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HYDRODYNAMIC AND FLUCTUATION LIMITS
OF BRANCHING PARTICLE SYSTEMS
WITH CHANGES OF MASS

BEGONA FERNANDEZ Y LUIS G. GOROSTIZA
1. Introduction

Branching diffusions are models of particle systems which evolve in space
by random migration and branching. The usual object of study is the coun-
ting measure-valued process determined by the locations of the particles pre-
sent at each time, assuming implicitly that all the particles have mass 1. In
this paper we consider a “branching mass” model, where each particle has
its own mass, and when a particle branches the mass of each of its offspring
is proportional to the mass of the parent and depends on the number of the
offspring produced. An example of this model is a system of small spheres in
R3 (e.g. a vapor or a powder) such that when a sphere of surface S splits into
n equal spheres with conservation of volume, each one of the new spheres has
a suriace equal to Sn~2/3 and one is interested in the space-time distribu-
tion of surface of the system (the surface of a sphere is taken as the “mass”
of the particle). We consider the measure-valued process determined by the
locations and the masses of the particles present at each time. This mass pro-
cess is not Markovian. We will present laws of large numbers (hydrodynamic
limits) and fluctuation limits of this process under different rescalings. The
fluctuation limits are Markovian generalized Gaussian Ornstein-Uhlenbeck
processes. These results include the known ones in the special case when all
the particles have mass 1.

2. The model, notation

The system consists of particles in Euclidean space R? which evolve as fol-
lows. At time ¢t = 0 the particles are distributed according to a Poisson random
field on B € B(R%) (the Borel sets) with intensity v > 0. As time elapses, each
particle independently migrates according to a symmetric stable process with
exponent a € (0, 2], and after an exponentially distributed lifetime with para-
meter V it branches, producing n offspring with probability p,, n = 0,1,... .
The offspring are born at the same site where their parent branches, and they
also migrate and branch as described. In addition, particles immigrate into R%
according to a (space-time) Poisson random field on ¢ € B(R%x R4 ) (assumed
to have a smooth boundary) with intensity § > 0, and each immigrant parti-
cle also evolves as above. The initial and the immigration Poisson fields are
independent. Let N = {N, ¢t > 0} denote the counting measure-valued pro-
cess defined by
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where {z;}{2, are the locations of the particles present at time ¢. Up to this
point we have the usual model. We assume in addition that each particle has
a (positive) mass of its own, and when a particle of mass a produces n (> 0)
offspring, the mass of each of the offspring is ac,, where ¢, > 0. For simplicity
we assume that all initial and all immigrant particles have mass 1. Let M =
{ M, t > 0} denote the measure-valued process defined by

[ee] [e.e]
My =) a;iby, if Ne=)Y 6z,
i=1 i=1
where a; is the mass of the particle at z;, ¢« = 1,2,... The process M is not

Markovian (looking at a point mass we do not know if it is a single particle
or if a branching has occured at that site, and therefore the past and the fu-
ture are not independent conditioned upon the present), but the pair (N, M)
is Markovian (NN tells us if a branching has occured). We will also need the
measure-valued processes M? = {M}, t > 0} and M* = {M}}, t > 0} defined
by

oo oo

[e.e]
M= a26, and Mf = al6,, it M= a6,
i=1

i=1 =1

and we note that (N, M, M?, M*) is Markovian.
We assume that the mass produced by the branching, relative to the mass

of the parent, has finite third moment, and we denote the first three moments
by

) ) o
m1 = Z NCpPn, Mg = Z(ncn)zpn: m3 = Z(ncn)spn;
n=0 n=0 n=0

We also write g1 = 3.2 o nc p,.

It can be shown that the processes N, M, M? M* have paths in D(R,
S'(R%)), the space of right-continuous with left limits functions from R into
S'(R%), where S'(RY) is the space of tempered distributions, i.e., the dual of
S(RY), the space of infinitely differentiable rapidly decreasing functions from
R%into R. As is well known, these are appropriate spaces for studying weak
convergence of fluctuation processes of particle systems. The topologies on the
spaces S(R%), S'(RY) are well-known. The space D(R4,=S'(R%)) is endowed
with a Skorokhod-type topology [19,17].

