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AVERAGE OPTIMAL STATIONARY POLICIES IN MARKOV 
DECISION PROCESSES UNDER WEAK STABILITY CONDITIONS• 

BY ROLANDO CAVAZOS-CADENA 

1. Introduction 

We are concerned vvith Markov decision processes (MDP's) with denumera
ble state space and finite control sets. The reward function is bounded ---but 
otherwise arbitrary- and the performance index of a control policy is a 
run expected average reward criterion. For these models, the existence of an 
optimal stationary policy has been established under several conditions on the 
transition law of the system [12]. A common approach to this problem con-
sists in imposing a_(stability) condition so that the average reward 
equation (AROE) has a bounded solution, which in tum yields an 
stationary policy in a standard way [9, 10, 12, ... ] . Under natural restrictions 
on the recurrence structure of the model, a bounded solution to the AROE 
exists if, and only if, the so called simultanous Doeblin condition (SDC) holds 
[2,3], a :requirement that is quite restrictive and is not satisfied in interesting 
applications [1,2-4, 11]. 

Our main objective in this note is to introduce a weak form of the SDC 
which is sufficient to guarantee that, for arbitrary bounded reward function, 
there exists an optimal stationary policy; se Assumption (2.2) and Theorem 
(4.1) below. To obtain this result we follow the approach of examining a model 
with the average criterion as a "limit" of discounted programs. 

The organization of the paper is as follows: In Section 2 the decison mod
el is formally described -including the key stability Assumption (2.2)- and 
some preliminaries from discounted dynamic programming are given in Sec
tion 3. Then, the main theorem is proved in Section 4 and we conclude vrith 
an example in Section 5. 

Notation. A,;; usual, Rand N stand for the sets ofreal numbers and nonneg
ative integers, respectively. The indicator function of an event W is denoted 
by I[W] and, if Y is a random vector, u(Y) denotes de u-algebra generated by 
Y. Finally, for a real-valued function r, 

!I r II:= sup { I Ix is the domain ofr}. 

2. The Decision Model 

Throughout the remainder we follow closely (but not completely) the no
tation and terminology in Ross [9, 10]. Let ( S, U, p, r) be the usal MDP where 
the state space S and the control set U a:re nonempty countable sets. For each 
x E S, U(x) c U is the (nonempty) set of admissibl.e controls at state x, and 
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the set of admissible pairs is K := {(x, Ix E S, u E U(x)}. On the other 
hand, r : K --+ Rand p(·I·) : S x K--+ [O, 1] a:re the reward function and the 
transition law, respectively; of course, Eyp(yjk) = 1, k E K. 

This model represents a dynamical system evolving as follows: At each de
cision time t E N, the state of the system is observed, say Xt = x E S, and a 
control Ut = u E U(x) is chosen. Then a reward r(u, x) is earned, and (ii) 
regardless of the states observed and controls applied prior to t, the state of 
the system at time t + 1 will be y E S with probability p(yjx, u); this is the 
Markov property of the process. 

Assumption (2. H: (i) The reward function is bounded i.e., II r II< co (ii) For 
each x ES, the set U(x) is finite. 

Control Policies. A policy is a (possibly randomized) rule for choosing con
trols wich may depend on the current state as well as on the record of pre
vious states and controls; see [6,8] for a more detailed description. The class 
of all policies is denoted by!P. Let F := x{U(x)lx ES}, i.e., F consists of all 
(choice) functions/ : S --, U satisfying f(x) E U(x), x E S. A policy 1r is 
stationary ifthere exists f E F such that, under 1r, the control applied at time 
tis Ut = f (Xt); as usual, the class of all stationary policies is (naturally) iden
tified with F'. Given the initial state X 0 = x and the policy 1r E iP being used, 
the distribution of the state-control process { (Xt, Ut)} is uniquely determined 
[6,8]. This distribution is denoted by Px[·IXo = x], and E1r[·IX0 = x] stands 
for the corresponding expectation operator. 

