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CONSTRUCTION OF GLOBAL FUNCTION FIELDS 
WITH NILPOTENT AUTOMORPHISM GROUPS" 

By MARTHA RZEDOWSKI-CALDERON 

L Introduction 

There is a dose analogy between the fields of algebraic numbers and the · 
fields K / k of algebraic functions of one variable. This analogy is most pro­
nounced for the class of congruence function fields, i.e., when k, the field of 
constants, is a finite field. Together with algebraic number fields of finite de­
gree, they form the class of global fields. Given a global field K and a finite 
group G, does there exists a Galois extension L/ K such that Gal(L/ K) ~ G? 
This is the famous Inverse Problem of Galois Theory. Safarevic [17] solved 
this problem for number fields when G is a solvable group. There is one im­
portant difference between the two classes of global fields. There is no unique 
subfield of the congruence function field which is the analogue of the field of 
rational numbers. In fact, there are infinitely many fields ofrational functions 
contained in every function field K / k of one variable. 

In this paper, we ask the following question which has no analogue for 
number fields: Given a finite field k with q elements, and a finite group G, 
does there exists a Galois extension L of the rational function field k( x) such 
that G, Gal(L/k(x)) and Aut(L/k), the group of all k-automorphisms of L, are 
all isomorphic? We answer this question in the affirmative if G is a nilpotent 
group such that I G I> 1 and (I G I, q - 1) = 1. The Castelnuovo's Inequality 
is the most important ingredient in the proof. 9ur proofs also use techniques 
of Reichardt [15] and D'Mello-Madan[4]. 

We remark that the analogue of the Inverse Problem of Galois Theory is 
an unsolved problem even when k is algebraically closed and of characteristic 
p. If k is the field of complex numbers, Greenberg [6] showed that there exist 
extensions L/k such that Gal(L/ k(x)) ~ G ~ Aut(L/k). When k has character­
istic p > 0, Madden and Valentini [13] showed that there exist L/k such that 
Aut(L/ k) ~ G. Finally, for fields of characteristic p > 0, algebraically closed k 
and solvable G, D'Mello and Madan [ 4] proved that there exist infinitely many 
extensions L/ k(x) such that Aut(L/ k), Gal(L/ k(x)) and Gare all isl)morphic. 

From now on, let k denote a finite field, I k I= q = p" for some prime number 
p. Let x be an indeterminate over k and denote k(x) by K. Let G be a finite 
nilpotent group, I G I> 1 and (I G I, q - 1) = 1. 

Since our goal is to construct an extension L/K such that Aut(L/k) = 
Gal(L/K) ~ G and Aut(K/k) is non-trivial, the condition I GI> 1 is clearly 
necessary. 

* This is essentially part of the author's dissertation written at The Ohio State University. The 
author wishes to express her gratitude for the guidance provided by her thesis adviser, Professor 
Manohar L. Madan. 
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In §2 and §3 we consider, respectively, the cases that G is a p-group and G 
is an [-group, [ a prime number, [ =I= p. In these sections, to obtain the Galois 
extension, we follow closely the construction by induction that Reichardt [15] 
makes for number fields. Our condition (t, q - 1) = 1 corresponds to his re­
striction [ cf=. 2. In §4 we utilize the results of §2 and §3 to prove the main 
result, that is, the case when G is nilpotent. 

We will use the symbol • to indicate the end of a proof. 

2. G is ap-group 

Assume I G I= pn. Let Gn = G. For v = n, n - 1, ... , 1, we obtain a 
subgroup Hv of the center of Gv, of order p and set Gv-1 = Gv/ Hv. We 
will construct fields K1 ~ •·· ~ Kn = L, so that Gal(Kv/K) ~ Gv and 
Aut(Kv/k) = Gal(Kv/K). 

The Case v = l: 

Let t1 be a given natural number. Consider different primes Pi, ... , Pt1 in 

Kand let f(x) = A<>·-~•Pii. 