The following notation will be used.

(,-): the canonical bilinear form on S'(R%) x -S(R%).

Aq = —(—A)?/%: the infinitesimal generator of the symmetric stable pro-
cess with exponent o € (0, 2].

A=V (my—1), Ay =V(q —1).

T = {T¢, t > 0}: the semigroup generated by A,.

U = {7, t > 0}: the semigroup defined by 1¢; = e41¢77;, with generator
641=1Aa'+44L
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@ = {4, t > 0}: the semigroup defined by /; = e42}7;, with generator

H9 = Aqy + Ag.
F(4, ) denotes the continuous bilinear form defined on S(R%) x S(R?) by

F(¢,9) = Da(99) — dAsY — PAsd + V(my — 2my + 1)¢9.

For a = 2 the operators A, and 77; map S(R?) into itself, but for o < 2
they do not, and it is necessary to introduce the following spaces (see [6] for
details). Let ¢,(z) = (1 + ||z||?) "7, = € R4, (p > 0).

Cp(R%) = {¢ € C(RY) : ||¢|[p < oo}: Banach space with norm ||¢|, =
sup |4(z)/¢p(=)].

zER?

=M, (R?)= the non negative Radon measures u on R% such that [ ¢,du < co.

The spaces =, (R%) and Cp(R?) are in dualtity (the duality is also denoted
by (-, ).

yé‘he> space =Il,(R?) contains the Lebesgue measure for p > d/2, and the

processes N, M, M%, M* take values in =i, (R%).

7; maps Cp(R?) into itself, and for d/2 < p < (d + @)/2, Ay and T; map
= (R?) continuously into Cp(R%), and ¢ — ;¢ is a continuous curve in C, (R%)
for ¢ € S(RY).

Hence all the expressions beiow are well-defined, in particular F (¢, ¢, U:9)
for ¢,4 €.S5(R?) (it can be shown that (7 ,¢)(7:9) belongs to the domain of
Ag).

3. Laws of large numbers and fluctuation limits

We consider the following three rescalings of the mass process M, denoting
by K > 0 the scaling parameter which tends to co.

(1) High density. The initial and immigration intensities are given by K~
and K B, respectively. We denote by M(1):K = {(M, (1) K 8), 6 € S(RI), t >0}
the process with these intensities.

(2) Space Scallng The space scaling is given by z — Kz. We denote by
M)LK = {(M(2 ,$), ¢ € S(R?), t > 0} the rescaled process, where

,8) = (My, 6(-/ K)).

In this case we assume that the initial set B and the immigration set ¢
satisfy KB = B and K¢y = (s forall K > Oandt > 0, where ¢; = {z €
R%|(z,t) € '} is the t-section of 2.

(DK

(3) Space-time scaling. The space-time scaling is given by (z,t) —
(Kz, K%t). We denote by M3)K = {(Mt(s)’K, $), ¢ € S(RY), t > 0} the re-
scaled process, where :

(MOYE 4y = (Mgay, ¢(-/ K)).
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The immigration intensity is given by /K%, the sets B and £ have the
same properties as in (2) and &y — § € L(Rd) ast — oo, the parameter o
satisfies the condition o < d, and the change of mass and the branching law
may depend on K as follows:

mf =14 ag/K® ¢ =1+bg/K® ag —a€R, by —beR,

mg{-»mzzl as K — oo, and sup m§{<oo.
K>1

The fluctuation processes XK x(2hE = x()hK corresponding to these
three rescalings are defined by

xOK = g=230().K _ gar(t)Ey

XK = gd/2(pp(@2)KE _ par(2).K)
3

XK _ g(+e)/2(pr(0).K _ EM( )JK),

We remark that these processes are not Markovian.

