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AN INNER PRODUCT FOR A BANACH *-ALGEBRA 

NOOR MOHAMMAD AND ALBERTO VERJOVSKY 

Introduction 

Several methods have been used to introduce inner products on Banach 
spaces and Banach algebras and study these structures through Hilbert space 
properties. One such method is the famous Gel'fand-Naimark-Segal (GNS) 
construction (see for instance, [3]). Cohen [2] defined an inner product on a 
commutative semi-simple Banach algebra using the Gel'fand transformations 
and a probability measure on the maximal ideal space. He established several 
results pertaining to the completeness of the resultant inner product space, 
the closure property of ideals and the decomposition of the Banach algebra. 
For instance, let A be a commutative semi-simple Banach algebra and A2 the 
resultant inner product space, then it is shown in [2] that A2 is a topological 
algebra. Moreover, if A is an A*-algebra then any maximal ideal, M, is A2-
closed if Ml. =I-{ 0}. In this case A can be decomposed as: A = M EB M 1.. 

In this paper we develop another technique to define an inner product on 
a commutative Banach algebra A with an essential involution, by means of a 
probability measureµ on the set S of all states of A. We show that the resul­
tant inner product space Aµ is a topological algebra (not necessarily a normed 
algebra) and discuss the completeness of Aµ. Moreover, we prove that every 
maximal ideal M with Ml. =I-{O}, is Aµ-closed and get a decomposition of 
A = M EB Ml.. We present these results in Sections 1 and 2. Denote by P(S) 
the set of all probability measures on S. Then it is well-known that P(S) is 
convex and weak * -compact. In Section 3, we define an "intrinsic" norm on A 
by taking the supremum of all such norms (derived from the inner products) 
over P(S). It is shown that the resultant normed space, denoted by As, is a 
normed algebra satisfying the c• -condition as well. Thus we conclude that 
every commutative Banach algebra with an essential involution has an aux­
iliary norm which turns it into an A" -algebra. 

1. An inner product 

Recall some basic definitions. Let A= (A, II • II) be a complex commutative 
unital Banach algebra with an involution x 1--, x*. A linear functional f defi­
ned on A is called positive if/ (xx•) 2'.: 0 for all x E A. A state is a positive linear 
functional f with II /II = 1. An involution in A is called essential if for every 
non-zero element x E A there exists a positive linear functional /o such that 
fo(xx•) =I-0. It can be shown that in a Banach algebra with an essential invo­
lution, for every non-zero element x there exists a positive linear functional f 
such that f(x) =I-0 [4, p. 61]. We remark that a commutative Banach algebra 
with an essential involution is an algebra without radical [4, p. 63] and hence 
the involution is automatically continuous [6, p. 276]. For more details about 
an essential involution we refer to [4]. 
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We asssume throughout this paper that the involution in a commutative 
Banach algebra A is essential (without mentioning it explicitly). Denote by S 
the set of all states on A. Then Sis a weak*-compact convex subset of the dual 
of A [3, p. 115]. Let µ be a probability measure which satisfies the condition 
of being positive on non-empty open sets. That such measures exist follows 
from the following result. 

LEMMA (1.1). Let A be separable. Then there exists a probability measure µ 
on S which is positive on non-empty open sets. 

For instance, if A is separable, then S being weak * -compact is metrizable 
and hence separable [6, p. 68]. Let Un} be a countable dense subset of Sand 
putµ = E~=l an5f,., where En an = 1, an > 0, an E Rand 51 is the Dirac 
measure at f. Then µ is a probability measure which is positive on the non­
empty open sets. 

1.2. Definition. For each x, yin A, define 

(x, y) = Is f(xy*)dµ(f), f ES. 

We now show that 
(x, y) defines an inner product on A. 

THEOREM (1.3). (x, y) is an inner product on A. 

Proof. It is easy to see that (x, y) is linear in x, conjugate linear in y and 
(x, x) ~ 0. To complete the proof, all we need to show is non-degeneracy, i.e. 
(x, x) = 0 implies that x = 0. Now (x, x) = 0 means that f f(xx")dµ(f) = 0 
which implies that/ (xx•) = 0 for almost every/ E S. If x -::/ 0 then there exists 
a state f E S such that /(xx*) I= 0. Therefore, the set {I E S : f(xx") I= O} 
is non-empty. This is also an open set because the mapping/ - f(xx•) is 
continuous by definition of the weak *-topology of S. Sinceµ is positive on 
non-empty open sets, hence it follows that the integral J f(xx*)dµ(f) I= 0. 
This contradiction proves the theorem. • 

1 A. Remark. If A is a symmetric algebra without radical then the involution 
is always essential [4, pp. 64-65]. 

We shall denote the norm derived from the inner product by II· /11-1 and the 
resultant inner product space by Aµ, 

The following Corollary follows immediately. 