By Hasse [7, page 38], we have that K 1 = K(y), where yP - y = f (x), is an 
extension of K of degree p and the primes P1, ... , Pt 1 are precisely the primes 
of K that rami(y in K1. Thus Gal(Ki/ K) ~ G1, 

Let a- E Aut(Ki/k). First we want to show o-(K) = K. Let K 1 = o-(K). 
Assume 

K 1 g; K. Then K1 = KK 1• 

We have genus of K = genus of K 1 = 0. Let g = genus of K1. By the 
Riemann-Hurvvitz Genus Formula, g = p(O - 1) + ½deg(DKi/K) + 1, where 
DKi/K denotes the different of K 1 I K. Since there are t1 primes of K ramify­
ing in K1, deg(DKifK);.::,: t1 ® 2"' (p--1) (see Hasse [7, page 42]). 

Therefore 

(1) g ;.::,: - p + t 1 (p - 1) + 1 = (p - 1 )( t 1 - 1) . 

On the other hand, by Castelnuovo's Inequality (see Madden-Valentini [13, 
page 163] and Eichler [5, page 281]), 

( C)\ 
,;.,} g :C:::: p "' 0 + p "' 0 + (p - 1 )(p - 1) = (p - 1) 2 . 

From (1) and (2), (p -- 1)(t 1 - 1) :<:::: (p - 1)2 , so t 1 :<:::: p. Thus, if we choose 
ti > p, we obtain a contradiction, Therefore, if t1 > p, a-(K) ~ K. Since it is 
also true that a-- 1 (K) c;:; K, it follows o-(K) = K. 
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Now we show ulK = idK. To do this we use the following argument of 
Valentini-Madan [19, page 44]. 

First, we prove that there are infinitely many primes P of K such that 
r(P) =-/= P for all r E Aut(K/k), r =-/= idK. We have Aut(K/k) is finite. Let E 
be the field fixed by Aut(K/k). Then Gal(K/E) = Aut(K/k). By Cebotarev's 
Density Theorem (see Jarden [10]), there are infinitely many primes Q of E 
that decompose fully in K. A prime P of K that lies above one of these Q 
satisfies r(P) =I= P for all r E Aut(K/k), r -=f-IdK. 

Let S = {Pi, ... ,Pt 1 -d be a set of t1 - 1 primes of K. Let M = 
{ r E Aut(K/k) Ir -=f-IdK and I r(S)nS I~ t1 -2}. SinceAut(K/k) is finite, Mis 
finite. Thus, the set {PI Pis prime in Kand r(P) ES for some r EM} is also 
finite. Therefore, there exists a prime Pt1 in K such that Pt1 (/. S, r( Pt1 ) -=f-Pt1 

and r(Pt 1 ) (/. S for all r EM. 
Let i E {1, ... , ti}. Then u(Pi) = Pj for some i because P1, ... , Pt1 are 

precisely the primes of K that ramify in K 1 and we have unique factorization 
in K1. 

If o-lK -=f-IdK, then ulK E M. This contradicts our choice of Pt1 • Therefore 
a-lK = IdK as desired. We conclude a E Gal(Ki/ K). 

Thus, if t 1 ~ p + 1 and the Artin-Schreier extension Ki/ K is defined as 
above, we have Aut(J(i/k) = Gal(Ki/ K) is a cyclic group of order p. 

The Induction Step: 

Assume Kv -1 constructed for v :::; n, with Gal(Kv-i/ K) ~ Gv-1 and 
Aut(Kv-i/k) = Gal(Kv-i/K). We want to show that Kv-1 is contained in a 
field Kv with Galois group isomorphic to Gv such that Aut(Kv/k) = 
Gal(Kv/ K). 

In order to handle this problem we refer first to I wasawa [9]. Let K be a field 
and E / K a finite Galois extension. Let G be a finite group containing a nor­
mal subgroup H such that there is an isomorphic mapping <p from G / H onto 
Gal(E / K). The embedding problem P(E / K, G / H, <p) has a solution (L, w) if 
we can embed E in a finite Galois extension L of K so that the isomorphism 
W from G onto Gal(L/K), maps H onto Gal(L/E) and induces, in a natural 
way, the given isomorphism <p from G / H onto Gal(E / K). 

