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A NEW INVERSION FORMULA AND ABELIAN THEOREMS
FOR A GENERALIZED HANKEL TRANSFORM

By JORGE J. BETANCCR
1. Introduction

In [1], Agarwal defined a generalization of the well-known Hankel trans-
formation

® MW = [ VEDE ()i
by means of the integral equation
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where J f denotes the Bessel-Wright function (see [14]) defined by the series

(o)
JEy =S (A 0 and A > —1
A(z) ; rIT(L+ A+ pr)’ p >0 an >

Notice that when g = 1, (2) reduces to (1). There is an inversion formula
for the h) , transformation, given also by Agarwal [1]. He proved that if F(y)
is defined by (2), then
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provided that A > —1 and ¢ > 0.

The main result of this paper is a new inversion formula for the generali-
zed Hankel transformation k) ,. We also establish abelian theorems for the
hy,, transforms which incorporate abelian theorems for the aforesaid Han-
kel transformation (1) as special cases (see [17]). We note that the Bessel-
Wright function is a very specialized case of Fox’s function (see [6]). For the
H-transformation some results similar to the ones shown here for the &) ,
transformation have been proved in the last years by several authors (see [3],
[4] [5] and [7]).

Throughout this paper the asymptotic behaviours of the function J f will
be used. Wright [15] proved that

(3) J{(z)=0 [z‘k(%+’\) exp <%)—Ii cos (wk))] , as z— 00

1
where k = ey and
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(4) Ji(z)=0(1), as z—0

provided that A > —% and g > 0.
Moreover, the following formula (see [8]) will be employed

(5) yz(“”}‘)/"‘Jf(m) =J (z), A>0 and p>0.
2. An inversion formula for the k) , transformation

In this section we give an operational inversicn formula for the h) , trans-
formation following a procedure similar to the one used by Nasim [10].

The space Ejy of functions, introduced in [13], consists of all functions F(s)
of the form

where e and b are real and finite, Za;c“z < oo and s is a complex number.

The next result due to Widder {{cgﬁ will be useful in the sequel.
LEMMA (1). If k(z), 0 < z < oo, is @ complex valued function and
i) E(s) = ([ k(z)z*"1dz) " is in By,
it} ¢(t) is bounded and continuous in (0, co), and
i) f(z) = f3° 1k(2)4(t)dt, =z>0
then for almost all
E(8)f(=) = ¢(=)
where ¢ = —xai‘z, Here E(8) must be understood as in [10]. o

Interesting remarks about the algebra of operators involving ¢ can be found
in papers of Nasim [10] and Widder [13], among others.
For the h) , transformation we have the following inversion theorem.

THEOREM (1). Let A > —% and 0 < p < L. If f(z) is a bounded continuous
and absolutely integrable function on (0, co) and F(y) is the hy ,-transform of
f(z), then for almost z € (0, co)

where E(8) =T (% + -i%) f_@%%_f@ is understood as in [10] and
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Proof : According to the asymptotic expressions (3) and (4) for the function
J{ we can deduce that z*+(1/2)J¢ (:4—-) is bounded. Hence F(y) is a boun-

ded and continuous function on (0,00} and R(z) is well defined for every
z € (0, 00).
By applying Fubini’s theorem, we get

9(3/2) 4 A o v ia/s
(6) R(z) = W | (wy) A~ B/DHAEN b gy (“(z,yy/u) Fly)dy

3/? J4+ A j/ f

roo 2.2
J!o (xy)““?\'€3/2)+2(1+>«)/# exp {_(Iy)z/.vs) (ty}M(l/Z}jf(_t_;@i_)dy

By virtue of the following transform formula
2
b (x—k—-(3/2)+2(1+}\)/u exp (__za/,u)) (y) = #2—Au1yx+(1/z) exp (_g;_) ,

from (6) we can infer

(3/2)-1 o
R(a) = Z—sa™ 6 [T fge 0 exp (<2245 a
0

(57

o1, in other words,
1
Bi=) = jC 7% (3) 10

where K (z) =%%2—gi) z2~(3/2) exp (-1/(43?)). If we define

</K dldz _r<’\ )r(Aj“erI)

then E(s) € Ey. Therefore, according to Lemma 1, we can conclude that:
E(9)R(z) = f(z) almostall z € (0, 00)

