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A NEW PROOF THAT THE FIRST COHOMOTOPY GROUP
OF A UNICOHERENT SPACE IS TRIVIAL

By JouN H. V. HUNT
1. Introduction

The first cohomotopy group of a topological space is defined as follows. The
unit circle in the complex plane is a topological group under the multiplication
of complex numbers. The set F(X) of all mappings of X into S! inherits the
structure of an Abelian group from S'. The set H(X) of all homotopically
constant mappings of X into S! is a subgroup of F(X). The first cohomotopy
group of X is the quotient group

II'(X) = F(X)/H(X)

(p45 of [24]; pp. 61, 62 of [26](1) ). An element f of F(X) belongs to H(X) if
and only if it has a lifting - that is, a real-valued mapping ¢ defined on X such
that

f(z) =ei¢(z), z e X.

(theorem 1 in [7] (see footnote (3) below); theorem (6.2), p.226 of [27]; corol-
lary to theorem 7.3 in [26]). By virtue of this equivalence, the most effective
way of proving the separation properties of the plane by its subsets is through
the use of the first cohomotopy group. This was first done by Eilenberg in [7],
the first two parts of which formed his doctoral thesis. Many of the results in
[7] appear in [5], [19], [20], [26], [27].
A connected space X is said to be unicoherent if, whenever M, N are connec-
ted closed sets such that X = MUN, MnNN is connected. It is well-known that
the unicoherence of a connected locally connected space is equivalent to any
one of the following separation properties of the space by its closed subsets:
(1.1) if A, B are disjoint closed sets and 4 U B separates X, then so does
Aor B,

(1.2) if A, B are disjoint closed sets and A U B separates p, ¢ in X, then so
does A or B,

(1.3) if Aisa closed set which separates X, then so does some component
Bof A,

(1.4) if Ais a closed set which separates p, ¢ in X, then so does some com-
ponent B of A.

These are the so-called Phragmen-Brouwer properties(2), which are very
useful in plane topology.

(1) The notation H(X) is used in [26], because, for a compact Hausdorff space X, the first Cech
cohomology group of X and the first cohomotopy group of X coincide.

(2) See Us, Uy in [17], LT, p.47 of [29], properties (v), (vi) in theorem 1 of [25], and properties
(i), (iii) in theorem 2 of [14]. See [28], [29], [11], [12] for nomenclature.
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A fundamental result in Eilenberg’s treatment of plane topology in [7] is
that, for a connected locally connected metric space X, o necessary and suffi-
cient condition that X be unicoherent is that TI'(X) = 0B). The sufficiency of
the condition that TI'(X} = 0 is easily seen by making use of the metric(4)
(theorem 2 of [7]; 25.2.1 of [6]). The purpose of this note is to give a new
proof of the necessity of the condition that IT'(X) = 0, using a well-known
characterization of unicoherthe frontiers of connected open sets in Stone [25]
(proposition 2.1 below). It is considerably simpler than both Eilenberg’s orig-
inal proof (theorem 3 of [7]) and Cech’s proof (25.2.2 of [5]),(5) which as far
as the author is aware are the only ones that have been published, in that the
open covering of X involved contains a unique simple chain between any pair
of points in X.

A course in plane topology using Eilenberg’s methods makes a good intro-
duction to algebraic topology, and it was used for this purpose by both Cech
and Wall in teaching students in Prague and Cambridge, respectively (see
prefaces to [5], [26]). However, in using the first cohomotopy group to prove
the main separation properties of the plane by its compact subsets, culmi-
nating in Eilenberg’s proof of the Alexander duality theorem in the plane,
Wall nowhere in [26] makes mention of the above result. The proof below can
be easily understood in the classroom (the open covering is easy to depict on
the blackboard - its nerve is an acyclic ‘graph’), and it is hoped that it will
contribute to making the result and the Phragmen-Brouwer properties of a
unicoherent space more widely recognized as an integral part of a course in
plane topology, as they are not as commonly known to topologists and complex
analysts as they should be.