We state without proof the following Theorem oflwasawa [9,Theorem 2']. 

THEOREM 1. Let K be a field of characteristic p > 0. In order that every 
embedding problem P( E / K 1, G / H, <p) have a solution for an arbitrary finite 
separable extension K 1 of K and an arbitrary p-group H, it is necessary and 
sufficient that K have the following property: 

For any finite Galois extension E of K and for any integer m 2: 1, the ad­
ditive group E+ of E contains m elements a:1, ... am such that the conjugates 
u ( ai) of ai, i = 1, ... , m, a E Gal( E / K) are p-independent in E+ modulo the 
subgroup <:Pp(E). (Here <:Pp(E) = {aP - a I a EE}). • 

To verify that in our situation the condition in Theorem 1 holds, we refer 
to Lemma 2(ii) ofD'Mello-Madan [ 4]. To adapt their proof to our case, we only 
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have to argue that by Cebotarev's Density Theorem, there are infinitely many 
primes of K that decompose fully in E. 

From the above remark it follows that there exists K~/ Kv-1 such that 
Gal(K~/ K) ~ Gv, 

Let tv be a given natural number. Let P1, ... , Pt., be different primes of K 
that are unramified in KUK. As in case v = 1, construct A = K(y), where 
yP - y = p-;;-:.\Pt,,. [A: K] = p and the primes P1, ... Pt., ramify in A. 

Let< s > be the Galois group of A over K. Say Hv =< h >. We have the 
situation 

K' V K~A 

Hv I I 
Gv Kv-1 Kv-1A, Gal(K~A/K) ~ Gvx < s >. 

Gv-1 I I 
K A 

Consider the subgroups< (ha,s) > for O ~a< p, ofGv>< < s >. We have 
G.,x<s> ~ G ~ 0 < < b . <(h"',s)> = v 1or _ a p, ecause. 

(i) < (ha, s) > is normal in (Gvx < s >): 
("t, st)- 1(ha, st("t, st) = (1- 1 (hat'l', s-tsvi) = ((ha)V, sv), since H11 ~ 

center ofG 11• Actually< (ha,s) >~ centerof(G 11x < s >). 
(ii) Let 'Pa : Gvx < s >---,. Gv be given by Soa(h, st)) = ,h-ta. We have 

that 'Pa is an epimorphism. Now h, i) E ker 'Pa ~ 1 h-ta = 1 -<=* 1 = 
hta -¢==> (,.,, st) - (hat st) - (ha s)t E < (ha s) > Therefore Grx<s> ,::,! G 

" - ' - ' ' · ' < h"',s)> - v• 
We claim that the primes P1, ... , Ptv ramify in each of the subfields be­

tween Kv-1 and K~A, different from K~. Let v::i1 be a prime of Kv-1 that lies 
above P1. Let T be the inertia group ofv::i1 for Kt A/ Kv-1· We have I T I= p. 
Th us the inertia field of v::i1 is K~. 

Choose any field between Kv-1 and K~A, different from K11_1A and K~. 
Call it K 11 • P1, ... , Pt., ramify in K 11• We also have Gal(Kv/ K) ~ G11• 

Toshowthato-(K 11_i) ~ Kv-I foranyu EAut(K 11/k) we use an argument 
that involves the Genus Formula and Castelnuovo's Inequality which is simi-
lar to that for the case v = 1. Here it is enough to require t 11 > pg.,_J~f-p 
where gv-1 is the genus of Kv-1· 

Analogously, u- 1 (K11_i) ~ Kv-1, so Kv-1 ~ u(Kv-d• Thus ulK.,_ 1 E 
Aut(Kv-i/k). By induction hypothesis, ulK,.._1 E Gal(Kv-i/K) so u(x) = 
u IK.,_1 (x) = x. Then u E Gal(K 11/ K). We conclude Aut(K 11/k) = Gal(K 11/ K). 