Here, E(¢) must be understood as in [10]. ©
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3. Abelian theorems for the k) ,-transformation

We now establish initial and final value theorems for the 4, , transforma-
tions. Throughout this section F(y) denotes the k) , transform of f(z) and

r3-4+1)
I‘(1+A—p(%+§—g))’
THEOREM (2). (initial value theorem): Let0 < p < landl <y < A+ %g If

f(z) is an absolutely integrable function on every interval (X, co) (X > 0) and
lin% " f(z) = o, then
z—>

H(M, p,q) = 277(1/2) for 5 < A+ %

lim y'~"F(y) = aH(), u,n).

y—oo

Proof : By virtue of the asymptotic behaviours (3) and (4) it follows that

[Tl 0 (28 el < o [ 0 s(aiae+ [ 715 1iz)

for a certain C p051t1ve constant. Hence, since z" f(z) is bounded near the
origin 7 < A+ $ and f(z) is absolutely 1ntegrable on (X, o0) with X > 0, the
function F(y) is well defined for every y > 0.

From [9, p.29], we have

. Nor P(3-3+3)
D e e

From (7) we can deduce
ly' " F(y) — «H (A, 1, 1)
® 52”‘( sup_|1(2)a" ~al [ |2/ Ju< )

dz
0<z<X
[o.0]
+y1-nj’ (zg) - m+(1/2) g8 (x y )
X 4

dz)
for every X > 0.
Sincel<g < A+ % and 0 < g < 1, the first integral on the right hand side
of (8) is convergent. Therefore, given an & > 0, the first term on the right hand
side of (8), which is independent of y, can be made less than § by choosing X

small enough. Moreover z**(1/ 2).]“ ( ) is bounded on z € (0, co) for A > —1

and 0 < g < 1, and f(z) — az™" is absolutely integrable on (X, co) provided
that » > 1. Hence keeping X fixed the second term on the right hand side of
(8) can be made less than % for all sufficiently large y.

z) — oz 7
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The last theorem can be generalized as follows:

THEOREM (3). Let0 < p < land 1< < A+ 3. Let f(t),0 <t < oo, be a
complex valued p-times continuously differentiable function with p > 1, such
that

p
L2+ +1) [u—(3/2)-A-p (zl—(z/u) %) (/=201 1))

is absolutely integrable over (X, o0) for all X > 0. If
0 il—l.% Z2(0+r)/u (zl—(Z/u)a%)r-l (xA+(3/2)—2()«+1)/yf(z)) —0,

forr=1,..,p,

i) z2(+7) b= (2(+r)+1)/(u+1) oxp (dz2/(u+1)).

dz

(z1—(2/u) _fl_) rt (z,\+(3/2)—2(,\+1)/yf(z))

is bounded over the interval (X, co0), for certain d € R, X > 0andr = 1,...,p,
when 0 < p < 1; and

T—00 z dfC

lim g2 t7—(1/2) (l ﬁl—) i (z')‘"(l/z)f(z)) =0, for r=1,..,p,
i) il—% 12 +p+1)/u—(3/2)-2 (21_(2/”)a"i;;)p($A+(3/2)_2(A+1)/“f($)) —a,
then
Jim_ y' "F(y) = a(-p)PH(A + p, p, 1 + p).
Proof : According to (5) we can write
hau{f(2)}Hy) = 272 uy*t0/2)
/0°° z,\+(e./z>)-z(x+1)/udi (mz(,\ﬂ)/,,‘]f+1 (ziyz» )i

z

Integrating by parts,

2,2
h,\,“{f(z)}(y) — 31_1;% 2—A—1#y)‘+(1/2) (IA+(3/2)J£‘+1 (%) f(x)]z

b—oo

b 2,2 d
3 /a 2008 <I4y ) 4 (zA+(3/2)—2(A+1)/yf(x)) dz)