2. The Proof

There are several characterizations of unicoherence in terms of open sets,
some of which are difficult to prove (e.g., theorem 3 of [25]; the theorem of
[13]). The one that we need, namely theorem 1(i), {iv) of [25], is easily proved
(i.e, it is a student exercise to prove it directly, without passing through the
cycle of statements in theorem 1 of [25]):

PROPOSITION (2.1). A connected locally connected space X is unicoherent if
and only if, for each pair of connected open sets G, H such that (FrG)N(FrH) =
8, GnN H is connected.

We shall also frequently use the following obvious fact about locally connected
spaces:

(3) A space X is said to have property (b) in [7] if every mapping of X into S has a lifting. This
is equivalent to saying that TI* (X} = 0 (see above).

(4) If X is a connected normal space, the same inference can be drawn by using Tietze’s extension
theorem for real-valued mappings (exercise 2(d) with n = 1, p.82 of [26]).

(5) Although all the spaces in [7] and [5] are assumed to be metric spaces, the metric is not used
in either of these proofs. (It is also not used in the proof of theorem 1 of [7]).
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PROPOSITION (2.2). If H is o union of components of an open set G in a
locally connected space X, then FrH C X — G.

THEOREM (2.3). If X is a connected locally connected unicoherent space, then
nm(x) =o.
Proof . We denote the exponential mapping by

exp: R — 81,
t

t— e

and we let I, J be two open arcs which cover S! such that 1€ I — J.

In order to show that IT!(X) = 0, we show that every mapping from X into
S has alifting. Thus let f : X — S! be a mappingandlet U = f~1(I), V =
f71(J). Since X is locally connected, K = {U;}; U{V;}, is an open covering of
X, where {U;};, {V;}; are the collections of components of U, V, respectively.
Select zg € X, and let W, be the set of all z € X such that there is a simple
chain in K from zg to z of length at most n, for n = 1,2,3,... . Then X is
expressible as the union of the increasing sequence

WicWecWscC...CWoCWpprC...

of connected open sets (theorem (3.4) of [9]). We construct a lifting 6 of f
by inductively constructing a lifting 6, of f|W, such that 0,,41|W,, = 0,, for
n=123,....

Since Wy is the component of U that contains =g, FriW; ¢ X — U by (2.2);
i, FrW; c V. Let C be the component of exp~!(I) that contains 0. Since
exp|C : C — I is a homeomorphism,

01 = (exp|C) Lo (f|Wy) : Wy - R

is a lifting of f|W7y.
Now let {V},}; be the subcollection of {V;}; consisting of all components of
V which meet FrW;. Clearly

W =Wwiul|JVy,
l

and also FriWy C U. To see this observe that FriW; C Fr(lJ,V},), because
Frwy c U, V},); thus FrWy C U, because Fr(lJ,V;,) € X —V by (2.2). In
order to construct the lifting of f|W3, observe that (FrV}) N (Friwy) = 0,
because FrV; C X —V by (2.2) and FrW; C V. Thus V; "W is connected by
(2.1), because Vj;, W1 are connected open sets. Let D; denote the component
of exp~1(J) that contains 61 (V;, N W;). Since expa homeomorphism,

Y1 = (exp|Dy) "o (f]V3) 1V, — R
is a lifting of f |Vj and it coincides with 6; on Vj; N Wy. Since this holds for
all [,

1’
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02 =010 o : W2 - R
i

is a well-defined lifting of f|Ws.

We carry out the next step of the induction, which is the same as the pre-
vious one, except for the interchange of letting.

