
Boletin de la Sociedad Matematica Mexicana Vol. 33 No. 2, 1988 

RECURSIVE NONPARAMETRIC ESTIMATION 
OF NONSTATIONARY MARKOV PROCESSES* 

By ONESIM0 HERNANDEZ-LERMAt, SERGIO 0. ESPARZA 
AND BENJAMIN S. DURAN 

1. Introduction 
In this paper we consider the problem of estimating the transition probabil­

ity density of a discrete-time, d-dimensional, nonstationary Markov process. 
To solve this problem we use recursive estimators of the type introduced 
by Wolverton and Wagner (1969), and Yamato (1971), and show that, un­
der appropriate hypotheses, the estimators are uniformly consistent in mean 
square, strongly pointwise consistent, and strongly. consistent in L1 norm. 

The nonparametric estimation of stationary Markov processes has been 
studied by many authors, e.g., Ioannides and Roussas (1987), Nguyen (1984), 
and Yakowitz (1985); for earlier references, see Prakasa Rao (1983), Chap­
ter 6. The nonstationary case, however, has not received as much attention, 
but we can mention two papers related to our work: Gillert and Warten­
berg (1984) show the weak consistency of the usual (nonrecursive) Parzen-Ro­
senblatt density estimators, whereas Hernandez-Lerma and Doukhan (1989) 
combine an empirical distribution process with regression-like estimators to 
obtain consistent estimates for the transition law of a class of Markov control 
processes. 

In fact, the motivation for considering nonstationary Markov processes is 
our interest in adaptive Markov control systems with unknown transition law, 
as in the last cited paper [cf. also Gordienko (1985), Hernandez-Lerma (1989), 
Hernandez-Lerma and Marcus (1987), and references therein]. The evolution 
of these control systems depends on the control actions applied at each time 
t, which in turn depend on the current estimates of the unknown transition 
law. The resulting process is then, in general, nonstationary. 

The paper is organized as follows. In Section 2 we state some basic assump­
tions and give some preliminary results. Among these assumptions there is 
an ergodicity condition that guarantees the existence of a unique invariant 
probability measure µ for the Markov process, which is shown to be abso­
lutely continuous with density, say,. In Section 3 we introduce the recursive 
Wolverton-Wagner (WW) estimates it(x) of the invariant density ,(x), and 
give conditions for their consistency (Theorem 3.1). Next, in Section 4, we 
consider the joint density f(x, y) = q(ylxh(x), where q(ylx) denotes the (un­
known) transition probability density. To estimate f(x, y) we use again WW 
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estimates, denoted by ft ( x, y), and obtain the corresponding consistency re­
sult (Theorem 4.1). Estimates for q(ylx) are then defined in Section 5, in the 
usual, obvious way, by 

qt(Ylx) := ft(x, y)/it(x), 

and their consistency (Theorem 5.1) follows from the results in Sections 3 and 
4. The proofs of the main results are all collected in Section 6, and we conclude 
in Section 7 with some general remarks on the relation of our work to Markov 
control (or decision) processes. 

For sequences of independent and identically distributed (i.i.d.) random 
vectors, the WW density estimates have been studied by several authors, in­
cluding Menon et al. (1984), Prasad (1985), and Yamato (1971). For additional 
references, see, e.g., Devroye and Gyorfi (1985), and Prakasa Rao (1983). 

Notation and terminology. '13d denotes the Borel sigma-algebra of Rd, and 
B(Rd) stands for the Banach space ofreal-valued, measurable, bounded func­
tions on Rd, with the supremum norm II u II:= supxlu(x)I. IfV is a finite signed 
measure on '13d, II V II denotes its variations norm, In particular, recall that if 
P and Qare probability measures on Rd with densities p and q, respectively, 
then P - Q is a finite signed measure with variation norm 

(1.1) II P- Q II= 2s~p IP(B) - Q(B)I = J lp(x) - q(x)ldx, 

where the sup is over all the Borel sets BE '13d; see, e.g., Devroye and Gyorfi 
(1985), p.2. The right-hand side (r.h.s.) of(l.1) is called the L1-normof P-Q 
(or of p - q). Integrals without limits represent integrals over all of Rd, and 
we also use the convention 0/0 := 0. 