Therefore, we have proved: 

THEOREM 2. Let p be a prime numbe1; let G be a finite p-group, I G I> 1, 
and let k be a finite field of characteristic p. Then, if K = k(x), there exists an 
extension L of K such that G ~ Gal(L/ K) and Aut(L/k) = Gal(L/ K). • 
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3. G is an l-group 

Here we have I G I= ln, la prime number different from p, (l, q - 1) = 1 
and n ~ 1. 

As in the p-case, let Gn = G. For v = n, n - 1, ... , 1 we obtain a subgroup 
H 11 of the center of G 11, of order land set Gv-1 = Gv/ Hv, 

We will construct fields K1 ~ · · · ~ Kn = L so that Gal(Kv/ K) ~ Gv and 
Aut(Kv/k) = Gal(Kv/ K). 

The Case v = 1: 

We choose d such that zn I qd - 1 (qd = 1 mod zn, can choose d to be the 
order of q mod zn or multiples ofit). 

Let P be a prime of K of degree d. In the notation of Hayes [8, pages 81 
and 82], setting M = P we get an abelian extension K(AM)/ K of degree 
<I>(M) = qd - 1. In this extension the primes different from P and from P00 

are unramified and P ramifies fully. For P00 the ramification index is q - 1, 

the degree of inertia is 1 and qt:} primes of K(AM) lie above it. 
Let F be the field fixed by the decomposition grqup of P 00 . F / K is an abelian 

extension, P is the only prime of K that ramifies in F. [ F : K] = qri~l, so 
l I [ F : K]. Therefore, we get an extension A of degree l over K such that 
K ~ A~ F. Pis the only prime of K that ramifies in A. 

Let t1 be a given natural number. Choose d1, ... , dt 1 integers and P1, ... , 
Pt1 , different primes of K such that Pi is of degree di and qd; = 1 mod ln. 
Let A1, ... , At1 be extensions of degree l of K obtained as A was obtained, 
with Pi ramifying in Ai and unramified in Aj (for i-=/-i). To construct a field 
where all P1, ... , Pt 1 ramify we use the following technique of Madan [12, 
step 2]. Consider the composite of A1, ... , At1 (inside an algebraic closure of 
K). Its Galois group is the direct product of the Galois groups of A1, ... At1 . 

Let ai be a fixed generator of the Galois group of Ai/ K. Let H be the group 
generated by a1 u 21, ... , a1 u ~ 1. Let K 1 be the field fixed by H. The fixed field 
of< a1 > is the inertia field of P1. Clearly, Hn < a1 >= {1} and< u1, H >= 
Gal(A 1 ... Ati / K). It follows that K1 is not contained in the inertia field of Pi 
and [K1: K] = l. One sees that P1, ... , Pt 1 are all ramified in K1. 

To prove that Aut(Ki/ k) = Gal(Ki/ K) we argue similarly to the way we 
did in the case G is a p-group. Here it is enough to require t1 :?: 2l + 1. • 

Following Reichardt [15, page 1] we will say that a prime of K is "fleissig" 
in L / K if the primes of L that lie above it have residue class degree equal to 
1. We observe that each Pi in the above construction is fleissig in K 1/ K. 

The Induction Step: 

Assume K 11-1 constructed for v :::;; n with Gal(Kv-i/ K) ~ Gv-1, 
Aut(Kv-i/k) = Gal(K 11-i/K), and such that all primes of K that ramify 
in Kv-1 are fl.eissig and that if dis any of their degrees, qd = 1 mod ln. We 
show that Kv-1 is contained in a field Kv with Galois group isomorphic to 
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Gv, Aut(Kv/k) = Gal(K:,/ K) and such that all primes of K that ramify in Kv 
are fleissig and that if d is any of their degrees, qd = 1 mod zn. 

First we prove this when H v is a direct factor of G v. 

Let Q 1 , ... , QN be the primes of K that ramify in Kv-1· The primes of Kv-1 
that lie above Q1, ... , QN have residue class degree equal to one. 

