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TOPOLOGICAL GROUPS AND ACTIONS
By T. SOUNDARARAJAN®
Introduction

Let {G, ) be a topological group and (4, +} an Abelian topological group.
We say G weakly acts on A if G acts on 4 as groups and for each a € A the
map g — ga is continuous from G into A and for each g € G the map e — ga is
a continuous map of 4 into A. Then continuous Cohomology groups H"(G, A)
can be defined for G with coefficientsin 4 for all n > 0.

In section 1 we consider compact totally disconnected groups G and dense
subgroups S of G. We show that S is pseudocompact if and only if: whenever
G weakly acts on a discret space X, B is a countable subset of X, o a map of
B into X such that for any by,...,b, in B thereis a g € G such that ob; = gb;,
1 =1,...,n, then there exists an s € S such that ob = sb for all b € B.

We also show that H™(G, A) ~ H"(S, A) for all n > 0 in case S is pseudo-
compact and A is a discrete Abelian group on which G weakly acts.

In section 2 we show first that if a topological group G weakly acts on a
topological Abelian group A then G weakly acts also on C1(G, 4) = {f : G —
A : f continuous and f(1) = 0}.

We conclude section 2 by proving that if G is such that G™ is a k-space for
all m € N then H*"1(G, A) ~ H™(G,C(G, A)) for all n > 0. These may be
useful for Galois Cohomology of transcendental extension fields.

All spaces considered in this paper are assumed to be Hausdorff.

1,
We start with a well known

LEMMA (1.1). (1.8.2 and 1.9.3in [12]) Let X be a Hausdor{f zero-dimensional
topological space. Then the following conditions are equivalent.

(a) X is pseudocompact

(b) Every countable open cover of X by clopen (closed and open) sets has afinite
subcover for X.

(c) Every discrete open cover of X is finite.

(d) Every continuous map X into a discrete space is finite valued.

(e) Every continuous map of X into N is finite valued.

PROPOSITION (1.2). Let S be a dense subgroup of a compact totally discon-
nected topological group G. Then the following conditions are equivalent.

(a) S is pseudocompact
(b) Every continuous map of S into a discrete space D is extendable to a con-
tinuous map of G into D.

* The author heartily thanks the referee for various improvements suggested by him. He is

grateful to the referee for pointing out two useful references to him.
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Proof. (a)=>(b). Let f : § — D be a continuous map. Then f(S) is a pseu-
docompact subset of the discrete metric space D and hence is compact and
hence finite. Let a1, ..., a, be the values of f. Define g : {e3,...,an} — Rby
g(a;) = 1. Now g o f is a continuous map of § into R. Since S is pseudocom-
pact by Theorem 1.5 of [2] g o f is uniformly continuous on S and since R is
complete, g o f extends to a continuous map k of G into R. Now (go f)(S) =
{1,...,n} =h{S)isaclosed set in R, S isdense in G and so A(G) = {1,...,n}.
Now it easily follows by considering the map g™ : {1,...,2} — f(S),1 — q;
that f extends to a continuous map (¢~! o &) from G into D.

(b)=>(a). Since G is a compact totally disconnected group it is Zero-dimensi-
onal and hence S is a zero-dimensional Hausdorff space. If S is not pseudo-
compact, by (e) of Lemma (1.1) there is a continuous map f : § — N which is
not finite valued. This extends to a continuous map h of G into N. Since G is
compact, h(G) is compact in N and so k(G) is a finite subset. But f(S) c &{G).
This contradicts that f is not finite valued.

Hence (b)=-(a).

Definition. (1.3). Let X be a topological space. G a topological group under
multiplication. We say G weakly acts on X if there existsamap G x X — X,
(g, z) — gz such that
(1) (g192)z = g1(g22) for all g192 € G, € X.

(2) 1z = z for 1l identity of G and z € X.
(3) For each z € X, g — gz is a continuous map of G into X and for each
g € G, z + gz is a continuous map of X into X.

If{A,+) is an Abelian topological group, we say G weakly acts on A if fur-

ther for each g € G, the map a -~ ga is an automorphism of {4, +).

Remark (1.4). If G is a topological group and weakly acts on a discrete space
X then the map G x X — X is jointly continuous. Let (s,z) € G x X. Since
g — gz is a continuous function of G into X, there exists a neighbourhood U
of s such that gz = sz for all g € U. Now U x {z} maps into {sz} and hence it
follows that G x X — X is continuous.

THEOREM (1.5). Let G be a compact totally disconnected topological group
ond S a dense subgroup of G. Then the following conditions are equivalent:
a) S is pseudocompact.

b) If G weakly acts on o discrete space X, B C X is a countable subset, o :
B — X is a map such that if by, ..., b, € B there exists a g € G such that
o(b;) = gb; fori=1,...,n then there exists an s € S such that s|p = o.

Proof. (a)=>(b): For each b € B let Gy = {s € G|sb = b}. Since G acts on
the discrete space X, Gy is a clopen subgroup of G. Further let s € G be such
that o(b) = spb. Now the collection {s,G;} is a countable family of nonempty
clopen sets in G with finite intersection property. Since S is dense {SNs; G}
is a countable family of nonempty clopen sets in S with finite intersection
property. Since S is pseudocompact we get easily from (1.1) (b) that (,c (SN

spGp) # 0.
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Let s € N(S N 8;G;). Then for each b € B we get o(b) = s5(b) = s(b). This
establishes (b).