COROLLARY (1.5). For each x and yin A 
(1) (x, y) = (y*, x"); 
(2) llxllµ = 11x•11µ; 
(3) if x and y are self-adjoint, then (x, y) is real. 

THEOREM (1.6). Aµ is a topological algebra. 
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Proof. It is enough to show that multiplication is separately continuous. If 
we fix y in A, then for all x E A 

llx · YII! = ls f(xyy*x")dµ(f) ~ r(yy") ls f(xx*)dµ(f) 

~ 0 llxll! · l!Yll2 , 

where a is some positive constant and r(y) denotes the spectral radius of y. 
Here we have used the fact that f(xyy"x") ~ r(yy")f(xx") [1]. This shows 
that multiplication is separatey continuous. • 

In a topological algebra the closure of an ideal is also an ideal and each 
maximal ideal is always A-closed. We now want to show that a maximal ideal 
is also Aµ-closed. 

We first prove the following 

LEMMA (1.7). Let L be any non-zero ideal in A. Then the orthogonal comple­
ment, L1 , of L is also an ideal and LJ. =I-A. 

Proof. Let a EL, b E LJ. and x EA. Then 

(a, bx) = ls f (ax"b")dµ(f) = (ax", b) = 0 

since ax• E L. This implies that bx E LJ.. Hence LJ. is an ideal. 
To prove that LJ. =I-A, let us assume the contrary. Consider any non-zero a 

in Land suppose that e E LJ.. Then (aa•, e) = 0 since aa• EL. But (aa•, e) = 
(a, a) = 0 implies that a= O, a contradiction. This completes the proof. • 

The following result gives a decomposition of A. 

THEOREM (1.8). Jf Mis a nu1ximal ideal of A such that MJ. =I-{O}, then M 
is Aµ,-closed. Moreover, A can be decomposed as: A= M EB MJ.. 

Proof. Let M J. =I-{ 0}, then by Lemma l. 7, M J. J. is a proper ideal which 
includes M. This implies that M = M.LJ., and hence Mis Aµ-closed. 

Let B = M + M J.. Then B is also an ideal, since .M and M J. are so. As 
MJ. =I-{O}, Mis properly contained in B. Hence by the maximality of M we 
get that B = A. • 

2. Completeness of Aµ 

In this section we present some results about the completeness of Aµ. 

THEOREM (2.1). Let X be a Banach space with respect to the norms II · 111 and 
II· l!z. lfthere exists a constant k such that llxll1 ~ kllxlb for all x EX, then the 
two norms are equivalent. 

Proof. The proof follows from Banach's bounded inverse theorem, see for 
instance [5, p. 77]. • 

THEOREM (2.2). Aµ, is a Hilbert space if and only if both the norms II· II and 
II · IIµ are equivalent. 
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Proof. Obviously if the two norms are equivalent, then Aµ is complete since 
A is complete with respect to 11 · II, 

Conversely, assume that Aµis a Hilbert space. Since llxllµ :=; .Bllxll for some 
constant /3, then it follows from 'fheo:rem 2.1 that the norms are equiva­
lent. • 

Let.~ be the set of all non-zero complex multiplicative homomorphisms of 
A equipped with its Gel'fand topology. The set~ is usually called the maximal 
ideal space of A. 

2.3. Definition. For each x E A, define the spectral radius norm of x to be 
llxllr = sup{lx(h)I: h E Ll}, where xis the Gel'fand transform associated with 
x. Denote by Ar= (A, 11 · llr), A,. is a normed 

Notethatforallx EA, llxllµ :=; cqllxllr :Sc,::;: xii, forsomepositiveconstants 
a 1, 0:2. As a consequence of Theorem 2.2 if Aµ is a Hilbert space 
then all the three norms are equivalent and hence A,. is complete. Also A,.. 
is isometric to the subalgebra of Gel'fand transformations of C(A) via the 

x 1-+ x. Thus we have: 

COROLLARY (2.4). Let Xµ be a Hilbert space. Then the subalgebra of 
Gel '{and transformations of C ( ~) is closed. 

THEOREM (2.5). Let A be an A *-algebra. Then Aµ is a Hilbert space if and 
only if A is finite dimensional. 

Proof. The proof of Theorem 2.5 mainly follows the arguments similar to 
that of Cohen [2]. • 

3. The intrinsic norm and some of its properties 

Consider the set P(S) of all probability measures on S. It is well-known 
that P(S) is convex and weak *-compact. 

