Boletin de la Sociedad Matematica Mexicana Vol. 34, 1989

THE UNION PROBLEM AND DOMAINS OF HOLOMORPHY

BY LUIS MANUEL TOVAR"

Let X be a complex space and $\Omega_1 \subset \Omega_2 \subset \cdots$ a sequence of open Stein subsets in X. Let $\Omega=\,\bigcup\limits^{\infty}\,\Omega_j.$ The question is, is Ω Stein? If Ω is a Stein manifold, $j=$

that is the case. For an arbitrary manifold X , J. E. Fornaess in [3], has given an example of a sequence of increasing Stein subsets in a manifold whose union is not Stein. If *X* has singularities, nothing is known about this. In this paper I show that if X is a normal Stein space and Ω is relatively compact in X, then Ω is a domain of holomorphy. In [10] I gave the anouncement of this result with the additional condition that $\partial \Omega \backslash S$ is dense in $\partial \Omega$, where S is thesingular set of *X.* I give in the first part the proof of this result and next, I show that the additional condition is not necessary.

For the basic notions and properties of Stein spaces we refer to [6] and [8].

THEOREM (1). Let X be a normal Stein space, $\Omega_1 \subset \Omega_2 \subset \cdots$ a sequence of open Stein subsets of X and let $\Omega = \bigcup_{i=1}^{\infty} \Omega_i$, be irreducible. Let S be the $j=$ $singular set of X.$ If $\Omega \subset\subset X$ and $\partial \Omega \backslash S$ *is dense in* $\partial \Omega$ *, then* Ω *is a domain of holomorphy.*

Proof. The proof is based in the techniques of Fornaess-Narasimhan utilized in [5]. We will show for any $p \in (\partial \Omega \backslash S)$ and any sequence $\{z_n\}$ of points of Ω , $z_n \to p$, there is a subsequence $\{z_n\}$ and a holomorphic function *F* in Ω , which diverges in $\{z_n\}$. We may assume that X is a pure *n*-dimensional and connected space. Andreotti and Narasimhan in [1] show that a pure ndimensional Stein Space may be realized as a branched domain over C^n in such a way that: we can find holomorphic mappings $\Phi_r : X \to C^n, r = 1, 2, \ldots$ such that if Z'_r is the branch locus of Φ_r then

i) Φ_r has discrete fibers

ii) Φ_r is a local isomorphism in $\Omega \backslash Z'_r$

$$
f(i)
$$
 $S = \bigcap_{r=1}^{l} Z'_r$

Moreover, we can find holomorphic functions f_1, f_2, \ldots, f_l on *X* such that if we set $Z_r = \{f_r = 0\}$, then $Z'_r \subset Z_r$ and $\cap Z_r = S$.

Let d_r be the boundary distance of the unramified domain

$\Phi_r: \Omega \backslash Z_r \to C^n$

Since $X \setminus Z_r$ is Stein without singularities and each $\Omega_i \setminus Z_r$ is Stein, then $\Omega \backslash Z_r$ is an increasing sequence of open Stein subsets of $X \backslash Z_r$, therefore is Stein [2], $-\log d_r$ is plurisubharmonic in $\Omega \backslash Z_r$ and the function

^{*} Becario de C.O.F.A.A., I.P.N.

LUIS MANUEL TOVAR

$$
\varphi_r(x) = \begin{cases} \max(0, -\log d_r + M_r \log |f_r(x)|) & \text{on } \Omega \backslash Z_r \\ 0 & \text{on } Z_r \end{cases}
$$

is plurisubharmonic on Ω , where M_r , is a large enough constant, see [1].