{(b)=>(a): Let {U;} be a sequence of open sets in G such that ({° U; # 0.
We assert that [13°U; NS # 8. Let ¢ € NU;. Since G is a compact totally
disconnected group it has a basis at the identity consisting of compact open
normal subgroups of finite index [11, 2.5, p. 56]. Hence for each 7 we get a
compact open normal subgroup N; of finite index such that o N; ¢ U;. Now G
weakly acts on the finite discrete space G/N; = {Ng, b;i Ni,. .., b,—n‘.Ni} transi-
tively. Let X = {..., N;, b1 N;, ..., b, N;, .. .} with discrete topology. If s € G
we define s(bﬁ'j.Ni) = bikNi if sbg'jNi = bikNi and B(Ng') = (3Ni). This yields
easily that G weakly acts on X. Let B = {by1 Ny,b21N9,b31N3,...}. Consider
the map of B into X given by (b;1 N;) — o(b;1N;). Since ¢ € G, the map of B
into X easily satisfies the condition in (b). Hence by (b) there existsans € §
such that o(b;; N;) = s(b;1 V;) fors = 1,2, .... Hence 0~ 1s(b;1 N;) = (b; ;) for
all1. Now ift € G and t(b;1N;) = (b;1NV;) we claim ¢ € N;. For tby; = bz,
z € N;. Sot € b; N;b;' = N;. Hence 0™1s € N; for all i i.e. s € oNV; for all i.
Sose ni)o Ui-

Now S is pseudocompact follows straight from (1.5) of [2] or theorem (4.2)
of [5].

Definition (1.6). Let G be a topological group weakly acting on an Abelian
topological group (4,+). If n € N we define C%(G, 4) = A and C™(G, 4) =
{f : G™ — A|f is continuous and f(z1,...,zn) = 0 whenever any one of the
z; is 1}. C™(G, A) is an Abelian group under +. If f € C™(G, A) we define df
on G"*! by

df (21, ., Tnt1) = 21 f (22, . o, Tng1)+
S0 o BTty Bngr) + (1) f (21, 70).
1

d is a map from C™(G, A) into A%™" such that d is a homomorphism and
d? = 0. For each n > 0 we define Z"(G, A) = {f € C™(G, A)|df = 0}. Ele-
ments of Z*(G, A) are called n-cocycles. We define B%(G, 4) = O and ifn > 1,
B™(G, A) = {f € O™(G,A)|f = dg for some g € C" (G, A)}. Elements
of B®(G, A) are called n-coboundaries. Z"(G, A), B™(G, A) are subgroups of
C™(G, A) and B"(G, A) € Z™(G, A). Wedefine H*(G,A) = Z™(G, A)/B™(G, A)
and call it the nth cohomology group of G with coefficients in A.

Remark (1.7). (a) Let G be a topological group acting on an Abelian topo-
logical group (A4, +) such that (g, e} — ga is a continuous map from G x 4 into
A. Then d maps C™(G, A) into C" (G, A). This is easy.

(b) Let G be a topological group acting on an Abelian topological group
(A, +) such that (g,a) — ga is a continuous map from G x A into A. Define
CT(G, A) = {fG™ — A|f continuous }, define d as in (1.6), define Z}*, B} cor-
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respondingly and define HP*(G, 4). By exactly following the proofs of section
6 in Eilenberg-Maclane [8] we can easily get H}}(G, A) = H"(G, A) for all n.

THEOREM (1.8). Let G be a compact totally disconnected group and S a pseu-
docompact dense subgroup. For any discrete abelian group (A, +) on which G
weakly acts, S also weakly on (A, +) and for all n, H*(G, A) ~ H™(S, A)

Proof. That S weakly acts on (A, +) whenever G weakly acts on (A4,+)
easily follows.

If f € C™(G, A) then f|gn belongs to C"(S, A) and f cocycle (coboundary)
implies f|g is a cocycle (coboundary). Conversely if g € C™(S, A) by (1.2), ¢
has a unique extension g € C™(G, A) (Since S™ is also pseudocompact [2]) and
g cocycle (coboundary) implies g is a cocycle (coboundary). Hence the theorem
easily follows.

Remark (1.9). By remark (1.4) and (1.7) (b), theorem (1.8) holds if
H™(G, A), H™(S, A) are replaced by H'(G, A}, H}(S, A).

Remark (1.10). That dense pseudocompact subgroups exist in plenty was
proved by H. T. Wilcox [13,14]. They can be even chosen with stronger prop-
erties as it is shown in [3] and [4]

2.

LEMMA (2.1). Let G be a topological group weakly acting on a space X. Let
K be a compact set in G and (bg)gep @ net in X converging to b in X. Let W
be an open set in X such that Kb ¢ W. Then there exists dy € D such that
Kby Cc W foralld > dy.