The Optimality Criterion. For any x ES and 1r E <:P, the (lim inf-expected) 
average reward at state x under policy 1r is defined by 

(2.1) 

(2.2) 

n 

J(x, 7r) := lim inf Ex[I:: r(Xt, UtlXo = x]/(n + 1), 
t=O 

J(x) := sup {J(x, 11') 171" E !P} 

and 

is the optinwl average reward at the state x. A policy 1r• is (average) optinwl 
if J(x, 11"0 ) = J(x) for all x ES. 

It is known that, under Assumption (2.1) alone, an optimal stationary pol
icy does not nec.essarily exist [5,9,10]. We shall see, however, that an opti
mal policy does exist if, additionally, we suppose that Assumption (2.2) below 
holds true. First, we introduce some notation involving a state z E S which 
will be fixed throughout the remainder. 

Definition (2.1): (i) The stopping time Tis defined by 

(2.3) T := min {n > OJX,.. = z}, 

where, by convention, the minimum of the empty set is oo. 
(ii) Let / E F be arbitrary. The functions M 1 and M from S into [O, oo) are 
defined as follows: For each x E S 
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(2.4) 
(2.5) 

_Mf :=E1 

M(x) := sup 

- x]· 
- ' 
(x)Jql E 

Assumption (2.2): M1(x) < oo, x ES, f E F. 
(ii) There exsits I ER such that, for all f, ;p E F and x E S, 

Remark (2.1): Assumption (2.2) is a weakened version of the following form 
of the SDC [2,3,9,10,12]: 

For some finite constant b, Mr(x) _::; b, x ES, f E F. 

Remark (2.2): Suppose that Assumption (2.2) holds. Then, for all ip, j E F 
and x ES, M1(x) ~ 1 · M1(x), which implies (see (2.5)) 

(2.6) M(x) :=:; 1 · M1(x) < oo, x ES f E F. 

3. Preliminaries from the Discounted Case 

Let x E S, 1r E fP and a E (0, 1) be arbitrary. The (total expected) 
a-discounted reward at state x under policy 1r is 

00 

Va (x, 1r) := E;r[L o/r(Xt, Ut) JXo = x], and 
t=O 

Va:= sup{Va(x, 1r)j1r E SD} 

is the optimal a-discontinued reward at x. A policy 1r• is a a-optimal if 
Va(x, 1r•) = Va(x) for all x E S. It is well known [9,10] that (i) II Vo:(·) IJ:=:::11 
r II /(1 - a), and (ii) Vo:(·) satisfies 

(3.1) Va(x) = max [r(x, u) +a• :Eyp(yjx, 
uEU(x) 

(y)], XE S, 

which is the optimal a-discounted optimality equation. Moreover, a 
fa E F is a-optimal if and only if, for any x E S, fa ( x) is a maximizer of 
the function within brackets in (3. Throughout the remainder, fa stands 
for an a-optimal stationary policy. 

For any x ES and a E (0, 1) define 

(3.2) 

(3.3) 

go,(x) := (1- a)Va , and 

ha(x) := Va(x) - V;;., 

where z E S is the (fixed) state in Definition (2.1). We observe that II g"' II= 
(1- a) II Vo: 11:=:::II r JJ. Also, the arguments in the proof of Theorem 19) in 
[9] yield the following 



18 ROLANDO CAVAZOS-CADENA 

LEMMA (3.1). Suppose that Assumption (2.2) holds and let M(x) be as in 
(2.5). Then, for any a E (0, 1) and x ES, 

(3.4) lh(x)[::; 2· 11 r 11 ·M(x) < oo. 

LEMMA (3.2). Suppose that Assumptions (2.1) and (2.2) hold and let {an} c 
(0, 1) be a sequence converging to 1. Then, for a subsequence of { an}, say {,Bm}, 
the following limits exist: 

(3.5) lim h13,,,, (x) =: h(x) E [--2• II r II ·M(x), 2· II r II •A:f(x)], x ES; 

(3.6) lim /13,,.(x) =; r(x) E U(x), x ES; 

(3.7) lim Y13,,.(z) =: g E [- Ii r II, II r [[]. 

