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A NEW INVERSION FORMULA AND ABELIAN THEOREMS 
FOR A GENERALIZED HANKEL TRANSFORM 

BY JORGE J. BETANCOR 

I. Introduction 

In [1], Agarwal defined a generalization of the well-known Hankel trans­
formation 

(1) h>.(f(x))(y) = fo00 yxyJ>.(xy)f(x)dx 

by means of the integral equation 

(2) F(y) = h>.,µ(/(x))(y) = 2->.1 00 (xy)>.+(1/ 2)Jf ( x~ 2
) f(x)dx, 

where Jf denotes the Bessel-Wright function (see [14]) defined by the series 

J µ z _ ~ (-z)r 
>. ( ) - ~ r!I'(l +). + µr), µ > 0 and ). > -1 

Notice that whenµ = 1, (2) reduces to (1). There is an inversion formula 
for the h>.,µ transformation, given also by Agarwal [1]. He proved that if F(y) 
is defined by (2), then 

!( ) _ 22---2-+>. ( )->.-2+2 Jl µ X Y F( )d 2 .>. 11noo s ~ / ((22)1/µ) 
X - I' I' µ 0 xy I' -1+(1+>.)/µ -4- y y 

provided that ). > -1 and µ > 0. 
The main result of this paper is a new inversion formula for the generali­

zed Hankel transformation h>.,µ-We also establish abelian theorems for the 
h>.,µ transforms which incorporate abelian theorems for the aforesaid Han­
kel transformation (1) as special cases (see [17]). We note that the Bessel­
Wright function is a very specialized case of Fox's function (see [6]). For the 
H-transformation some results similar to the ones shown here for the h>.,µ 
transformation have been proved in the last years by several authors (see [3], 
[4] [5] and [7]). 

Throughout this paper the asymptotic behaviours of the function Jf will 
be used. Wright [15] proved that 

(3) Jf (x) ~ 0 [x-k( ½+>.) exp ( (;t cos (1rk)) j , as x - oo 

where k = µil and 
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(4) Jf (x) ~ 0(1), as x -, 0 

provided that >. > -½ and µ. > 0. 
Moreover, the following formula (see [8]) will be employed 

(5) µ x(µ-">.)f?i Jµ(x) - Jµ, (x) ). > 0 and " > 0. ). - >.-1 . , ,,. 

2, An inversion formula for the h>.,µ, transformation 

In this section we give an operational inversion formula for the h;i.,µ trans­
formation following a procedure similar to the one used by Nasim [10]. 

The space Eo of functions, introduced in [13], consists of all functions E( s) 
of the form 

00
( 

8 ) 1 8 \ E(s) =e°s IJ 1- ak exp la.1c}, 
k=l 

00 

where ak and bare real and finite, 2::a;2 < oo ands is a complex number. 
k==l 

The next result due to Widder [13], will be useful in the sequel. 

LEMMA (1). If k( x ), 0 < x < oo, is a complex valued function and 

i) E(s) = (Jo"° k(x)xs--ldx)- 1 is in Eo, 

ii) efi(t) is bounded and continuous in (0, co), and 

iii) f(x) = Jo"° tk(f)ip(t)dt, x > 0 

then for almost all x 

E(iJ)f(x) = ¢(x) 

where{}= -xfx. Here E(tl) must be understood as in [10]. o 

Interesting remarks about the algebra ofoperators involving{} can be found 
in papers of Nasim (10] and Widder [13], among others. 

For the h;.,µ, transformation we have the following inversion theorem. 

THEOREM (1). Let,\ > -½ and O < µ:::; 1. If f(x) is a bounded continuous 
and ahsolutely integrable function on (0, oo) and .F(y) is the h;.,,.,,-transform of 
f (x), then for almost x E (0, oo) 

E(O)R(x) = f(x) 

where E(O) = r (½ + ¾) r(X~~+~) is understood as in [10] and 
2 2 4 
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R(x) = 2(3/2)+>. r;;o (xy)->.-(3/2)+2(1+-\)/µ exp (-(xy)2f µ) F(y)dy. 
r(½+¾)µJo 

Proof: According to the asymptotic expressions (3) and ( 4) for the function 

Jf we can deduce that z,\+(l/ 2)Jf ( ¾·} is bounded. Hence F(y) is a boun­

ded and continuous function on (0, oo) and R(x) is well defined for every 
XE (0, oo). 