THEOREM (1). (Laws of large numbers). For each t > 0 and ¢ € S(R%),

E~HMIE 4 _wj'f Usd(w dz+ﬁ/ / Ui_rd(2)dzdr,
B g J
K, 5) = et [ g(a)ds + pers [ 7 [ a)dadr,
B 0 ,

—d (3).K Vat 't Var .
K™% M, By — e Tig{z)dz + B | e 7 ¢{z)dzdr
B 0 Jo

in L? as K — oo.

THEOREM (2) (Fluctuation limits). XK = X(l), x(2E = X(z),
XBE = xO) (weak convergence in D(Ry,S'(R%) as K — oo, where X1,
X(z), XB) are continuous, centered, Gauss-Markov processes which satisfy the
respective generalized Langevin equations (see Remark 5)

%)) dxV = (Ag+ A)XWat +awD, >0,
X({)I) = ’?1/2WBa

where Wpg is the standard Gaussian white-noise on B, and W( }is the S'(RY)-
Wiener process with

Qgﬂ(zﬁ, ¥) = '7/ VyF($,9)(z)da
B
+ ,5{jlcu ¢(z)(z)dz + /0 J/(jr Vy—r F(o,¥)(z)dzdr},
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@) dx® = 4, xPat+aw), t>0,
x$) = 4w,

where W g is the standard Gaussian white-noise on B, and w2 is the s’ (RY)-
Wiener process with

@) (4, 9) = vV (mg — 2my + 1)ehs® /B #(z)9(z)dz

+8{ /e $(2) () dz + V (mg — 2m1 + 1) / " eAalu—r) /e 6(2) () dzdr},

0

) ix® = (Mg +Va)xPdt + aw®, t>o0,
x® = o,

where W®) is the s’ (R%)-Wiener process with
B6,9) = 27 (ma = )" [ Tu(v)(e)ds
+ BV (mg — 1) /u eVb'/ T, (¢9)(z)dzdr.
0 Q

Remarks

(1) The present results yield the known ones by setting ¢, = 1 for all n
(see [1,4,7,8,11,12,13,14,15,16]. Lopez-Mimbela [18] extended these known
results to multitype branching particle systems; it would be interesting to
study multitype systems with changes of mass.

(2) For the high density limits the branching law needs only have finite
second moment.

(3) In the space-scaling limits the effect of the particle motion vanishes,
and the results are the same as for the branching particle system in R® with
changes of mass and no spatial migration.

(4) In the space-time scaling limit, Xt(a) =0 for all ¢ in case mg = 1.

(5) The generalized Langevin equations of the form dX; = 4 Xdt + dW; in
Theorem 2 are interpreted as

t
(Xt) ¢> = <X0;¢> +/(; <X3:64¢>d8 + (Wt7¢>: t> 0;

for each ¢ € S(R?), when ¢ maps S(R%) into itself. An (inhomogeneous)
S'(R%)-Wiener process W is a continuous, centered, Gaussian process whose
covariance functional is given by
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SAE
Cov({Wa, 4), (W, $)) = fo Qu(é¥)du, 4,9 €S(RY),

where @, (4, ¥) is a continuous, symmetric, positive bilinear form for each u €
R, and a Borel-measurable, locally finite function of u for each ¢, ¢ € -S(R%)
(see [1,2,3]). If =4 does not map é‘(Rd) into itself (e.g. & = Aq, a < 2), the
equation is interpreted in a generalized sense (see [5,6]).

Proofs

The methods of proof are basically the same ones that have been used to
study the asymptotic behavior of particle systems whose fluctuation processes
have generalized processes as limits (e.g. [8,9,18]); when the limit process is
continuous, a new approach can be used thanks to a recent result of Aldous
(see [9,10]). Hence we will restrict ourselves to those aspects that are special
to the present model, which are the computation of the mean and covariance
functionals of the mass process M, and their limits under the rescalings.