Let $p \in (\partial \Omega \backslash S)$, and choose r such that $p \notin Z_r$. We can find h_1, h_2, \ldots, h_m holomorphic functions on X such that

$$
\{p\}=\bigcap_{i=1}^m\{h_i=0\}.
$$

Write $\Phi_r(x) - \Phi_r(p) = {\Phi_r^s(x) - \Phi_r^s(p)}_{s=1}^n$, where $\Phi_r^1, \ldots, \Phi_r^n$ are the coordinate functions of the map Φ_r . Since the function

$$
x\to \Phi_r^s(x)-\Phi_r^s(p)
$$

vanishes in p , by the Nullstellensatz, there exists a neighborhood $V(p)$ of p and a positive integer N_s , such that

$$
V(p) \cap Z_r = \emptyset \text{ and } (\Phi_r^s(x) - \Phi_r^s(p))^{N_s} = \sum_{i=1}^m \alpha_{s_i}(x)h_i(x)
$$

for some $\alpha_{s_i}, \ldots, \alpha_{s_m}$ holomophic functions on $V(p)$. Take $V' \subset\subset V(p)$ a neighborhood of p and let $T_s := \sup_{x \in V'} {\sum_{i=1}^m |\alpha_{s_i}(x)|^2}$.

If $T = \max_{s} T_s$, $N \ge 2 \max_{s} N_s$ and $x \in V'$, let s_x be the integer such that

$$
|\Phi_r^{s_x}(x)-\Phi_r^{s_x}(p)|=\max_{s}\big\{|\Phi_r^{s}(x)-\Phi_r^{s}(p)|\big\},\,
$$

then

$$
\begin{aligned} \|\Phi_r(x) - \Phi_r(p)\|^N &\leq (\sum_{s=1}^n |\Phi_r^s(x) - \Phi_r^s(p)|)^N \leq n^N (\max_s \{|\Phi_r^s(x) - \Phi_r^s(p)|\})^N \\ &\leq n^N |\Phi_r^{s_x}(x) - \Phi_r^{s_x}(p)|^{2N_s} \leq n^N (\sum_{i=1}^m |\alpha_{s_i}(x)|^2) (\sum_{i=1}^m |h_i(x)|^2) \\ &\leq n^N T (\sum_{i=1}^m |h_i(x)|^2) \end{aligned}
$$

Since $-\log d_r(x) + M_r \log |f_r(x)| \leq \varphi_r(x)$, it follows that there exists a constant $C_0 > 0$, such that, if $x \in V' \cap \Omega$, then $d_r(x) \geq C_0 \exp(-\varphi_r(x))$, so

$$
C_0^N \exp(-N\varphi_r(x)) \leq d_r(x)^N \leq ||\Phi_r(x) - \Phi_r(p)||^N \leq n^N T(\sum_{i=1}^m |h_i(x)|^2)
$$

Since h_1, h_2, \ldots, h_m are continuous in Ω , there exist constants $C_1, C_2 > 0$ such that

$$
\sum_{i=1}^{m} |h_i|^2 \ge C_1 \text{ in } \Omega \setminus V' \text{ and } \sum_{i=1}^{m} |h_i|^2 \le C_2 \text{ in } \Omega
$$

Let $C_3 = \min \left(\frac{C_0^N}{n^N T}, C_1 \right)$ therefore if $x \in \Omega$,

$$
C_3 \exp(-N\varphi_r(x)) \leq \sum_{i=1}^m |h_i(x)|^2 \leq C_2 \exp(\varphi_r(x))
$$

Consider now the following results.

LEMMA. Let $\Pi: D \to C^n$ a finite bounded unramified domain of holomorphy *over Cⁿ*, Let $\varphi \geq 0$, *p.s.h. function on D. Let* h_1, h_2, \ldots, h_m be holomorphic functions on D and α, β, A, B positive constants such that

$$
\alpha \exp(-A\varphi(x)) \leq \sum_{i=1}^m |h_i(x)|^2 \leq \beta \exp(B\varphi(x)).
$$

Then, there exist holomorphic functions q_1, q_2, \ldots, q_m on D satisfying

$$
\sum_{i=1}^{m} g_i h_i = 1 \text{ and } \sum_{i=1}^{m} \int_D |g_i(x)|^2 \exp(-C\varphi(x)) dv < 0
$$

where C is a constant depending on A, B, n, m.