By applying Fubini's theorem, we get 

(6) R(x) = 2(3/2) + A {''° (xy)->.-(3/2)+2(1+>.)/µ exp (-(xy)2f µ) F(y)dy 
r(A+~'lµlo 

2 4J 
2(3/2)+-\ 100 

= ( \ /~)& r ½+¾)µ o 

roo , ( , t2y2 
Jo (xy)-11-(3/2)+2(1+>.J/µ exp -(xy)2fµ) (ty).H(l/2)Jf(~)dy 

By virtue of the following transform formula 

h>.,µ (x-.:\-(3/2)+2(1+>.)/µ exp (-x2fµ)) (y) = µ2->.-li/+{1/2) exp ( _Y:), 

from (6) we can infer 

2(3/2)-1 looo 
R(x) = --~x->--( 3/ 2) f(tWl.+(l/'2) exp (-t2 /(4x 2)) dt 

r(½+¾) o 

or, in other words, 

R(x) = £00 !K (~) f(t)dt, 
., o t t 

where K(x) = ;t}~¾) x->.-( 3/ 2) exp (-1/(4x 2)). Ifwe define 

E(s)=(l00 K(x)x 0 - 1dx)-1=r\1~+!\} ( •• ") 
0 2 4 r >- s+.) :I - 2" 4 

then E( s) E Eo. Therefore, according to Lemma 1, we can conclude that: 

E(vl)R(x) = f(x) almost all x E (0, oo) 

Here, E(vl) must be understood as in (10]. • 



74 JORGE J. BETANCOR 

3. Abelian theorems for the h).,µ•transformation 

We now establish initial and final value theorems for the h).,µ transforma­
tions. Throughout this section F(y) denotes the h>.,µ transform of J(x) and 

r(2l.-!1+~) 3 
H(.>.. ,,. .,) = 2-n+(1/2) 2 2 4 for "' < .X + ;; .. ,,.,,,., ( (>- 3 rt))' ., "' r 1 +.x-µ 2+4-2 

THEOREM (2). (initial value theorem): Let O < µ '.S 1 and 1 < r, < >. + l If 
f(x) is an ahsolutely integrahle function on every interval (X, oo) (X > 0) and 
lim xri f(x) = a, then 
z-+0 

Proof: By virtue of the asymptotic behaviours (3) and (4) it follows that 

for a certain C positive constant. Hence, since z"I /(x) is bounded near the 
origin f'/ < >.+!and /(x) is absolutely integrable on (X, oo) with X > O, the 
function F(y) is well defined for every y > 0. 

From [9, p.29], we have 

(7) f z>.-r,+(1/2) Jµ ~ dz= 2-1'1+(1/2) 2 2 4 . 
oo ( 2) r(2l._ri+~) 

lo >. 4 r(1+-\-µ(}+¾-t)) 

From (7) we can deduce 

IY1-flF(y)- aH(>i,µ,11)1 

(8) ::; 2->. ( sup lf(x)xl'I - al f 00 lz>.-r,+(1/ 2)Jf (z2
) I dz 

D<z<X k 4 

+yl-'7 loo l(xy)>.-11+(1/2)Jf ( x2:2) II J(x) - ax-171 dx) 
for every X > 0. 

Since 1 < 'fJ < ). +!and O < µ :s; 1, the first integral on the right hand side 
of (8) is convergent. Therefore, given an e > 0, the first term on the right hand 
side of (8), which is independent of y, can be made less than J by choosing X 

small enough. Moreover zA+(l/ 2) Jf ( Z.:) is bounded on z E (0, oo) for A > -½ 
and O < µ :s; 1, and f(x) - ax- 17 is absolutely integrable on (X, oo) provided 
that 17 > 1. Hence keeping X fixed the second term on the right hand side of 
(8) can be made less than ! for all sufficiently large y. 
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The last theorem can be generalized as follows: 

THEOREM (3). Let O < µ, S 1 and 1 < rJ < ,\ + ~. Let f(t), 0 < t < co, be a 
complex valued p-times continuously differentiable function with p ~ 1, such 
that 

x2(.Hp+l)/µ-(3/2)->.-p ( xl-(2/ µ) d~ y) ( x>.+(3/2)-2(.Hl)/ µ f (x)) 

is absolutely integrable over (X, oo) for all X > 0. If 

i) !~ x2(,Hr)/µ (xl-(2/µ) ixr-1 (xH(3/2)-2(.Hl)/µJ(x)) = O, 

for r = 1, ... , p, 

ii) x2(.\+r)/µ-(2(.\+r)+l)/(µ+1) exp (dx2/(µ+1)). 

(xl-(2/µ) ddx) r-1 ( x>.+(3/2)-2(>.+i)/µ f(x)) 

is bounded over the interval (X, oo), for certain d ER, X > 0 and r = 1, ... , p, 
when O < µ < 1; and 

(
·1 d )r-1 lim x.Hr-(1/2) - - (x->.-(1/2) f (x)) = 0, 

x->oo x dx 
for r = 1, ... , p, 

iii) lim x?7+2(>.+p+1)/ µ-(3/2)->. (xl-(2/ 1-1) A.)P (x>.+(3/2)-2(>.+1)/µ f(x)) = a, 
z-o ~ 

then 

lim yl- 17 F(y) = a(-µ)P H(>. + p, µ, tJ + p). 
IJ->00 

Proof: According to (5) we can write 

h;.,µ{f(x)}(y) = r>.-lµyH(l/2) 