2. Preliminaries 

Let {xt,t = O, 1, .. . } be an Rd-valued Markov process with transition den­
sity q(ylx), and arbitrary initial distribution µ,o, Thus for every t = 1, 2, ... , 
the distribution P.t of Xt is given recursively by 

(2.1) for BE '13d, 

where Q(Blx) denotes the transition probability measure, i.e., 

(2.2) Q(Blx) := l q(ylx)dy, 

We assume throughout that the following ergodicity condition holds [cf. Do­
brushin (1956), Iosifescu (1972), Ueno (1957)]. 
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ASSUMPTION 2.1. There exists a positive number a < 1 such that 

II Q(•lz) - Q(·IY) II~ 2a for all z and yin Rd. 

Sufficient conditions for Assumption 2.1 are given, e.g., by Georgin (1978), 
Hernandez-Lerma and Cavazos-Cadena (1988), or Hernandez-Lerma (1989, 
Section III.3); for autoregressive models Xt+l = f (xt) + €t, where { €t} is a se­
quence of i.i.d. random vectors, see Doukhan and Ghindes (1983), or 
Hernandez-Lerma and Doukhan (1989). On the other hand, Assumption 2.1 
implies that, independent of the initial distribution µo, the Markov process 
has a unique invariant distributionµ, i.e., 

(2.3) µ(B) = J Q(Blx)µ(dx) for all BE 23d, 

and moreover, for any t ~ 0, 

(2.4) 

or equivalently, 

sup II qt(•lx) - µ II~ 2at, 
X 

where Qt (·Ix) denotes the t-step transition probability, given x0 = x. 
To estimate µ, we first assume the following. 

ASSUMPTION 2.2. (a) The initial distribution µo is absolutely continuous 
with a bounded density ,o. 

(b) There is a constantq and a function g E B(Rd) such that q(ylx) ~ q, and 
lq(ylx) - q(y'lx)I ~ lu(z)IIY - y'I for all x, y, and y1 in Rd. ' 

Assumption 2.2 (a), together with (2.1), (2.2), and an induction argument, 
implies that µt is absolutely continuous with a density ,t given recursively by 

(2.5) ,t(Y) = f q(ylxht-i(x)dx for all y E Rd and t ~ 1, 

and this in turn, by (2.4), yields thatµ is absolutely continuous, so that there 
exists a nonnegative measurable function , such that 

JLW]z l ,(x) dx for BE 23d, 

Thus, from (2.2) and (2.3), ,(y) = f q(yjx)1(x)dx for almost all y E Rd, 
whereas using (1.1), we can write the inequality (2.4) as 
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(2.6) 

On the other hand, Assumption 2.2 (b), combined with (2.5), implies that 

(2.7) 11,t ll:5 co for all t ~ O, 

where co:= max{q, 11,o II}, and 

(2.8) ht(Y) - ,t(y')I :511 g II 111 - 1111 

for all y and y1 in Rd, and t ~ 1. Similarly, 

h(11) - ,(111)1 :511 u II 111 - 1111, 

so that, is a Lipschitz bounded function (note that II I ll:5 q :5 co), and from 
(2.5) 

Therefore, we conclude: 

PROPOSITION 2.1. II ,t - 1 II= supxht(x) - ,(x)I-+ 0 as t-+ cc. 

An alternative (less direct) way to obtain Proposition 2.1 is by using the 
converse to Scheffe's Theorem given by Boos (1985). Assumptions 2.1 and 
2.2 are supposed to hold throughout the following. 