Moreover, with gas in (3.7) we have 

lim g,sm(x) = g, x ES. 

For a proof see, for instance, [4,11] or the proof of Theorem (6.17) in [9]. 
Notice that, for any x E S, [!l,a,,.. (x) - !lf3m (z) I = (1 Pm)h13 (x), and then, (3.5) 
and (3.7) together yield (3.8). 

Remark (3.1). Throughout the remainder, the sequence {,Bm}, g E R, r E F 
and h: S-+ R, are as in Lemma (4.2). 

We now prove that g and h(·) satisfy the AROE (3.9) below. 

LEMMA (3.3). Under Assumptions (2.1) and (2.2) the following holds. 
(i) For any (x, u) EK, ~yp(ylx, u)M(y) < oo. 

(ii) For all x ES, 

(3.9) 

and 

(3.10) 

g +-h(x) = max [r(x, u) + 'Eyp(y[x, u)h(y)], 
uEU(x) 

g + h(x) = r(x, J"(x)) + I:yp(yJx, r (x))h(y). 

(iii) For any x E S and 1r E (]J 

(a) g;::,: J(x, 1r), and then, 
(b) g;::,: J(x). 

Proof. (i) Let ( x, u) E K be fixed. Select f E F satisfying f ( x) 
notice that (see (2.3)) 

oo > M1(x) =E1[T[Xo = x] = 1 + E1[TI[T > l][Xo = xj 

u, and 

=1 + I:y;t'zP(Ylx, u)EJ[TIXo = y] (by the Markov property) 

(3.11) =1 + I:ytzp(y[x, u).Mj(y). 

Hence, 
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E11p(ylx, u)M(y) 5, · E11p(ylx, u)M1(Y) (by (2.6)) 

=, · [p(zlx, u)M1(z) + E11#p(ylx, u)M1(Y)] 

5 1 • [M1(z) + M1(x) - 1] < oo; see (3.11). 

(ii) From part (i), Lemma (3.1) and the dominated convergence theorem, 
we obtain 

(3.12) E11p(ylx, u)h13,.. (y) ----+ E11p(ylx, u)h(y) as m----+ oo. 

Using this convergence, (3.9) follows as in the proof of Theorem (6.18) in 
[9]. To conclude, observe that, since f 13,.. is f3m -optimal, 

V13,.. (x) = r(x, /13,.. (x)) + f3m • E11p(ylx, /13,.. (x))V13,.. (y)], x ES, 

and then, simple rearragements using (3.2) and (3.3) yield [9, 10] 

Y/3,.. (z) + h13,.. (x) = r(x, /13,.. (x)) + f3m · E11p(ylx, /13,.. (x))h13,.. (y), x ES. 

Let x E S be arbitrary but fixed. Since U(x) is finite, (3.6) implies that 
fm(x) = f*(x) form large enough and, in this case, · 

Y/3.,. (z) + h13,.. (x) = r(x, f* (x)) + f3m · Evp(ylx, f* (x))h13,.. (y). 

Then (3.10) follows by taking limit as m goes to oo in both sides of this 
equality and using (3.12). 

(iii) Notice that, for any x E S, g = lim (1 - f3m)V13,.. (x) 2: li~)pf(l - a) 

V13 (x) 2: J(x, 1r); see [7,p. 173] for the last inequality. This yields part (a) and, 
since 1r is arbitrary, part (b) follows immediately; see (2.1) and (2.2). o 

4. Optimal Stationary Policies 

We now establish the existence of average optimal stationary policies; se 
Remark (3.1) for notation. 

THEOREM (4.1). Under Assumptions (2.1)-(2.2) the following holds. 
(i) let f E F satisfy 

(4.1) g + h(x) = r(x, f(x)) + E11p(ylx, f(x))h(y), x ES. 

Then, f is (average) optimal. In particular, 
(ii) f* is optimal. 