Let tv be a positive integer. By Reichardt [14], we can choose P1, ... Pt., 
primes that decompose fully in Kv-1 ( '1rJ1, ... , ..;/Q N) and such that if Pj is of 
degree dj, qdi = 1 mod zn. For i = 1, ... , N we have that since Pi decomposes 

f 11 . K(llnQ) p - (µ (D tfK(@;) ~ Fq[x] ~ F Lt - llnQ u ym v-.:i ,say 1 -- l···~l, .<.7-\ = -p-;- = qd 1 , ea -v"i'-i· 

Then a E ~K(,!IQ;)· We have o/ = Qi modu\ so there exists /3 E Fq[x] such 

that /31 = Qi mod P1. Thus 

(3) 

Following Hayes [8], we construct a cyclic extension K(APi) of K, 
[K(Api) : K] = qd 1 - 1. As in case v = 1, obtain A1 , the subextension of 
K ( Ap1 ) of degree l over K. P1 is the only prime of K that ramifies in A1. It 
follows from (3) and Carlitz [1, Theorem 12] that the residue class degree of 

the primes in #K(Ap 1 ) lying over Qi is~ qd\_ 1 , thus Qi is not inert in K(Ap 1). 

Since the extension K ( Ap1 ) / K is cyclic and A1 is the unique subextension of 
degree l, we must have Qi decomposes in A1. 

As it was done above with P1, we construct extensions A1, ... , At,, of degree 
l of K where Q1, ... QN decompose fully and such that Pi is the only prime 
of K that ramifies in Ai. As it was done in case v = 1, we construct a field I::.. 
such that[!::..: K] = l, Pi, ... , Pt,., ramify in/::... We have Q1, ... , QN decompose 
in/::... 

Kv-1 Kv 

I I 
K I::.. 

Let Kv = Kv-1!::... Then Gv ~ G 1/--l x Hv ~ Gal(Kv/K). We have 
Q 1, ... , QN and P1 , ... Pt,, are precisely the primes of K that ramify in Kv, 
Since Pi decomposes fully in Kv-1 and ramifies from Kv-1 to Kv, we have 
Pi is fleissig in K 1/ / K. Since Q j decomposes in I::../ K and ramifies and is fleis­
sig in Kv-i/ K, we have Qj is fleissig in Kv/ K. If dis any of their degrees, 
qd = 1 mod zn. 

To prove that Aut(Kv/k) = Gal(Kv/ K), we proceed as in the case G is a 
p-group (using the Genus Formula and Castelnuovo's Inequality). Here we 
require tv > &U + gv-1 - 1), where 9v-1 is the genus of Kv-1· 

Then, the case when Hv is a direct factor is compietely proven. 
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Now we consider the case when H v is not a direct factor of Gv. We proceed 
as in Reichardt [15] adjoining to Kv-1 and to K a primitive l-th root of unity 
; and proving that the crossed product of the extension by its Galois group 
splits. To do this we use that zn I qd - 1 and that our ramifying primes are 
fleissig. Then we obtain an extension Kv/ K that satisfies Gal(Kv/ K) ~ Gv, 

We now have to make modifications so Kv satisfies the conditions of the 
induction step and there are enough primes ramifying in the last step. (A) 
There might be primes of K that did not ramify in Kv-1 but ramify in Kv, 

Suppose Pis a prime of K that ramifies in Kv but not in Kv-1 · Let 0=l be a 
prime of Kv that Hes above P. 

We have 6 ~P ""' 6/p". Since there is tame ramification in the last step, 

{JK..,,q, contains the l-th roots of 1. But 6!_J;' consists of the (qd - 1)-th roots of 
1, where dis the degree of P, if Pis not the infinite prime and 1 otherwise. 
Then qd - 1 is divisible by l. 

Now we again use Hayes [8] to construct an extension A of degree l over K, 
where P is the only prime of K that ramifies. We have P ramifies in 
Kv-1A/ Kv-1 and also in Kv/ Kv-1· Since the ramification of Pin KvA/ Kv-1 
is tame, the inertia group of Pis cyclic, so Pis not fully ramified in KvA/ Kv-1· 
Let K~ be the field fixed by the inertia group of P. We have Gal(K~/ K) ~ 
Gal(K 11/ K) ~ G11 • P does not ramify in K 1v/ Kv - 1. Thus P does not ramify 
in K~/K. By abuse of notation we denote K~ by Kv. 