We can repeat the process to obtain
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3 AH1/2) 2y r=1g20r) zty?
bl S @)} (5) = lim 2 > (§) - 7. (21)

b—*oc

( (Z/p)d )r_l ($A+(3/2)“2(A+1)/#f($))]b +(~1)? ( }

A

ot
2
, p
j/;x'z(f\+p+1)/u—1 (xln(z/u)i) (x}“*(:‘/z)_z(“l)/“f( J>\+p< ) x)

dz

Hence in virtue of the hypotheses i) and ii) and the asymptotic formulae
(3) and (4), we get

by u{f(z)}y) = (_g)p Ratp,u {52(,\+p+1)/;;~(3/2)—)\—p

<$1~€2/ﬂ) ._d_)p (IA+(3I/2)_2(A+1)/;1“$)) } (v)

dz
for large enough values of y.
To finish the proof of this theorem it is sufficient to use the Theorem 2. ©

THEOREM (4). (final value theorem) Let 0 < p < lond 1 < g < A+ %. If
f(z) is @ measurable function on 0 < z < co such that

7 (:z:)x)‘*(l/ 2) is absolutely integrable on every interval (0, X} with X > 0,
and

i) mlixg} = f(z) = ¢
then 31_}3(1} yImF(y) = aH(), p,n).

Proof : The integral which defines F(y) is absolutely convergent for every

y > 0, as in Theorem 2.
To continue, by taking into account that the function J) #(2) is bounded on

€ (0, 00), provided that A > —— 2and 0 < g <1and accordmg to (7), we can
write

[T (y) ~ aBH (3, 1)
<27 (sup I7(a)e —ely [ [ -n+02¢ (1) as
>X X 4

X
(zy))‘"”'*'(l/z).]f (ﬁ%) H f(z)—az™" dz)

03 () s g e

+yt7
0

9) <2 jf
0
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+Oy*H(3/2) /X |#(z) - az™"] zA+(1/2),Jlgc)
0

for every X > 0 and asuitable C > 0. Both integrals on (9) are convergent and
the first term is independent of y. Therefore, given an ¢ > 0, the first term can
be made less than § by choosing X sufficiently large. Then there will exist an
Y > 0 such that the second term is less than § for6 <y <Y. o

Theorem 4 can be extended by proceeding as in Theorem 3.

THEOREM (5). Let 0 < p < land 1 < 5 < A+ %. If f(z) is a p-times
continuously differentiable function on (0, c0), p > 1, satisfying

D) g2(A+pt1)/u-1 (zl—(z/u)%)p (zA+(3/2)—2('\+1)/“f(z)) is absolutely inte-
groble on (0, X), with X > 0,

if) Lim g2/ (zl—(z/u)a%)"l (IA+(3/2)—2<A+1)/u i) =0,
forvr=1..p,

iii) 227/ =20+ (1) exp (de/(M-l))_

-1
(;51—(2/1—*) a%) ’ (m"+(3/2)’2(>‘+1)/“f(m)) is bounded over the interval (X, o),
forcertain d >0, X >0cendr=1,...,p, when 0 < p < 1; and

r—1
lim zAt7—(1/2) (li) (zw\-(l/z)f(z)) =0, for r=1,..,p,

Z— 00 zdz
iv) lim z7t2(+p+1)/p—(3/2)-2 (21—(2/;&)345)1’ (xA+(3/2)—2(A+1)/uf(z)) =a,
then

lim y'™"F(y) = a(-p)P H(A +p,p,n +p). ©

y—)
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