The proof of this theorem relies on the following lemma. 

LEMMA (4.1). Suppose that Assumption (2.2) is valid. Then, for all x E S 
and f E F, we have that 

(i) For all n EN, E1[M(Xn)IX0 = x] < oo, 
and, as n ----+ oo, the three convergences below hold true: 
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E1[M(X,.)I[T > n]IXo = x]--+ O; 
(iii) E1[M(Xn)IX0 = x]/(n + 1)--+ O; 

EJ[lh(Xn)I c:cc x]/(n + 1) ---+ 0. 

Proof. (i) Let f E F be arbitrary and notice that for all x E S, 

Mf + M1(x) 2•-M1(z)p(zjx, f(x)) + MJ(x) 

=1 + :E11p(yjx, f(x))Mf 

(see (3.11)). a simple induction argument yields=> (n + l){M1(z) -
1) + M1(x) 2:: E1[M1(Xn)IX0 = x], x ES, n EN, and the conclusion follows 
using (2.6). 

(ii) Notice that T > (T - n)I[T > n] ""0 on the event [T < oo]. 
Then, Assumption (2.2) and the dominated convergence theorem imply 

(4.3) E1[(T- I[T>n]IXo=x]""O as n-->oo. 

On the other hand, a simple conditioning argument using the Markov prop
erty yields 

and the result follows using and 
Let f E F and x ES. To begin with, observe that 

1 = P1[Xt = z for some t $ n!Xo = x] + P1[Xt f z, 0 $ t $ n!Xo = x], 

and then, 

n 

1 = I: P1[Xs = z, Xt f z for s < t $ n!Xo = x] 

(4.4) 

where we have used that, 

n 

[Xt = z for some t $ n] = LJ [X8 = z, Xi -=/= z for s < t ::; n]; 
s=O 

this is the partition of the event on the left-hand side according to the last 
visit to state z up to time n. Using (4.4) we see that 

n 

= L E1[M(Xn)I[X 8 = z, Xt I- z, /J < t::; n!Xo = x] 
s=O 
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n 

= L E1[M(Xn-a)I[T > n - a]fXo = z]P1[Xs = z[Xo = x] 
s=O 

+ E1[M(Xn)IT > n]IXo "'" x] (by the Markov property) 
n 

S: L E1[M(Xn-s)I[T > n-s][Xo = z] + E1[M(Xn)IT > n][Xo = x). 
s=O 

Now, the conclusion follows using this inequality and part (ii). 
(iv) Combine part (iii) with [h(·)I S: 2· JI r II •M(·); see (3.5). o 

Proof of Theorem (4.1). Notice that part (ii) is a consequence of(3.10) and 
part (i). To prove (i), let f E F satisfy ( 4.1). In this case, a simple induction 
argument using (3.5) and Lemma (4.l)(i) yields that, for all n EN and x ES, 

n 

_g + h(x)/(n + 1) =E1[L r(Xt, Ut)[Xo = x]/(n + 1) 
t=O 

+Et[h(Xn)[Xo = x]/(n + 1), 

and from (4.2) we see that, g = lim E1[E7=o r(Xt, Ut)IXo = x]/(n + 1), which 
implies J(x, f) = g; see (2.1). Now Lemma (3.3)(iiib) yields J(x, f) ?: J(x), 
x ES and then f is optimal; see (2.2). • 

5. An Example 

We now apply Theorem ( 4.1) to establish the existence of optimal stationary 
policies in a queueing system. 

Example (5.1)._ Let S := N and set U(x) = U := {1, 2, ... , k}, x EN, where 
k is a positive integer. For each t E N and u E U, let At and Dt ( u) be N-valued 
random variables defined on a common probability space and suppose that 
the evolution of the system is determined by 

(5.1) Xt+l = max {Xt + At - Dt(Ut),O}. 