In this fashion, one by one, we get rid of all the "bad" primes. We call again 
our final extension Kv, 

(B) There might be primes of K that were ramified in Kv-1 (and were 
fleissig) but are inert in the extension K 11/ K 11_ 1, thus loosing their property 
of being fleissig. 

Say Q1, ... , QN are the primes of K that ramify in Kv-1· Say Q1, ... , Qh 
remain fleissig up to K 11, but Qh+l, ... , QN become inert in the last step. 

We have that Kv(ri, ..y?Jl, · · ·, ..y?Jh, ..;/QN) is a proper extension of Kv(rJ, 
...ycJ1, ... ,..y?Jh), where ri is a primitive zn-th root of unity. Ifit were not the 
case, by Kummer Theory, we would have that there exists Q. such that Q. is 
a product of powers ofQ 1, ... , Qh, QN, ..;IQ. E K 11(ri) and Q. is not an l-th pow­
er in K. Since each automorphism of Kv(ri) over Kv that is not the identity 
in K(ri) lies in the center ofGal(K 11(ri)/ K), we have that each automorphism 
of K(~, ... ;IQ.) over K(..y?J.) that is not the identity in K(~) must lie in the 
center of Gal(K(~, -.!JQ.)/ K). But this is not possible because we are assuming 
(l,q-1) = 1. 

Choose a prime P of K of degree d that decomposes fully in Kv(rJ, 
vlJ1,"·,..y?Jh) but becomes inert in the step K 11(ri,-.!/Q1,"·,,Ylh) to 
K,.,(11,..y?J1, ···,..y?Jh,..y?JN)-Then zn I qd - 1 [3, page 147]. Once again, by 
Hayes [8], we construct A of degree l over K where P ramifies and Q 1, ... , Q h 

decompose. The polynomial X 1 - Q N is irreducible in Kv ( 1/, -0J1, •, ·, -.y'lJ h). 

Since P is inert in the last step, X 1 - Q N is irreducible mod P. 
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Let a: be in an algebraic closure of Fq be such that a/ = Q N mod P and 
d lt d 1 

a(/. Fqd· Let q - 1 = slt, (s, l) = 1, t ~ 1. We have QN = Qj.r - = 1 (mod P). 
qd-I d 

Assume QN 1 = 1 (mod P), then aq -I = 1 (mod P), so a E Fqd, a con-

tradiction. Thus Q8Jt-i 'I= 1 (mod P). Thus the inertia degree is divisible by 
zt. Then QN is inert in A/ K. Therefore, QN is inert in Kv-1A/ Kv-1 and QN 
is inert in Kv/Kv-1· Since KvA/Kv-1 is not cyclic, QN is not fully inert in 
KvA/Kv-1· Thus, if K~ is the field fixed by the decomposition group ofQN, 
QN decomposes in K~A/Kv-1· We have Gal(KUK) ~ Gal(K 11/K) ~ G11• 

Since Q1, ... , Qh were fleissig in K 11/ Kand decompose in A/ K, they are fl.eis­
sig in Kv.A/ K, thus they are fleissig in K~/ K. The prime P decomposes fully 
in Kv/K and ramifies in A/K so it is fleissig in K~/K. In this manner we 
handle Qh+l, ... , QN and again we call our final extension Kv, 

(C) Let tv be a natural number. Choose P1, ... , Pt., primes of K that de­
compose fully in Kv(tJ, --YQ1, ... , --YQN) and if dis the degree of any of them, 
zn I qd -1. As in (B), we obtain extensions A1, ... , At,, of degree lover K where 
Q1, ... , QN decompose and such that Pi ramifies in Ai· By Madan's merging 
technique [12] we obtain an extension A of degree l over K where Q1, ... , Q N 

decompose and P1, ... , Pt., ramify. Take any of the fields K~ between Kv-1 
and KvA, different from Kv-1A and Kv, We have Gal(KUK) ~ Gal(Kv/K). 
P1, ... , Pt., ramify in KU Kv-l· So they are fleissig in K~/ K. Again we call 
our new field K~, K 11 • 