3. Estimation of the invariant density 

For each n = 0, 1, ... , let un be the function defined by 

where u is a given probability density function (p.d.f.), sometimes referred 
to as the kernel function, and {bn} is a sequence of positive numbers. The 
recursive Wolverton-Wagner (WW) estimate 'lt of the density, is then defined 
as 

t-1 

7t(z) := C 1 I: Un(Zn - z), for z E Rd, and t = 1, 2, .... 
n=O 

Observe that these are indeed recursive estimators, since 



NONPARAMETRIC ESTIMATION OF MARKOV PROCESSES 61 

(3.1) (t + l}1t+1(x) = tit(x} + ut(Xt - x), 

and that, on the other hand, 

ilt(B} := L -Yt(x)dx, for BE !Bd, 

defines an estimate for the invariant probability measureµ. 
We assume throughout that the kernel u is bounded, II u II< oo, and also 

u := J lxlu(x)dx < oo. With respect to the sequence {bt}, we will assume that 
it is nonincreasing, and it satisfies some of the following conditions. 

Condition 3.1. (a) bt -+ 0. (b) tbf-+ oo. (c) Lt t- 312b,d < oo. 

A sequence satisfying these conditions is, for example, bt := er, with 
0 < r < 1/2d. 

To state our first consistency result, let us define the bias function 

Bt(x) := Eit(x} - 1(x}, 

and the mean square error function 

(3.2) Mt(x) := E[it(x) - 1(x)] 2 = Var[it(x)] + Bt(x) 2, 

where Var(•) denotes the variance. 

THEOREM 3.1. Suppose that Condition 3.l(a) holds. Then, as t-+ oo, 
(a) SUPzlBt(x)I--> 0. 
Ifin addition, Condition 3.l(b) holds, then 
(b) supz Var[it(x)] ~ ct- 1b,d--> 0, where c := 2 II u II co/(1 - a), and 
(c) supz Mt(x}-+ 0. 
Suppose also that Condition 3. l(c) holds. Then 
(d) 7t(x) -+ 1(x} almost surely (a.s.) for all x E Rd, and 
(e) II Jl,t - µ II= J lit(x) - 1(x)ldx-+ 0 a.s. 

Notice that under Conditions 3.l(a) and 3.l(b), equation (3.2) yields that 
parts (a) and (c) in Theorem 3.1 are equivalent. This has been proved by Pra­
sad (1985) for i.i.d. sequences {xt}, He also gives conditions under which, for 
i.i.d. sequences, Theorem 3.l(c) is equivalent to uniform strong consistency, 
but we have been unable (as yet) to extend Prasad's result to Markov sequen­
ces. 

The proof of Theorem 3.1 is given in Section 6. Following the outline sketch­
ed in the Introduction, we now turn to the estimation of the joint density 
/(x, y) = q(ylxh(x). 
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4. Estimation of the joint density 

In this section we extend Theorem 3.1 to the 2d-dimensional joint process 
zt := (xt, Xt+i), t = 0, 1, .... Todo this, we begin by noting that {zt} is a Markov 
process, and zt has density 

(4.1) ft(x, 11) = q(11lxht(x), t ~ o, 

which converges in Li-norm to f(x, 11) = q(11lx),(x); in fact, from (2.6), 

ff lft(x, 11) - f(x, 11)ld11dx = f ht(x) - 1 (x)ldx :s; 2a:'. 

Moreover, both f(x, y) and ft(x, 11) are uniformly bounded, namely, 

(4.2) l/(x,11)1 :s; q 11, IIS c5, and lft(x,11)1 :s; qco S c5, 

and since lft(x, y) - f(x, 11)1 Sq 11,t - , II, Proposition 2.1 yields 

(4.3) II ft - f II= sup l!t(x, 11) - f(x, 11)1-+ 0 as t-+ oo. 
z,11 

To obtain the analogue of the Lipschitz condition (2.8), we strengthen As­
sumption 2.2(b) as follows. 

Assumption 4.1. There is a function h E B(Rd) such that, for all x, x1, and 
11 in Rd, 

lq(ylx) - q(11lx')I :s; lh(y)llx - x'I• 

With this additional assumption, we have: 

PROPOSITION 4.1. ft(x, 11) satisfies the uniform Lipschitz condition 

l!t(x, 11) - ft(x', 11')1 Sci• max{lx - x'I, 111 - 11'1} 

forall 2d-vectors (x,11) and (x',11'), where c1 := co(2 II g 11 + 11 h 11). 