Proof. See [9, Theor. 1, Cor. 1], where this result is proved by Skoda for pseudoconvex domains in $Cⁿ$, but the proof remains valid for finite bounded unramified domains over C^n . \Box

Applying this result we have that there exist holomorphic functions g_1, g_2 , \ldots , g_m on $\Omega \backslash Z_r$ and a constant C^* such that

$$
\sum_{i=1}^{m} g_i h_i = 1 \text{ on } \Omega \setminus Z_r \text{ and } \int_{\Omega \setminus Z_r} |g_i(x)|^2 \exp(-C^* \varphi_r(x)) d\lambda < \infty
$$

LEMMA. (Fornaess-Narasimhan [5]). *Let D be a normal complex space and* $\Phi: D \to \Delta^n$ a representation of D as a finite covering map on Δ^n . Let f be *holomorphic on D such that* Φ *is unramified out of* $Z = \{f = 0\}$. Let N be the sheet number of Φ . Then for any holomorphic function g on $D\setminus Z$ such that

$$
\int_{D\setminus Z}|g|^2dv<\infty.
$$

The function $f^{N-1}g$ extends to a holomorphic function on *D*. \Box

34 LUIS MANUEL TOVAR

Appliying these results, we have $\sum_{i=1}^{m} g_i h_i = 1$ on $\Omega \setminus Z_r$ and $F_i = f_r^* g_i$ is holomorphic on Ω . Since $f_r(p) \neq 0$, if $x_n \to p$, for some $i = 1, ..., n$, we have \mathscr{F} $|F_i(x)| \to \infty$. Since $\partial \Omega \setminus S$ is dense in $\partial \Omega$ the Theorem follows. ••

THEOREM (2). *Let X be an irreductible Stein space of pure dimension n and* A *an analytic set which is at least two-codimensional in* X. *Then it is not possible to express the difference space* (Y, O_Y) *, where* $Y = X \setminus A$ *and* $O_Y :=$ $O_{X|Y}$, as an increasing and nested union of open Stein subsets of X.

Proof. Suppose the result is not true. Then there exists *X* and *A* as above, and an increasing and nested sequence of open Stein subsets $\{\Omega_j\}_{j\in N}$ of X, such that $X \setminus A = \bigcup_{i=1}^{\infty} \Omega_i$.

$$
j=1
$$

For any $x \in X$, we know there exists a neighborhood basis $\{D_m\}$ of X and a proper and light map $\Pi : D_m \to \Delta^n(o, r_m)$, such that D_m is an analytic polyhedron and the triple $(D_m, \Pi, \Delta^n(o, r_m))$ is a finite branched analytic covering.

Since the level sets of Π are compact and Π is light, these level sets are zero-dimensional. Then, $\dim_x \Pi = \dim_x X - \dim L_x(\Pi) = n$, where $L_X(\Pi)$ denotes the level set of Π in X. By the proper mapping theorem, we have, $\Pi(D_m) = \Delta^n(o, r_m).$

Let $c_0 \in A$. take the following restrictions:

a) Choose a neighborhood U' of c_0 small enough so that the branching order of Π in any neighborhood of c_0 contained in U' is constant.

b) Since $\Pi^{-1}(\Pi(A \cap U'))|U'$ is the union of the restriction of A to U' with an analytic set A_0 , take $z_0 \in (A \cap A_0^c)$ and choose a neighborhood U_0 of z_0 in such a way that $U_0 \cap A_0$ is empty and U_0 is Stein:

Since A is at least two=dimensional in $X, U_0 \backslash A$ is not Stein. Now Π is an holomorphic and finite mapping between two spaces of the same dimension, therefore $\Delta^{n}(y_0, r)\Pi(A)$ is not Stein either. Then we can find a Hartogs figure

$$
H \subset \subset (\Delta^n(y_0,r) \backslash \Pi(A))
$$

such that its Hartogs completion H^* is contained in $\Delta^n(y_0, r)$, but H^* is not contained in $\Delta^{n}(y_0,r)\setminus\Pi(A)$.