Let {U;, }« be the subcollection of {U;}; consisting of all the components of
U which meet FriWy. Clearly

W3 :W2UUUik’
k

and also FrWs C V. To see this observe that FriWs c Fr({J, U;,), because
Frvy € U, Us,; thus FrWs C V, because Fr(|J, U;,) € X — U by (2.2). In
order to construct the lifting of f|W3, observe that (FrU;, ) N (FrWz) = 0, be-
cause FrU;, € X — U by (2.2) and FrWy C U. Thus U;, NW3 is connected by
(2.1), because U;,, Wy are connected open sets. Let Cy be the component of
exp~!(I) that contains 82(U;, NWs). Since exp|Cy : Cp — I is a homeomor-
phism,

$r = (ezp|Cy) ' o (fIU;,) : Uy, = R
is a lifting of f|U;, , and it coincides with 8 on U;, NW3. Since this holds for £,
53292UU¢;€:W3——vR
k

is a well-defined lifting of f|Ws.
Continuing in this way, we obtain a lifting 8, : W, — R of f|W, such that

0r+1|Wn =0,, forn =1,2,8.... Since, as previcusly mentioned,
oo
X =] W,
n=1
oo
6= U 6,: X - R
n=1
is a well-defined lifting of f. Q.ED.

3. Comments on the proofs of Eilenberg and Cech

We outline the proofs of the above theorem given by Eilenberg in [7] and
Cech in [5] in order to comment on the minimum number of open arcs re-
quired to cover S! in each case. We begin with the antecedents in [2] of Ei-
lenberg’s proof, changing the original notation in [2], [7], [5] only when it is
necessary for the purposes of explanation, as indicated in the footnotes below.
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Let X be a guasi-Peano space, as defined by Borsuk in {2] (i.e., a connsc

ted locally connected metric space which is an absolute Gy); it is comp}eieijy

metrizable and locally arcwise connected, but not necessarily locally compa

For a mapping f : X — S and a simple arc L in X with initial point ¢ a
terminal point b, let

I(f.L) = $(b) - ¢(a),

where ¢ is a lifting of f|L{6}, Borsuk showed in theorem 34 of [2] that, for
a quasi-Peano space X, a necessary and sufficient condition that X be uni-
coherent is that I'(f,L) = I%(f, L"), for any mapping f : X — S* and any
pair of simple arcs L, L' with the same initial point o and the same terminal
point b. The proof of the 7153\,@5‘51?,_‘}7 of this condition consists of showing that
I{f,Q) = 0, for any mapping f : X — S' and any oriented simple closed curve
1 in X. This is agmmphshed by supposing that I{f, ) # 0 and then per-
forming a sequence of modi{ fy, 01}, (f2, 02}, - -, {fn, n) (7) on the pair {f, {1}
such that I(f,,0,) # 0, forr = 1,2,...,n, until at the last stage it can be seen
that I{ fn, Qn} # 0 is contradictory. The sufficiency of the condition is proved
usmg the notion of a retract, which was introduced by Borsuk in his doctoral
thesis (see [1]). ‘

Three years after the appearance of [2], the first cohomotopy group was
introduced by Bruschlinsky in [4] (sometimes it is called the ‘Bruschlinsky’
group, as in [10]). Two years later Eilenberg’s doctoral thesis appeared in [
Both Eilenberg and Borsuk were students of Kuratowsm {zee p. 134 of [21]
but Borsuk was Eilenberg’s “ ‘guru’ and mspwaman in the words of {8].

For each pair of complex numbers z1, z; € §! such t}“ — 23| < 2, denote
by (21, z2] the unique number in the interval [0, x) such that

=71
7.
Dy

.o

t21,22] — ../

4 22/%%.

In Eilenberg’s proof - the proof of theorem 3 of [7] - §! is covered with a
Simple circular chain of open arcs Ly, Ls, ..., Ly (e, L;NL; # § if and only if
li—7] < 1, the indices being r@duceﬁ mod n), whose closures aiso form a simple
circular chain, such that diam{Z;) < 1/2, forv = 1,2,... ,n. Let f : X — Si
be a mapping of the connected Ir aﬂ y connected u,mpohez em space X into §°
and let K denote the open covering of X consisting of all the components Gf
all the sets f~1(L;), fom‘ = 1 2,...,n. Let ', 2" € X and let Ay, Ao, ...
be a chain in K from z' to 2" Splect apointz; € A;, forv = 1,2,...,p, and
consider the number

(6) Notice however, that the notlon of a hftmg is nowhere made explicit in [2]. Thus an ad hoc
definition of the number IY(F, L} is given in [2].