To define an estimate· ft(x, y) of the joint density f(x, y), let us consider 
again the sequence {bn} and foe functions u(x) and un(x) introduced in Sec­
tion 3, and let 

for (x, 11) E R2d. 

Then we define 
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t-1 

ft(x, y): = t- 1 L u~(xn - x, Xn+I - y) 
n=O 
t-1 

= t- 1 L un(Xn - x)un(Xn+I - y). 
n=O 

To state the corresponding consistency result, we introduce the bias func­
tion 

Bi(x, y) := Eft(x, y) - f(x, y), 

and the mean square error function 

Mt (x, y) := E[/t(x, y) - f(x, y)]2 = Var[/t(x, y)] + Bi(x, y)2 . 

Let us also consider (cf. Conditions 3.l(b) and (c)): 

Condition 4.1. (a) tb;d--+ oo. (b) 'f:,c 3/ 2b, 2d < oo. 

THEOREM 4.1. Suppose that Condition 3.l(a) holds, i.e., bt --+ 0. Then, as 
t --+ oo, 
(a) SUPx, 11IB;(x, y)I--+ 0. 
If in addition, Condition 4.1 (a) holds, then 
(b) supx, 11 Var[/t(x, y)] < cC 1b, 2d--+ 0, for some constant c, and 
(c) SUPx, 11Mt(x, y)--+ 0. 
Suppose also that Condition 4.l(b) holds. Then 
(d) ft(x, y) --+ f(x, y) a.s. for all (x, y) E R 2d, and 
(e) J J lft(x, y) - I (x, y) ldxdy--+ 0 a.s. 

The proof is given in Section 6. 

5. Estimation of the transition density 

Having the estimates 1't(x) and ft(x, y) of ,(x) and f(x, y), respectively, 
we can now define an estimate 'lt(Ylx) for the transition density q(ylx) 
f(x, y)/,(x) in the obvious way: 

'lt(Ylx) := ft(x, y)/1t(x), for (x, y) E R2d and t 2'.: 1. 

Then the consistency Theorems 3.1 and 4.1 yield the following. 

THEOREM 5.1. Let x E Rd be such that ,(x) > 0. If the assumptions of 
Theorems 3.l(d) and 4.l(c) hold, then, as t --+ oo, 
(a) sup 11Elqt(Ylx) - q(ylx)l2 --+ 0. 
If also Condition 4.l(b) holds, then 
(b) llt(Ylx) --+ q(ylx) a.s. for ally E Rd, and 
(c) II Qt(·lx) - Q(•lx) II= J l11t(Ylx) - q(ylx)ldy--+ 0 a.s., where 
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for B E 23d, 

is an estimate of the transition probability measure Q(Blx) in (2.2). 

6. Proofs 

Let us first state some properties of the functions un(x) := b;;du(x/bn)­

LEMMA 6.1. For every x E Rd and n 2': 0, 
(a) un(·) is a p.d.f. on Rd. 
(b) Eun(Xn - x) ~ b;;d II u 11-
(c) Eun(xn - x) ~ co, where co is the constant in (2.7). 
(d) Var[un(xn - x)] ~ Eu~(xn - x) ~ b;;d II u II co, 
(e) The covariance function f(n,m) := cov[un(xn - xl,um(xm - x)] satisfies 

lf(n,m)I ~II u II b;,_do:m-nEun(Xn - x) ~II u II cob;,_do:m-n 

for all O ~ n ~ m, where o: < 1 is the number in Assumption 2.1. 

Proof. (a) and (b) are obvious, by the definition of un. Part (c) follows from 
(2. 7) and the equality 

(6.1) 

Eun(Xn - x) = J un(Y - x),n(y)dy 

= J "'fn(bny + x)u(y)dy. 

Writing u~ = Un • u~, (d) follows from the definition of un and part (c), and 
finally, (e) is a special case ofUeno's (1957) Lemma 3. □ 

Proof of Theorem 3.1. (a) By definition, 

t-1 

(6.2) Bt(x) := E11(x) - ,(x) = C 1 L E[un(xn - x) - ,(x)], 
n=O 

and by (6.1), 

IEun(xn - x) - ,(x)I ~ J l,n(bny + x) - ,(x)lu(y)dy. 