From the above we obtain $\Pi^{-1}(\overline{H}) \cap (U_0 \cap A) = \emptyset$, so there exists an integer N, such that $\Pi^{-1}(\overline{H})\subset (U_0\cap\Omega_N)$. $U_0\cap\Omega_N$ is Stein, so we can find an Oka-Weil domain W such that $\Pi^{-1}(H) \subset W \subset\subset U_0\cap \Omega_N,$ [8].

Notice that Π is a local homeomorphism in $U_0\setminus\Pi(A^*)$, where A^* is a negligible set formed by the images of the singular set of *X* and the regular points of U_0 where rank_{x} $\Pi \neq n$.

Take $y^* \in (H^* \cap \partial \Pi(W))$. Let $\Pi^{-1}(y^*) = {\alpha_1, \alpha_2, ..., \alpha_r}$. If $y_m \to y^*$, with $\{y_m\} \subset \Pi(w)$, then, there exist corresponding sequences $\{v_m^i\} \to \alpha_i$, $i = 1, \ldots, r$, with $\{v_m^i\} \subset W$. Therefore we can find a holomorphic function f in W which is not bounded in each sequence $\{v_m^i\}$.

For each $y \in (\Pi(w) \backslash A^*)$, if $\Pi^{-1}(y) = \{z_1, z_2, \ldots, z_k\}$, let Δy be a neighbor-

hood of y contained in $\Pi(W)\backslash A^*$ such that $\Pi^{-1}(\Delta y) = \bigcup_{i=1}^k \Delta_{s_i}$, where Δ_{s_i} is a $i=$. neighborhood of z_i and

$$
\Pi: \Delta_{s_{\bm{i}}} \rightarrow \Delta y
$$

is a biholomorphism.

Define $f_y^i := (f_{|\Delta_s}) \circ \Pi^{-1}$. Clearly f_y^i is holomorphic in Δy . Consider the symmetric polynomial

$$
P(a_1,a_2,\ldots,a_k)=a_1\cdot a_2\cdots a_k.
$$

Then define the function P^* in $H(W)\backslash A^*$ as

$$
P^*:=P(f_y^1,f_y^2,\ldots,f_y^k)
$$

in Δy . If $\Delta y \cap \Delta y' \neq \emptyset$ and $y, y' \in (\Pi(W) \backslash A^*)$, note that, $(f_y^1, f_y^2, \ldots, f_y^k)$ is just a permutation of $(f_{y'}^1, f_{y'}^2, \ldots, f_{y'}^k)$, therefore P^* is well-defined in $\Pi(W) \backslash A^*)$ $(H\backslash A^*)$. Since f is continuos in W, f is locally bounded in $\Pi(W)$, so it is possible to extend P^* to H^* . But P^* is holomorphic in H and not bounded in $\{y_m\}$, a contradiction. \Box

COROLLARY. Let X be a normal Stein space of pure dimension n and $\Omega =$ $\overset{\infty}{\bigcup}$ Ω_j , where each Ω_j is an open Stein subset of X and such that $\Omega_j\supset \Omega_{j+1},$ $j=$ $j \in N$. Then the singular set of X is nowhere dense in the boundary of Ω .