3.1. Definition. For each x EA define 

llxlls = SUp llxllµ, 
µEP(S) 

Obviously, the supremum is always attained and llxlls satisfies all the axioms 
ofa norm. Denote by A.,= (A, 11 · lls), 

THEOREM (3.2). As is a topological algebra. 

Proof. The proof is immediate from Theorem 1.6. • 
We shall need the following 

LEMMA (3.3). For each x EA there exists a measure µo E P(S) which is an 
extreme point of the convex set P(S) such that 

llxll; = 1 f(xx*)dµo(f). 
. s 
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Proof. Let us fix x in A and consider the function 'if!x : P(S) -, R given by 
'¢ix(µ)= llxll!• Then 1Px(0tµ1 + f3µz) = a'¢ix(µi) + /31/Jx(JJ,2), Vµ,1, JJ,2 E P(S) and 
for a, j3 non-negative reals such that a:+ /3 = 1. We need to show that there 
exists µo an extreme point of P(S) such that 

M 0Jf: sup 'fPx(µ) = '¢ix(µo). 
µEP(S) 

Let Po = '¢,; 1 ({M}) c P(S). Then Po is a non-empty, convex and weak 
*-compact subset of P(S). By Krein-Milman theorem (see for instance [6]), 
there exists an extreme point, µo, of Po. We claim that µo is also an extreme 
point of all of P( S). If this were not the case, then there exist µ1 and µ2 in 
P(S), µ1, µ2 ¢:. Po; and a, /3 > 0 with a+ /3 = 1 such that µo = aµ1 + f3µz. 
By convexity of VJx, 1/Jx(µo) = 0t'l,bx(µ1) + f31Px(µz), we immediately get that 
either 'lfx(µi) >Mor t/!x(µ2) > M. This contradicts the hypothesis. Hence µo 
is an extreme point of P(S). Thus we have shown that ~xii; is attained and 
moreover, on an extreme point of P(S). Therefore, llxlla = f f(xx')dµo(f), 
which proves the lemma. • 

Since the extreme points of P(S) correspond to the Dirac measures we have 
µo = 61,,, for some fx E S. This implies that llxll; = 6r.(So) = fx(xx") Ux 
depending only on x and it may not be unique), where the function \0 : S _, R 
is given by <p(f) = f(xx*). Thus we have 

COROLLARY (3.4). For each x EA 

llxll; = sup /(xx*). 
ll!ll=l 

Let us again fix x in A and consider the function cp(f) = f(xx"). Then <pis 
a convex function. 

Proceeding as in Lemma 3.3, one proves that there exists a state fx which 
is an extreme point of S and 

llxll; = fx(xx•). 

Then fx must be multiplicative (see [6, p. 286]). • 
Summarizing all this we have 

THEOREM (3.5). Let A be a commutative Banach algebra with an essential 
involution. Then for each x E A there exists a state fx, which is an extreme 
point of S, such that 

llxll; = fx(xx•). 

Now, we prove the following 

LEMMA (3.6). A 8 is a normed algebra and moreover, llxx*ll 7 llxll;. 
Proof. Let x, y E A. By Theorem 3.5, there exists f x,y such that llxYII; = 

fx,y(xyy*x*). Note that fx,y is multiplicative. Therefore, it follows that 
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1/xy//; = fx,y(xyy"x*) = fz,y(x2/)fx,y(YY 0 ) 

:S sup /(xx")] sup /(yy")] 
ll!ll=l ll!ll=l 

= llx/1; · l/y/1;, 

using Corollary 3.4. 
On the other hand, a further application of Theorem 3.5 and Corollary 3.4 

yields 

l/xx"/1; = fx,x•(xx"xx*) = fx,x•(xx")fx,x•(xx") 

= [fz,z• (xx")]2 = sup [f(xx")]2 = /Ix//;, 
IIJll=l 

i.e., I/xx• /18 = I/xi/;. Here we have used the fact that the suprema are attained 
at multiplicative positive functionals. This completes the proof. • 

3. 7. Remark. The norm introduced so far seems to depend upon the original 
norm of A. However, for a commutative unital Banach *-algebra, one has 

l/x/12 = sup f(xx"), 
fEM 

where M = {/ E S : f is multiplicative}. Therefore, the norm is in fact in­
trinsic. 

Using Lemma 3.6 we get our main result. 

THEOREM (3.8). Let A be a commutative Banach algebra with an essential 
involution. Then there exists an auxiliary norm /I· /ls on A such that A becomes 
an A• -algebra. 
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