Now inside the absolute value on the r.h.s., add and substract ,n(x), and 
then use the Lipschitz property (2.8), to obtain 

IEun(Xn - x) - ,(x)I ~II g II bn J IYlu(y)dy+ 11,n - , II 

=II g II ubn+ ll,n - I II. 
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Thus, part (a) follows from (6.2), Proposition 2.1, and Condition 3.l(a). 
(b) In terms of the covariance f(n, m) in Lemma 6.l(e), and noting that 

n,m n,m 

where the sum is over n, m = O, 1, ... , t - 1, we obtain 

Var[it(x)] = C 2 L r(n, m) :-:; cC 1bi"d, 
n,m 

where c = 2 II u II co/(1- a). This proves (b). 

c) This part follows from (a) and (b), together with (3.2). 
To prove the strong consistency in (d) we will use a Lemma by Van Ryzin 

(1969), stated here for ease of reference: 

LEMMA 6.2. (Van Ryzin). Let {Yi} and {Y/} be two sequences of random vari­
ables on a probability space (n, 9, P), and let {9t} be an increasing sequence of 
sub-sigma-algebras of 9. Suppose that Yt and Y/ are measurable with respect 
to 9t, and: 
(i) Yt 2: 0 a.e., 
(ii) EY1 < oo, 
(iii) E(Yt+1 l9t) :-:; Yt + Y/ a.s., and 
(iv) Et E!Y/1 < oo. 

Then Yi converges a.s. to a finite limit. 

Proof of Theorem 3.l(d). The idea (as in the proof of Van Ryzin's (1969) 
Theorem 1) is to use Lemma 6.2 to show that the sequence 

(6.4) 

where x E Rd is an arbitrary fixed point, converges a.s. to a finite limit, say 
Y, and this, together with part (b), implies Y = 0 a.s. This in turn yields 

-'rt(x) - ,(x) = 7t(x) - Eit(x) + Eit(x) - ,(x)-> 0 a.s., 

by part (a). 

Let 9t be the sigma-algebra generated by x0 , ... , Xt-l, for t = 1, 2, .. .. 
Clearly, Yt in (6.4) is -;:It-measurable, and it satisfies (i) and (ii) in Lemma 6.2. 
Let us define 

ft := -'rt(x) - Eit(x), and Ut := ut(xt - x) - Eut(xt - x). 

Then Yt = r;, and the recursive relation (3.1) yields 
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Yt+1 =Yi+ (t + 1)- 2 [Ul + 2tftUt - (2t + l)Yt] 

::; Yt + (t + 1)- 2 (U? + 2tftUt), 

since Yt ~ 0. Thus 

where 

To verify condition (iv) in Van Ryzin's Lemma 6.2, first note that 

(6.5) 

with E(Ul) = Var[ut(xt - x)] ::; btd II u II co, by Lemma 6.l(d). On the other 
hand, using 

and Schwartz inequality, we obtain 

E(lftUtl) ::; [E(r;)E(Ul)J 112 ::; oc 112bi"d, 

for some constant 0. Thus, (6.5) becomes (for some constant 01) 

EIYt'I::; 01(t + 1)- 2 (1 + t 112)bi"d 

< 20 c 312b-d 
- 1 t ' 

and Condition 3.l(c) yields I: EIYt'I < oo. Therefore, by Lemma 6.2, Yt in (6.4) 
converges a.s. to a finite limit, and as noted earlier, part (d) follows. 

Finally, part (e) follows from (d) and the extension to Scheffe's Theorem 
in Glick's (1974) Corollary C, which can also be found (e.g.) in Devroye and 
Gyorfi (1985), p. 10, or Prakasa Rao (1983), p. 191. This completes the proof 
of Theorem 3.1. □ 

Proof of Theorem 4.1. This theorem follows from exactly the same argu­
ments used in the proof of Theorem 3.1, translated to the 2d-dimensional 
case, and we omit the details. However, just for the sake of illustration, we 
note that, for instance, Lemma 6.1 for un(x) can be translated to u~(x, y) as 
follows. 
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LEMMA 6.3. For every (x, y) E R 2d and n 2:: O, 
(a) u~(-, ·) is a p.d.f. on R 2d. 
(b) Eu~(xn - x, Xn+I - y)::; b;;2dll u 112 , 

