vz>1:P[Z,>z|>cezP.
By (3.17) and (3.25) we have forall j = 1,2,...

PD, €, +1)] = P[Z, € [js%/, (5 + 1)s%/*)]
= P[Z, € [js%*, (5 + 1)ad/°‘)|Z, > 49/

[(G+1)s¥/=]+1
<ecy Z _('B+l) Gdﬂ/a

[
iljotla] 6

2 ( 118/~ (B+1)( d/ B/
< (™) T + 1)od

< e7(5+1)~ 0+ for a suitable ¢ > 0 independent of 5 and s.

Hence results, forall k=1,2,...

Pln} > k| = P[ATD, 2 k| < iP[De €lj—1,7)|PlAZ > ;w, €li-1,9)
i=2

k . oo
(3.26) < Zc.,j—(ﬂﬂ)’;E[A;‘]D, eli-1,5)]+ Y ey~ B,
i=2 i=h+1

Since the conditional expectation E[A}|Z,] is, due to (3.15), bounded by ¢p,
and since moreover

k k 1
Zi’ﬁ < / rPdr=— k7P
=2 1 1-5
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and

oo 00 1
Z J.—ﬂ+1 < / e a ¥ —k"ﬂ,
i=k+1 k p

the validity of (3.24) follows directly from (3.26), and the proof of the lemma
is complete. o

The preceding lemma closes the gap in the proof of Proposition (3.8), which,
in view of Remark (3.7), finishes the proof of the theorem.

Acknowledgement: 1 thank Luis Gorostiza for having drawn my attention
to this problem; also, I thank him, Sylvie Roelly-Coppoletta and especially
Reinhard Lang for stimulating and constructive discussions.

INSTITUT FOR MATHEMATIK
JOHANNES KEPLER UNIVERSITAT LINZ
LiNzZ, A-4040 AUSTRIA

REFERENCES

[D] D.A.DawsoN, Thecritical measurediffusion process. Z. Wahrscheinlichkeitstheorie verw. Ge-
biete 40, 125-145, 1977.

[GRCW] L. G. GOROSTIZA, S. ROELLY-COPPOLETTA AND A. WAKOLBINGER, Sur la persistance du
processus de Dawson-Watanabe stable. L’intervertion de la limite en temps et de la re-
normalisation, in Sem Probabilité xxtv, 1988/89, J. Azéma, P. A. Meyer, M. Yos (Eds),
p. 275-281, Lecture Notes in Mathematics, Springer, 1990.

[GW] L. G. GOROSTIZA AND A. WAKOLBINGER, Persistence criteria for a class of critical branching
particle systems in continuous time, to appear in Ann. Probability.

[K] O.KALLENBERG, Random Measures, 3rd ed., Akademie Verlag, Berlin, and Academic Press,
New York, 1983.

[MRC] S. MELEARD AND S. ROELLY-COPPOLETTA, Discontinuous measure-valued branching pro-
cesses and generalized stochastic equations, to appear in Math. Nachr,

[W] S. WATANABE, A limit theorem of branching processes and continuous state branching pro-
cesses, J. Math. Kyoto Univ. 8, 141-167, 1968.