{7 The subscrlpts used here do not coincide with those used in [2].

j;%

g
1 R i,




10 JOHN H. V HUNT

p—1
I(«!,2") = (&), F(z0)] + D_1f (=), Fmivn)] + [F(2p), £(=")].

i=1

It is easily seen that I(z',z") does not depend on the choice of the points
Ty,%g,...,Tp. Lilenberg’s proof consists of showing that I(z', ") does not de-
pend on the choice of the chain Ay, Az, ..., Ap. This is equivalent to showing
that, if z’ = 2, then I(z', 2"} = 0, whatever chain (now a circular chain) is
selected. The defining property of unicoherence - rather than any property
equivalent to it - is used to prove this. A lifting of f may now be defined using
the function I{z', z").

Notice that Eilenberg’s proof depends on L; U L; being contained in an
open semicircle of §1, for ;7 = 1,2,..., n (the indices being reduced mod n).
This requires the covering of S' to have at least five open arcs. Notice also,
however, that Eilenberg’s entire proof can in fact be carried out with a cov-
ering of S by five open arcs having diameters < /2, for example.

Cech’s proof of the theorem was found among his posthumous papers (see
preface to [5]). In this proof - the proof of theorem 25.2.2 of [5] - S1 is covered
with the four semicircular open arcs contained in two consecutive quadrants
in the complex plane. Let f : X — S! be a mapping from the connected local-
ly connected(®) unicoherent space X into St. The inverse images of the four
open arcs under f are denoted by @1, @9, @3, @4. Let ©; be the collection of all
components of @J;, and let K = Uf: lQ,-.(g) It is first shown that every simple
circular chain V,V3,...,Vy, in the open covering K of X is in fact contained
in some K —©;.(19) This is done by using one of the Phragmen-Brouwer prop-
erties, namely (1.4) above.(1!) Let

v = (exp|(—w, W))_l c5t - {~1} = (==, );

thus, if V. e Kand y',y" € V, then v(f(y")/f(y')) is defined, because f(y') +
f(y") # 0. Let V,Vs,...,V,, be a circular chain in K, and let y, € V, NV, 11
(the indices being reduced mod m). Using the fact any simple circular chain

(8} There is a misprint in the hypothesis of 25.2.2 of [5]: for “locally compact” read “locally
connected”.

(9) This notation is not used in [5]. In this outline we have accordingly suppressed mention of
the set M and the sets M, for A = 1,2, 3,4, used in [5]; thus ¥, here coincides with V{z,),
forz, € M, in [5].

(10) This part of Cech’s argument can be carried out to obtain the same conclusion if §? is covered

by any three open arcs, no two of which cover 8, instead of the four semicircular open arcs

defined here.

(11) Notice that, although 25.1.2 of [5] is quoted in the proof of 25.2.2, it is only used to deduce
that a connected subset S of B[V {z,)] separates z., z; in X (niotation of [5]), and (1.4) above
may also be used to deduce this.
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is contained in some K — ¢, it is shown that

m—

o(f(ym)/ f(y1)) E fyr+1/1(yr))-

A point a € X and a real number a are now chosen such that f(a) = &'®,
For each point y € X, there is a simple chain Vy, Vs, ..., V,, in K from a to
y. Let ¢ = yo,¥1,%2,- -+, Ym—1, ym = ¥ be a sequence of points such that y, &
Ve NVyqq, forr=1,2,...,m — 1, and put

m

Ply) =+ Z v(f(yr)/ fyr-1))-

r=1

Notice that Cech’s proof can in fact be carried out if S' is covered with
just three open arcs each one of which is contained in an open semicircle (see
footnote (7).