Proof. Let a € K, ab € W. Since W is open and G weakly acts on X
there exists an open set U, containing 1 in G such that Uzab C W. Since
G is a topological group there exists another open set V, containing 1 such
that Vg, -V, € U,. Now aby converges to ab since G weakly acts on X. Hence
there exists ad, € D such that aby € Vgab for all d > d,. Now {Vya}eck
is an open cover for K and K is compact. Hence there is a finite subcover
{Va,e1,...,Va, an} for K. Let dy > dg,,...,ds,. Let now a € K and d > d.
Consider aby. If a € V,,a; then aby € V0,04 and a;by € V,,a:b. Hence aby €
Va;Va;a;b € Ug,a;6 € W. Hence the lemma follows.

We now recall a proposition of J. de Vries.

PROPOSITION (2.2). (J. de Vries [6]) Let G be a topological group, Y a topo-
logical space and C.(G,Y) the space of all continuous maps from G into Y with
compact open topology. If s € Gand | € C,(G,Y) wedefine sf € C.(G,Y) by
(sf)(z) = f(zs). Then G weakly acts on C.(G,Y) with this definition.

Proof . This is proposition (2.1.2) of [6].

THEOREM (2.3). Let G be a topological group, (4, +) an Abelian topological
group on which G weakly acts. With compact open topology (G, A) is a
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topological Abelian group and G weakly acts on C1(G, A) if we define for s € G,
f € CYG, A), sf by (sf)(z) = f(zs) — zf(s).

Proof . Since C1(G, A) c C,(G, A) and the latter is a topological Abelian
group [1] we get C1(G, A) is a topological Abelian group. It is well known that
asa group G acts on A®. We have only to show thatifs € G, f € C1(G, A) then
sf € C1(G, A). Ift4 converges tot in G then f(t4s) converges to f(ts) sincetys
converges to ts and f is continuous. Also G weakly acts on A. Hence t 4 f(s)
converges totf(s). Since A is a topological group f(t4s) — t4f(s) converges to
f(ts)—tf(s). Hence sf(ty) convertes to s f(t). Thus we get G acts on C1(G, A)
as groups. We now complete the proofin two steps.

Step (1): Let s € G and f4 convergeto f in C1(G, A). We claim s f; converges
tosf.

We now define the functions g4, hg, g, h on G by g4(t) = fa(ts), hg(t) =
tfa(s), g(t) = f(ts), h(t) = tf(s). First of all it is easily seen that g4, kg, g, A
are continuous functions on G. By 2.2 we get g4 converges to g in the compact
open topology. We claim now hgy converges to h. Let h € (K, O), K compact
in G, O open in A and (K, O) is the set of all continuous maps from G into
A mapping K into O. h(k) € O forall k € K;i. e. kf(s) € O forall k € K.
Hence K f(s) c O. By (2.1) there exists a dg € D such that K fy(s) c O for all
d > dg,i.e. hg(k) C O. Hence hy € (K, O) for all d > dy. Thus hy converges to
h. Since C.(G, A) is a topological group g4 — hgq converges to g — h. Hence s f,
converges to sf in C1(G, A).

Step (2): Let 84 converges to s in G and f € C1(G, A). We claim s4f con-
verges to sf. We define g4, hg, g, h on G by g4(t) = f(tsq), hal(t) = tf(sa),
g(t) = f(ts), h(t) = tf(s). Easily g4, hq, g, b are continuous maps on G. gq
converges to g follows by (2.2).

Leth € (K,0)i. e. Kf(s) C O. By (2.1) there exists dg such that K f(sz) C
O if d > dy. Hence hy € (K,0). Thus hy converges to h. Then g4 — hy
converges to g — h. Hence we get G acts on C1(G, A) and the theorem follows.

THEOREM (2.4). Let G be a topological group weakly acting on an Abelian
topological roup (A,+). Let further G™ be a k-space for each n € N. Then
H"1(G, A) ~ H™(G, CY(G, A)) for all n > 0.

Proof. We define a map o,

on : C™(G, CY(G, A)) — C™T1(G, A)

by setting (onf)(s1,- -, 8n+1) = (=1)"f(s2,...,8n+1)(s1). Since G**lisa k-
space by Corollary (3.2)in [7, p. 261], o, is a bijection between C™(G,C1(G, A))
and C"t1(G, A). Now exactly as in [8] we get do,, = 0,1 1d. Hence we get eas-
ily for all n > 0, oy, carries cocycles (coboundaries) into cocycles (coboundaries)
and cohomologous cocycles into cohomologous cocycles. Hence we get easily
an isomorphism between H"(G, C1(G, A)) and H"t1(G, A) for alln > 0.
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Remark (2.5). (a) If G is a metric group or a locally compact Hausdorff
group then G" is a k-sapace for each n € N.

(b) If K is a countable field of characteristic zero and E is an extension of
countable trascendence degree then G(E/K) wuth Krull topology is a metric
group (weakly) acting on (E, +) and (E*, ).

(c) If K is any field and E is an extension of finite trascendence degree then
G(E/K) with Krull topology is a locally compact Hausdorff group (weakly)
acting on (E,+) and (E*,-).

For both (b) and (c) one can consider Galois Cohomology.
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