This model can be interpreted as follows: We have a service station with 
infinite buffer capacity such that (i) fort E N, Xt is the number of customers 
waiting for service at time t, (ii) At is the number of arrivals in the slot (t, t + 
1); then the total amount of customers requiring for service in [t, t + 1) is 
Xt + At, and (iii) if the control u is applied at time t, Dt ( u) is the number of 
service completions that can be provided in [t, t + 1); served customers leave 
the system. 'rhe following conditions are enforced: 

Cl: The vectors (At, Dt(l,), ... , Dt(k)), t EN, are independent and identically 
distributed; this condition guarantees that the system determined by (5.1) is 
aMDP. 

C2: For a positive integer c, Dt(u) ::::; c, t EN, u EU. 
Set X := E[At] and µ(u) := E[Dt(u)], u EU. 
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C3: O < >. < µ(u), u EU. 

This model is a variant of the system studied in [11, Section 3]; see also 
[1]. We shall see in Proposition (5.1) below that Cl-C3 together imply that 
Assumption (2.2) is valid. Then, since U is finite, Theorem (4.1) yields that, for 
arbitrary bounded reward function, there exists an optimal stationary policy. 

Set z = 0 so that Tin (2.3) is the first time for which the system is empty. 

PROPOSITION (5. Under conditions Cl-C3, Assumption (22) holds trne. 

Proof. Let Xo = x E S be arbitrary. Notice that the total number of custom-
ers asking for service in [O, 1) is x + Ao; in particular, the number of services 
to be provided in [o, T) is, at least, x + A0 . Since at most c customers can be 
served in a unit of time (by C2), it is clear that T ::::C: (x + A 0)/c. Then, 

(5.2) E1r[TIX0 = x] 2 (x + >.)/c, 1r E <P. 

On the other hand, for a positive integer n, define 

n-1 

Yn:=x+ L(At-Dt(Ut)), n=l,2, .... 
t=O 

With this notation we have (see (2.3) and (5.1)) that 

(5,3) T = min {n > OIYn < O}. 

This implies that Yn > 0 for l ~ n < T. Also, when T > 1, Yr = YT-1 + 
AT-1 - DT-1(UT-1) 2 YT-1 - c 2 -c. Consequently: 

(5.4) n ~ T • Yn 2 -c. 

Now, observe that we always have [T > t] c a(Xs, 0 S s S t) c a(Xo, As, 
D 8 (U3 ),0 :S s :St - 1); see (2.3) and (5.1). Using this and Cl, we see that, 
under the action of a policy/ E J[T > t] is independent of At and Dt(Ut), 
Hence: 

(i) E1[AtI[T > t]JXo = x] = >,, • P1[T > t/Xo = x]. 
Also, observing that 

E rn ,-,,;X ' E rn 'f(X·)·,v 1 ';( )) J[Vt( Ut) i O = Xj = fl tl i 1-,\.0 °= x, = µ,t., x_ , 

it follows that 
(ii) Ef[Dt(Ut)I[T > t]IXo = x] = P1[T > t!Xo = x] · E1[µ(f(Xt))!Xo = x] 2 

P1[T > t!Xo = x] · µo, where µ,o := min {µ( u) iu E U} > X; see CS. 
Let n 2 l he arbitrary and, for convenience, set := min {T, n}. Using 

(i) and above together with (5.4) we obtain: 
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T(n)-1 

+ I: 
t=O 

n-1 

- D(Ut))IXo = x] 

=x + EJl:L)At - D(Ut))I[T > t]IXo = x] 
t=O 

n-1 

+ - .uo) L P1[[T > t]IXo = x], 
t=O 

n-1 

M1(x) = E1[TIX0 = x] = lim L P1[[T > t]IXo = x] 
t=O 

:S:(x + c)/(µo - >.) < oo; 

this proves that part (i) in Assumption (2.2) is valid. To complete the proof, 
use (5.2) and to obtain: For all¢>, f E F and x ES, 

Mq1(x)/M1(x) :S:[(x + c)/(µo - >.)] · c/(x + >.) 

:S:c2 /[),(µo - >.)] =: 1 < oo. 0• 
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