LEMMA (1). For all 0 < s < t, and ¢, ¢ € S(R?),
t
(1) E(M;, ¢) = '1/;Qtt¢(z)dz+,3/0 /G, Us—r¢(z)dzdr,
j(M(s) ¢;t: ¢) = COV(<M8y ¢’>) <Mta ¢>)
= o[ (1:8() (108 ()
B
+/0 /BQ'rF(QLs_,-dz,"Lét_ﬂﬁ)(z)dzdr}
2) —f—,[i‘{/os [j, (Us—rd(2))(Ut—r9(z))dzdr

3 8—r
+/ / / VyF(Us—r—ud, Ut—r—yu)(z)dzdudr}.
0 Jo a,

Proof . The processes N, M, M?, M* canbe writtenas N = N*+N° M =
Mo+ Mb, M? = M2 4 MZb, MY = Mo 4 M4b, where N%, M9, M?a, M4e
are the contributions of the initial particles, and N, M? M2 M* contain
those of the immigrant particles. Hence, by the independence of the two con-
tributions we have

(3) E(My, ¢) = E(M{, ¢) + E(M{, ¢),

COV(<M33 ¢>) <Mta "/’>) = COV(<M:’ ¢>) <Mta) "/)>)
@) + Cov((M{, 9), (M, ¥)).
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s

We will compute first the mean and covariance of M® for a general initial
configuration of particles of mass 1; this will allow us to obtain the moments
of both M® with initial Poisson measure, and M?.

The process (N®, M®, M?® M*%) with values in (=, (R?%))* is Markovian
and its infinitesimal generator £ has the following forms on the functions
the types

iy
of

g(p1, p2, p3, 14) = G({uz, ¢)) and h(p, po, p3, ua) = H((p3,9)),

for w1, po, B3, w4 € =My(R?), where ¢ € S{R%), and G, H € O3(R) with G" =
B = 0:

Lg(p1, w2, b3, pa) = G'((n2, ) (w2, Aad) + %G"«#z, ) (13, Aad® — 26A49)

(5) +V > palD Gl{pz, 9) + (nen—1)a;d(=)) — G((12, )],
E n=0

Ch{p, 2, 53, 00) =H' (13, 6)) (53, Ba) + 5 H" (s, $0) sy Aad? — 26808)

cO cO

(6) +V D palY H((ps, ¢)+ (nek — 1)ale(z;)) — H{(us, 6))],
n=0 1=1

where pr = 221 6:5,': p2 = Z?ilaiaxp H3 = E?‘il a‘?&'z;; and

that the processes
t
™ Vig) = (M7 9) - [ (MEchrd)ds, 120,

i
®) Z(9) = (M2, 4) — f (M2%, Ayd)ds, ¢ 0,
0

are martingales. From (7), EY;(¢) = EYy(4) = E(M§, ¢), and therefore we
have the equation

d
ZE(MP,$) = B(MP,ch14), t20,

whose solution is
E(M?, ¢) = E(M&, 1), t>0.
Similarly, (8) yields
E(M{*,¢) = E(M®,V14), t>0.

Since Ng = Mg = Mg“, because initial particles have mass 1, we then have
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9) E<Mta’ ¢> =E(Ng;‘ut¢); t>0.
(10) E(Mt?a: ) :E<N8,(Vt¢)) t>0.

The increasing process of the martingale (7) is given by
[ tetanz, o) - a0uaz, ro(uaz, glds, £20
hence, taking G(u) = u? in (5) we have that
ay V) =il - [ (I F (g, ), 120
is a martingale, where F(4, ¢) is defined in section 2. From (11) and (7),

EY{(4) = EY}(¢) = EYo(9)? = E(M§,$)* = E(N§,$)’.
Then from (11) and (10) we have

EYy($)? = E(NE, ) / E(MZ% F(¢,4))ds
(12) = B(N,¢)* + /0 E(NG, Vo F(9,9))ds, t20.
On the other hand, from (7),
BY(9)! = B(M?, 8" +2 | t / B(MP,c416)( M2, cA14)drds
(13) - 2/0t E(Mg,c418)(M{", ¢)ds.