In neither of the proofs of Eilenberg or Cech is there any possibility that the
open covering K of X will in general contain a unique simple chain between
any two points in X, as is the case with our open covering K of X. This is
the feature of our proof that makes it readily underarises from basing it on
proposition (2.1) above, by virtue of which we are able to use just fwo open
arcs to cover S1. No greater number will do.

4. Eilenberg’s “very simple” proof for a Peano continuum

Borsuk strengthened theorem 34 of [2] for a Peano continuum (i.e., a con-
nected locally connected compact metric space) in [2]. Namely, he showed in
theorem 38 of [2] that a necessary and sufficient condition for a Peano conti-
nuum X to be unicoherent is that the function space ()%, with the supre-
mum metric, be connected. Eilenberg obtained in [6] what he called a “very
simple” proof of the necessity of this condition (see pp. 292, 295 of [6]). This
proof uses results in continua theory in the literature of the 1920°s and 1930’s,
namely [2], [14], [17], [20], [21], which are no longer contemporary sources.
Whyburn gives the same proof in theorem (7.4), p.228 of [25](12), but omits
the reasons and references for some of the main statements in the argument.
We conclude by giving this earlier proof of Eilenberg in order to point out its
analogy with our proof above.

Let X be a unicoherent Peano continuum and let f : X — S! be a non-
constant mapping. Let Y be the quotient space formed from the decomposition

(12) In theorem(7.4), p.228 of [27], Whyburn uses Eilenberg’s argument to show that, for a Peano
continuum X, a necessary and sufficient condition that X be unicoherent is that X have
property (b) (see footnote (3) above). This condition is equivalent to saying that ($1)% is
connected, because X is compact (theorem 9 of [7]; corollary (6.11), p.226 of [27]). Notice
that a different proof of this theorem (for a Peano continuum) is given by Kuratowski in
theorem 3, p.438 of [20].
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of X into the components of the inverse point-images of f, and consider ¥ as
a Peano continuum (i.e., endow Y with some metric). Let ¢ : X — Y be the
quotient mapping and let  : ¥ — §! be the unique mapping such that the
diagram

>
un
=

commutes. Then g is monotone (definition ((4.1), p. 127 of [27}), 4 is light (defi-
nition (4.4), p. 130 of [27]), and f = hogis the monotone-light factorization of
F((4.1),pp. 141-143 of {27]; theorem 1 of [6], where the monotone-light factor-
ization was established for the first time). Since the inverse point-images of
b are O-dimensional and § is 1-dimenl-dimensional (theorem V1.7 of [16]).
Since g is monotone and X is unicoherent, sois Y (consequence of (2.2), p. 138
of [27] or theorem 9, p. 131 of [20]). As a 1-dimensional unicoherent Peano
continuum, Y is a dendrite (corollary 8, p. 442 of [20](13); definition on p.300
of [20] or p.88 of [27]). Since there is a unique arc between any two pointsin Y
((1.2), p.89 of [271), h has a lifting. Thus f also has a lifting, and consequently
f is homotopically constant. This shows that (§')¥ is connected.

The analogy that we wish to point out between this proof and ours is that
in each case the lifting is performed through the use of an acyclic construct:
in Eilenberg’s case a dendrite (i.e., an acyclic Peano continuum) and in ours
an open covering whose nerve is an acyclic ‘graph’. Our proof may thus be
viewed as a return to using this “very simple” idea of Eilenberg in [6], which
predates [7], in the absence of metrizability and compactness.

CENTRO DE INVESTIGACION ¥ DE ESTUDIOS AVANZADOS DEL IPN
MEexico, D. F,, MEXico

UNIVERSITY OF SASKATCHEWAN
SASKATOON, CANADA

UNIVERSITY OF THE WITWATERSRAND
JOHANNESBURG, SOUTH AFRICA

(13) This can quite easily be proved as a student exercige, without recourse to Whyburn’s theory
of cyclic elements, which is used in the proof in [20].
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