To prove thatAut(Kv/k) = Gal(Kv/ K) we proceed as we did for case when 
Hv is a direct factor. This concludes the case when Hv is not direct factor of 
Gv. 'l'herefore, we have proved: 

THEOREM 3. Let k be a finite field with q = pr elements, where p is a prime, 
and let G be a finite l-group. We assume l -=I-p, ( l, q - I) = 1 and I G I> 1. Then, 
if K = k(x), there exists an extension L of K such that G ~ Gal(L/ K) and 
Aut(L/k) = GaI(L/K). • 

4. G is a Nilpotent Group 

We state without proof the following 

LEMMA 1. Let E / F be a field extension of degree zn and L a subextension 
of E of degree lover F. Let tL be the number of primes of F tfiat ramify in L. 
Assume F = Fo ~ F1 ~ F2 ~ · · · ~ Fn = E, where Fi/ Fi-1 is of degree l and 
at least to primes of Fi-1 ramify in Fi. Then t L ::C:: 1!g1 • • 

Next we prove: 
LEMMA 2. 

(a) Fis a Galois extension of K of genus g, degree m and let G F = Gal( F / K) = 
Aut(F /k), 
(b) Tis an extension of K of degree zn and GT = Gal(T / K), 
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(c) ( m, l) = 1. T was constructed by l-steps, K = Ko ~ K1 ~ • · • ~ Kn = T, 
Ki/ Ki-l is of degree land at least to primes of Ki-l ramify in Kifor 1 s; is; n, 
where to> 2z2n- 1 (g + zn - 1). These primes are unramified in F. 

E~ F/ ~ 
~/~~ 

K 

Then E = FT satisfies Gal(E/ K) ~ Gp x Cy and Aut(E/k) = Gal(E/ K). 

Proof. We have Gal( E / K) ~ Gp x GT because ( m, l) = 1. 
Let (J E Aut(E / k). Let us show (J(F) ~ F. 
Assume O"(F) g; F. Let L = FO"(F). Then Ft-L. Let d = [L : F] = 

[L: O"(F)] and gL = genus of L. We have g = genus ofo(F). 
By Lemma 1, there are at least 1!~1 primes of F that ramify in L. Using an 

argument that involves t_he Genus Formula and Castelnuovo's Inequality we 
obtain a contradiction. 

Therefore, a(F) ~ F. Analogously, u- 1 (F) ~ F. Thus a(F) = F. Then 
a IF E Aut(F /k), so a(x) = alp (x) = x. Hence O" E Gal(E/ K) as desired. • 

Finally, we have 

THEOREM 4. Let G be a finite nilpotent group, I G I> 1 and let k be a finite 
field with q elements. We assume (I G I, q - 1) = 1. Then, if K = k(x), there 
exists an extension L of K such that G ~ Gal(L/ K) and Aut(L/ k) = Gal(L/ K). 

Proof. We have G is the direct product of its Sylow subgroups: 

G ~ Gp°' X G1b1 X •.. X Gib· 
l s 

where Gp"' is a p-group of order pa with a 2: 0, G1~, is an li-group of order zf• 

with bi > 0, and s 2: 0. ' 
We use Theorems 2 and 3 and Lemma 2 with G F = Gp" and Gy = G1b1 . 

l 

We observe from the proofs of Theorems 2 and 3 that we can take as many 
ramifying primes as necessary in order to satisfy condition (c) of Lemma 2. 
Next, we use Theorem 3 and Lemma 2 with GF = Gp., x G1b and Gy = G1b2 . 

l 2 

We continue in this way until we finish with all Sylow subgroups of G. At the 
end, we obtain the required field extension. • 

CENTRO DE INVESTIGACI0N YDE ESTUDIOS AVANZADOS DEL IPN 
MEXICO, D.F. 07000 MEXICO 
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