(c) Eu~(xn - x, Xn+I - y) ::; c5. 
(d) Var[u~(xn - x, Xn+I - y)]::; E[u~(xn - x, Xn+I - y)]2 ::; c5II u ll2b;;2d. 
(e) The covariance f*(n, m) := Cov[u~(xn-x, Xn+I -y), u:n_(xm-x, Xm+I -y)] 
satisfies 

lf*(n,m)I::; c5II u ll2b;;;_2dam-n-l ifm 2:: n+ 1, or 

::;c511ull2b;;2d ifm=n. □ 

Proof of Theorem 5.1. Let x E Rd be such that ,(x) is positive, say, ,(x) 2:: 
e > 0. Then by Theorem 3.l(d), 1't(x) > e/2 a.s. for all t sufficiently large, and 
therefore, 

IQt(Ylx) - q(ylx)I 

(6.6) ::; h(xVit(x)r 1{,(x)lit(x, y) - f(x, Y)I + f(x, Y)l1t(x) - ,(x)I} 

< 2e- 2 {,(x)lft(x, y) - f(x, Y)I + f(x, y) l1t(x) - ,(x) I}. 

Thus, part (a) follows from the inequality (a+ b)2 

::; 2(a2 + b2

) and The-
orems 3.l(c) and 4.l(c). Part (b) is obvious from Theorems 3.l(d) and 4.l(d), 
and finally, integrating in (6.6) yields 

so that part (c) follows from Theorems 3.l(d) and 4.l(d) and (e). □ 

'7. Concluding remarks 

We have presented consistency results for a class of recursive density es­
timators for Markov processes, but as already noted in the Introduction, the 
motivation for considering nonstationary Markov process(:)sis our interest in 
adaptive Markov control systems. More explicitly, concerning Theorem 5.1, 
our (long-term?) goal is to extend it to Markov control/decision processes with 
unknown transition law 

(7.1) Q(Blx, a) := Prob(xt+l E Blxt = x, at = a), 

where Xt and at denote, respectively, the state variable and the control action 
applied at time t. If the state space is finite, there are several ways to estimate 
Q(Blx, a) in (7.1); see, e.g., Kurano (1987) and his references. Similarly, if the 
control system is of the form • 
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(7.2) t = o, 1, ... , 

where F is a given function and the et are i.i.d. disturbances with common 
distributionµ, (7.1) becomes 

(7.3) Q(Blx, a) = f IB[F(x,a, z)]µ(dz)-, 

where IB is the indicator function, and the problem of estimating Q reduc­
es to the problem of estimating·µ ; cf. Gordienko (1985), Hernandez-Lerma 
(1989), Hernandez-Lerma and Marcus (1987). In particular, ifµ is absolutely 
continuous with density,, it is clear that our Theorems 3.1 or 5.1 contain 
the "controlled" case (7.2), (7.3), because the control variables at = a have no 
effect whatsoever on the disturbances et. In the general case (7.1), however, 
it is not clear how one should incorporate the effect of the control ~ctions into 
the estimators. 

Acknowledgment. The authors wish to thank Dr. Rolando Cavazos-Cadena 
for his thoughtful reading of the paper and a number of suggestions, including 
$Orne needed corrections and changes in an earlier version'. 

CENTRO DE INVESTIGAC[0N DEL JPN 
APARTADO POSTAL 14-740 
ME){[CO, D. F., ME){[CO 07000 

TEXAS TECH UNCVERS[TY 
LUBBOCK, TEXAS, U. S. A. 79409 

REFERENCES 

[1] D. D. Boos, A converse to Schefff!'s theorem. Ann. Statist. 13(1985), 423-427. 
[2] L. DF.VR0YE AND L. GY0RFr, Nonparametric Density Estimation: The L 1 View, Wiley, New 

York (1985). 
[3] R. L. DoBRUSHrN, Central limit theorem for nonstatio,:,.ary Markov chains,L Theor. Probabi-

lity Appl. 1(1956), 65-80. • • , 
[ 4] P. DoUKHAN ET M. GHCNDES, Estimation de la transition de probcibilite d 'une chatne de Markov 

Doeblin - rocurrente. Stoch. Proc.Appl. 15(1983), 271-293. 
[5] J. P. GF:ORGIN, Controle de chafnes de Markov sur,,des espaces arbitraires. Ann. Inst. H. 