To continue the previous calculation we will show that

(14) E<M:’¢>(Mta’¢) = E(M:"ﬁ)(M:)mt—ﬂb)’ s < t.
Indeed, using the martingale (7),

t
E(M2, 8)(MF,9) = E(M?,§)[Yi(9) + [0 (M2, c414)dr]

t
= B(MZ, $)Ya(¥) + /0 E(M2, $)(MP, A14)dr,

hence we have the equation

d
ZE(MZ,$)MF,4) = B(MZ,§)(MF,h19), t2 s,

and it can be verified that the solution is given by (14).
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Substituting (14) into (13),
t t
EYi($)? =E(MZ, 4)? +2 / / E(M2,c#18)(MP, Uy o1 8)drds

—2 f B{M®, 416) (M2, Vs o$)ds,

but
[ 02 e = (03 8) — (2, 9),
hence
(15) EY:(¢) = E(M£, ¢)? — 2/0t E(MZ,A19)(MZ, ¢)ds.
From (12)'and (15) we find

t
E(ME, 4)? = E(NG,4)? + /0 ENS, Vs F (4, 8))ds
t
12 / E(M®, 414)(M?, ¢)ds,
[1]

and by polarization we obtain the equation
¢
E(MP,8)(ME,9) = BV, 83, 9) + [ BUNG, P (6, 9))ds

16) / (M2, o419)(ME, $) + E(MZ2, §)(MZ, A1 )]ds.
Tt can be verified that the solution of (16) is given by
E(M{, ¢)(Mi', $) = E(Ng, Usd)(Ng, Usyp)
a7 + /0 BN, VP (s b, U o)) do
(Note that

2 B(Mg, W) (M, ) = B, Usch19) (M5, Us)

+ E(Mgr rut¢)<Mg: rlltaqllﬁ),
and

%E(Ng,qzsp(mt_,¢,rut~,¢)) = E(Ng, Vs F(Ut—sc#16, Ut—sP))
+ E(N§, Vs F(Ut— ¢, Ut—sH19)).)
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Finally, from (14) and (17) we obtain
E(Mg,¢)(M{, ) = E(NS:,%@(NS,WW)
(18) +/0 E(N§,V,F(Us—r, Us—pp))dr, s<0t,
and by (9) we have
Cov((My, ), (M, 4)) = Cov((Ng,Us8), (NG, 1))
(19) + j{, t E(NE, YV F(Us—rd, Us—rp))dr, s <t

For N§ = Poisson random field with intensity v on B, from (9) and (18) we
have

(20) E(M{,¢) = 7‘/BQLt¢(z)d:c,
Cov((M?, ), (MZ, ) = ~ /B (1208 (2)) (Us9(2))dz
21 +1/0 /B(I/,-F("Lls_,qS,"Ltt_,i/))(a:)dzdr, s <t.

Now we compute the mean and the covariance of M?. If N§ = 65 (asingle
initial particle at z) and M is denoted by M7 in this case, then (18) becomes

E(M7,$)(MF, ) = (Us$(2)) (Tt (2))

8
@2) + / VyF(Us—rd, Us_r9)(z)dr, s <t.
0
The random measure Mtb can be written as Mtb = ??—_1 Mtz_" 0 where

{(z;, 8;) }; are the points of the immigration Poisson random field on {(z, s) €
C|s < t} with intensity 8. Hence

Cov((M?, 8), (MP, ¥)) = B /0 /C E(M?_., $){MF_,, p)dadr, s <1,
and substituting (22) we have
Cov((M?, 4), (MP,9)) = B /0 fa (o (=) (9= e

s ps—r -
+ﬂ~/(; _/() ’/;7 (V“F(le—r—u@ (th—r—uiﬁ)(z)dxdudr,
(23) § <t.
Similarly, from (9) we get
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13
(24) E(M},¢) =5 j{) jl; Us—p(z)dzdr.