{°o x.\+(3/2)-2(.Hl)/µ~ (x2(Hl)/µ,Jµ (x2y2)) f(x)dx 
lo dx Hl 4 

Integrating by parts, 

h>. {/(x)}(y) = lim 2->--lwJi+(1/2) (x>-+(3/2)Jµ, (x2y2) /(x)]~ 
,µ, a->O >.+ l 4 

b-+oo 

-ib x2(Hl)/µJf+l (x2:2) :x (:/•+(3/2)-2(.\+l)/µ/(x)) dx) 
We can repeat the process to obtain 
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h>,. {f(x)}(y) = lim r·\,H(l/:i) (~ (!!_) r(-1)'"- 1x2(Hr)/µJµ.,_ (x2y2
) 

,µ, a->O ~ , 2 >,. ' r 4 
1,_, 00 r=l 

( 
d )r-1 b 

xl-(2/ µ) dx ( x"-+(3/2)-2(.ll+l)/ µ f (x)) L + (-l)P ( ~ r 
lb x2(,Hp+l)/µ-l (xl-(2/µ) d~)P (x>,.+(3/2)-2(>.+l)/µ/(x)) Jf+p (x2:2) dx) 

Hence in virtue of the hypotheses i) and ii) and the asymptotic formulae 
(3) and (4), we get 

h.l\. {f(x)}(y) = (-!!:.)Ph>.+ {x2(>.+p+l)/µ-(3/2)-A-p 
,µ y p,µ 

(xl-(2/µ) :x)P (x.H(3/2}-2(>-+1)/µ/(x))} (y) 

for large enough values of y. 

To finish the proof of this theorem it is sufficient to use the Theorem 2. • 

THEOREM (4). (final value theorem) Let O < µ ::; 1 and 1 < r; < >. + !-If 
f(x) is a measurable function on O < x < oo such that 

i) f (x)x>.+(l/Z) is absolutely integrable on every interval (0, X) with X > 0, 

and 

ii) lim x 17 f (x) = a, 
x-->oo ,. 

then lim y1-YIF(y) = aH(>.,µ,,r;). 
y->O 

Proof: The integral which defines F(y) is absolutely convergent fo:r evecy 
y > 0, as in Theorem 2. 

To continue, by taking into account that the function Jf (z) is bounded on 
z E (0, oo), provided that>.> -½ and O < µ. :5 1 and according to (7), we can 
write 

Jy1- 11F(y)- aH(>.,µ,,11)/ 

::; 2->,. (:~f lf(x)x'1 - aj y fxoo l(xy)>,.-l'/+(l/2)Jf ( x24y2) I dx 

+yl-'1 fox I (xy)'l\-11+(1/2) Jf ( x2:2) II f (x) - ax-'1 I dx) 

(9) ::; 2->. fo00 lz>.+(1/ 2lJf ( z:) I dz :~r lf(x)x'1 - al 
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for every X > 0 and a suitable C > 0. Both integrals on (9) are convergent and 
the first term is independent of y. Therefore, given an e: > 0, the first term can 
be made less than ! by choosing X sufficiently large. Then there will exist an 
Y > 0 such that the second term is less than ! for O < y < Y. • 

Theorem 4 can be extended by proceeding as in Theorem 3. 

THEOREM (5). Let O < µ :::; 1 and 1 < r, < ). + ~-If f (x) is a p-times 
continuously differentiable f.mction on (0, oo), p? 1, satisfying 

i) x2(Hp+l)/ µ-l (x1-( 2/µ) d~ r (x>.+(3/ 2)- 2(>.+l)/µ / (x)) is absolutely inte­

grable on (0, X), with X > 0, 

x2(Hr)/µ (xl-(2/µ)fxr-l (:i:/H(3/2)-2(>.+l)/µ/(x)) = 0, 

for r '"' 1, ... , p, 

iii) x2(Hr)/ µ-(2(>.+r)+l)/(µ+l)exp (dx2/(µ.+ 1)). 

( xl·-( 2/µ) fx) r-l (x>-+(3/ 2)- 2(>-+1)/1..1 f(x)) is bounded over the interval (X, oo), 

for certain d? 0, X > 0 and r = 1, ... ,p, when O < µ, < l; and 

lim x>-+r-(l/ 2) (! ;-) r-l (x->--(1/ 2) f(x)) = O, for r = 1, ... , P, 
x-->oo x ax 

iv) lim x11+2(.Hp+l)/µ-(3/2)-.>. ( xl-(2/µ) d )P (x>-+(3/2)-2(.Hl)/µ, f(x)) = a, 
x->oo \ ,iii 

then 

lim y1- 17 F(y) = a(-µ)P H(>. + p, µ, 11 + p). • 
y-->) 
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