Poincare 14, Sect. B,(1978), 255-277: 
[6] H. GrLLF:RT AND A. WARTENBERG, Density estimation for non-stationary Markov processes. 

Math. Operationsforsch. u. Statist., ser. Statist. 15( 1984), 263-275. • 
[7] N. GLCCK, Consistency conditions for probability estimators and integrals of density estima­

tors. Utilitas Math. 6(1974), 61-74. 
[8] E. I. G0RDrENKO, Adaptive strategies for certain classes of controlled Markov processes. Theory 

Probab. Appl. 29(1985), 504-518. 
[9] 0. HERNANDEZ-LERM~ Adaptive Markov Control Process. Springer-Verlag, New York ( 1989). 
[10] --AND R. CAVAZOS-CADENA. Continuous dependence of stochastic control models on the 

noise distribution. Appl. Math. Optim. 17( 1988), 79-89. 
[11] -- AND P. DoUKHAN, Nonparametric estimation and adaptive control of a class of dis­

crete-time stochastic systems. (1989), Submitted for publication. 



NONPARAMETRIC ESTIMATION OF MARKOV PROCESSES 69 

[12] --- AND S. I. MARCUS, Adaptive policies for discrete-time stochastic control systems with 
unknown disturbance distribution. Syst. Control Lett. 9(1987), 307-315. 

[13] D. IoANNID&'l AND G. G. RoussAS, Note on the uniform convergence of density estimates for 
mixing rondom variables. Statist. Probab. Lett. 5(1987), 279-285. 

[14] M. losIF&'lCU, On two recent papers on ergodicity in nonhomogeneous Markov chains. Ann. 
Math. Statist. 43(1972), 1732-1736. 

[ 15] M. KuRANo, Leaming algorithms for Markov decision processes. J. Appl. Probab. 24( 1987), 
270-276. 

[ 16] M. LoEVE, Probability Theory II, 4th ed., Springer-Verlag, New York ( 1978). 
[ 17] V. V. MENON, B. PRASAD AND R. S. SrNGH, Nonparametric recursive estimates of a probability 

density fimction and its derivatives. J. Statist. Plann. Inference 9(1984), 73-82. 
[18] H. T. NGUYEN, Recursive nonparametric estimation in stationary Markov processes. Pub. 

Inst. Statist. Univ. Paris 24(1984), 65-84. 
[19] B. L. S. PRAKASA RAO, Nonparametric Functional Estimation, Academic Press, New York 

(1983). 
[20] B. PRASAD, Eqllivalenceofuniform. asymptotic unbiasedness, mean square and strong consis­

tencies of recursive estimates of a density and its derivatives. J. Statist. Plann. Inference 
12(198fi), 81-86. 

[21] H. L. RoYDF.N, Real Analysis, 2nd. ed. Macmillan, New York (1968). 
[22] T. UENO, Some limit theorems for temporally discrete Markov processes. J. Fae. Sci. Univ. 

Tokyo, Sect. 1, 7(1957), 449-462. 
[23] J. VAN RVZIN, On strong consistency of density estimates. Ann. Math. Statist. 40(1969), 1765-

1772. 
[24] C.T. WoLVER'I'ON AND T. J. WAGNER, Recursive estimates of probability densities. IEEE Trans. 

Syst. Sci. Cyber. 5(1969) 246-247. 
[25] S. YAKOWfTZ, Nonparametric density estimation, prediction, and regression for Markov se­

quences. J. Amer. Statist. Assoc. 80(1985), 215-221. 
[26] H. YAMATO, Sequential estimation of a continuous probability density function and mode. 

Bull. Math. Statist. 14(1971) 1-12. 