Finally, (20) and (24) give (1), (21) and (23) give (2), and the proof is fin-
ished.

The laws of large numbers and the fluctuation limits depend on the limits
of the means and covariances under each rescaling, which are given in the
next lemma.

LEMMA (2).

25)  lim E1EMY 8y = B(M;, ¢) (given by (1),

K xew (6,45, 9) = Jim Cov (X5, 9), (x{VF, )
(26) . =X ( ’¢st:¢') (glven by (2»)
lim K~2E(MIVK 4) = yetrt f #(z)dz
K—oo B
£
@7 4 Betrt f e~Air f ¢(z)dzdr,
[t} a,

K x@ (8 6it,9) = hm Cov (XK 4, (x| XK gy
(A2—2A1)s _ 1
= "‘/eAl(s—}-t)[l +V{(mg — 2my + 1)—6—;1-:2—_—2?—] /é é(z)¢(z)dz
elAz—241)(s—r) _
Ag — 24, ]

+ BeAr(stt) j[s —2T LV (mg — 2my + 1)
(28) j[ (z)P(z)dzdr, s <t,

(the case Ay = 24y is included),

t
29) lim K-¢B(MEE g) = yo¥ot ‘3¢¢(x)dz+ﬂf oVas j[ 7 6(2)deds,
K—o B 0 Q

Ky (o 45t,8) = Jim Cov ((XIHF, g), (X[, )

= 4V (mg — 1) f jf VT, (VU T, ) (7 M T,_ ) (5)dudr
0 /B

+15V(m2‘ _ 1) J/‘Sj{s—rj[ eVbu(:,u((e'Va(s——r~u)C7&_r_u¢)
0 J0 Q

(eVel=r=¥)7,_._.¥))(z)dzdudr,
(30) s <t.
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Proof . (25) and (26) are obvious. The proofs of (27)-(30) depend on the self-
similarity of the symmetric stable process with exponent a € (0,2], which
implies the following scaling properties of 7; and A,: denoting ¢¥(z) =
#(z/K), = € R%, we have

(31) Te¢% = (Ty/xa9), Aog¥ = $)¥.

K« xa A
Introducing the space and the space-time rescalings into (1) and (2), and
using (31), the limits (27)-(29) are obtained in a straightforward way.

Proofs of Theorems (1) and (2). Having the results of Lemma 2, the proofs
of Theorems 1 and 2 can be done by the same techniques used in [8,9,18]. We-
will only make some comments.

The proof of Theorem 1 follows directly from (25), (27), (29), and the fact

that (26), (28), (30) imply that Var(M V'K ¢) = O(K), Var(MP'K ¢) =

O(Kd)’ Var(M, () ' 9) = 0(Kd+a), respectively, and therefore
K~ *Vag(M, t(l)K,.,;) 0, K-2Var(MP ¢) — 0, and K-24Var(MK )

— 0 (since a < d).
The convergence proofs in Theorem 2 consist in showing weak convergence
of the finite-dimensional distributions and tightness for each rescaling. The

condition m3 < oo (or sup mi < oo) is used for the convergence of X (z)tK
K>1

and XB)K _ The limits X(1), X(2), X(3) are 5'(R%)-valued continuous, cen-
tered, Gaussian processes whose covariance functionals & x) K x2), K x3
are given by (26), (28), (30), respectively. We observe that these covariances
satisfy

Kxw (s, 6:t,9) = K xa (s, 658, Us—s¥), 8 <,
K x (8, 8;8,9) = K x (s, 838,641 07y), 5 <,
Ky (8,8t 9) = K xs (s, $;8,6V =0T, 9) s <t
This implies that X(1), X(2), x(3) are Markovian, and the generalized Lan-

gevin equations which govern them are derived by direct application of Theo-
rem 4.1 in [5] (or Theorem 3.6 in [1] in the case a = 2).
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