Proof. Denote *S* the singular set of *X*. We assert $\partial \Omega \setminus S$ is dense in $\partial \Omega$. Otherwise, there would be $p \in S \cap \partial \Omega$ and a Stein neighborhood U_p of p, such that

$$
U_p\bigcap(\partial\Omega\backslash S)=\emptyset
$$

i.e. S would be dense in $\partial\Omega$ in some neighborhood of p. Since S is closed in $\partial\Omega$, it follows that

$$
S_{|\bm{U_p}}=\partial\Omega_{|\bm{U_p}}
$$

Now, S is at least two-codimensional in X, so $S \cap \partial \Omega$ does not separate U_p in two open disjoint subsets of X. It follows $U_p \backslash S \subset \Omega$, therefore

$$
U_p\backslash S=\bigcup_{j=1}^\infty (\Omega_j\cap U_p)
$$

But each $\Omega_i \cap U_p$ is Stein, so the above equality contradicts the Theorem. \Box From this Corollary and Theorem (1), it follows immediately:

36 LUIS MANUEL TOVAR

THEOREM (3). Let X be a normal Stein space, $\Omega_1 \subset \Omega_2 \subset \cdots$ a nested sequence of open Stein subsets of X and let $\Omega = \stackrel{\infty}{\bigcup}$ Ω_j be irreducible. If $\Omega \subset\subset X,$ $j=$

then Ω *is a domain of holomorphy.*

Definition. Let *X, Y* be two complex spaces of the same dimension. We say that the holomorphic mapping $\Pi : X \to Y$ defines a ramified covering of Y, if for every point $y \in Y$ there exists a neighborhood U such that $\Pi^{-1}(U)$ is the disjoint union of complex spaces W_1, W_2, \ldots for each of which every induced map $\Pi_{\nu}|_{W_{\nu}} \to U$ is finite.

P. Le Barz in [11] proved the next important result.

THEOREM (4). (Le Barz) Let $\Pi : X \to Y$ a ramified covering of Y. If Y is *Stein, so is X.*

Applying this result we obtain the next generalization of Theorem (3).

THEOREM (5). Let $\Pi: X \to Y$ be a ramified covering of a Stein space Y and suppose that X is normal. If $\Omega_1 \subset \Omega_2 \subset \cdots$ is a nested sequence of open Stein subsets of X and $\Omega := \bigcup_{i=1}^\infty \Omega_i$ is irreducible and relatively compact in X, then $j=$

fl. is a domain of holomorphy.

DEPARTAMENTO DE MATEMATICAS ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS **INSTITUTO POLITÉCNICO NACIONAL** MÉXICO, D.F. 07738 MÉXICO

REFERENCES

- [1] A. ANDREOTTI-R. NARASIMHAN, *Oka's Heftungslemma and the Levi Problem for complex spaces,* Trans. Amer. Math. Soc. 111(1964) 345-366.
- [2] F. DocQmER-H. GRAUERT, *Levisches Problem und Rungescher Satz,* Math. Ann. 140(1960) 94-123.
- [3] J. E. FORNAESS, *An increasing sequence of Stein manifolds whose limit is not Stein,* Math. Ann. 223 (1976) 275-277.
- [4] ----, *The Levi Problem in Stein spaces*, Math. Scand.45 (1979) 55-69
- [5] ---R. NARAS[MHAN, *The Levi Problem on complex spac.es with singularities,* Math. Ann. 248 (1980) 47-72.
- [6] H. GRAUERT-R. REMMERT, Theory of Stein spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- [7] R. C. GUNN[NG, Lectures on Complex Analytic Variaties. The Local Parametrization Theorem, Math. Notes, Princeton Univ. Press, 1970.
- [8] ---, H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, New Jersey, 1965.
- [9] H. SKODA, *Applications des techniques* ^L2 a *la theorie des ideaux d'une algebre de fonctions holomorphes avec poids, Ann. Scient. Êc. Norm. Sup., 4^e série, t. 5, (1972) 545-579.*
- [10) L. M. TOVAR *Open Stein subsets and domains of holommphy in complex spaces,* Pitman, Research notes in Math. 112 (1985) 183-189.
- [ll] P. LE BARZ, *Apropos des revetements ramifies cl'espaces de Stein,* Math. Ann. 222 (1976) 63-69.