TOPOLOGICAL GROUPS AND ACTIONS

BY T. SOUNDARARAJAN^{*}

Introduction

Let (G, \cdot) be a topological group and $(A, +)$ an Abelian topological group. We say *G* weakly acts on *A* if *G* acts on *A* as groups and for each $a \in A$ the map $g \to ga$ is continuous from *G* into *A* and for each $g \in G$ the map $a \to ga$ is a continuous map of *A* into *A*. Then continuous Cohomology groups $H^n(G, A)$ can be defined for *G* with coefficients in *A* for all $n > 0$.

In section 1 we consider compact totally disconnected groups *G* and dense subgroups *S* of *G.* We show that *S* is pseudocompact if and only if: whenever G weakly acts on a discret space X, \overline{B} is a countable subset of X, σ a map of *B* into *X* such that for any b_1, \ldots, b_n in *B* there is a $g \in G$ such that $\sigma b_i = g b_i$, $i = 1, \ldots, n$, then there exists an $s \in S$ such that $\sigma b = sb$ for all $b \in B$.

We also show that $H^n(G, A) \simeq H^n(S, A)$ for all $n \geq 0$ in case S is pseudocompact and *A* is a discrete Abelian group on which *G* weakly acts.

In section 2 we show first that if a topological group *G* weakly acts on a topological Abelian group A then *G* weakly acts also on $C^1(G, A) = \{f : G \rightarrow \emptyset\}$ $A: f$ continuous and $f(1) = 0$.

We conclude section 2 by proving that if *G* is such that G^m is a k-space for all $m \in \mathbb{N}$ then $H^{n+1}(G, A) \simeq H^n(G, C^1(G, A))$ for all $n \geq 0$. These may be useful for Galois Cohomology of transcendental extension fields.

All spaces considered in this paper are assumed to be Hausdorff.

1.

We start with a well known

LEMMA (1.1). (1.8.2 and l.9.3in [12]) *Let X be a Hausdorff zero-dimensional topological space. Then the following conditions are equivalent.*

- (a) *X is pseudocompact*
- (b) *Every countable open cover of X byclopen (closed and open) sets has a finite subcover for X.*
- (c) *Every discrete open cover of Xis finite.*
- (d) *Every continuous map X into a discrete space is finite valued.*
- (e) *Every continuous map of X into* N *is finite valued.*

PROPOSITION (1.2). *Let S be a dense subgroup of a compact totally disconnected topological group G. Then the following conditions are equivalent.*

- (a) *S is pseudocompact*
- (b) *Every continuous map of S into a discrete space Dis extendable to a continuous map of G into D.*

^{*} The author heartily thanks the referee for various improvements suggested by him. He is grateful to the referee for pointing out two useful references to him.

Proof. (a) \Rightarrow (b). Let $f : S \rightarrow D$ be a continuous map. Then $f(S)$ is a pseudocompact subset of the discrete metric space *D* and hence is compact and hence finite. Let a_1, \ldots, a_n be the values of f. Define $g: \{a_1, \ldots, a_n\} \to \mathbb{R}$ by $g(a_i) = i$. Now $g \circ f$ is a continuous map of S into R. Since S is pseudocompact by Theorem 1.5 of [2] $g \circ f$ is uniformly continuous on S and since R is. complete, $g \circ f$ extends to a continuous map h of G into R. Now $(g \circ f)(S) =$ $\{1,\ldots,n\} = h(S)$ is a closed set in \mathbb{R}, S is dense in G and so $h(G) = \{1,\ldots,n\}.$ Now it easily follows by considering the map $g^{-1} : \{1, \ldots, n\} \to f(S), i \to a_i$ that f extends to a continuous map $(g^{-1} \circ h)$ from *G* into *D*.

 $(b) \Rightarrow (a)$. Since *G* is a compact totally disconnected group it is Zero-dimensional and hence *S* is a zero-dimensional Hausdorff space. If *S* is not pseudocompact, by (e) of Lemma (1.1) there is a continuous map $f : S \to \mathbb{N}$ which is not finite valued. This extends to a continuous map *h* of *G* into N. Since *G* is compact, $h(G)$ is compact in N and so $h(G)$ is a finite subset. But $f(S) \subset h(G)$. This contradicts that f is not finite valued.

Hence $(b) \Rightarrow (a)$.

Definition. (1.3). Let *X* be a topological space. *G* a topological group under multiplication. We say *G* weakly acts on *X* if there exists a map $G \times X \to X$, $(g, x) \mapsto gx$ such that

(1) $(g_1g_2)x = g_1(g_2x)$ for all $g_1g_2 \in G$, $x \in X$.

(2) $1x = x$ for 1 identity of *G* and $x \in X$.

(3) For each $x \in X$, $g \mapsto gx$ is a continuous map of G into X and for each $g \in G$, $x \mapsto gx$ is a continuous map of *X* into *X*.

If *(A,+)* is an Abelian topological group, we say *G* weakly acts on *A* if further for each $g \in G$, the map $a \mapsto ga$ is an automorphism of $(A,+)$.

Remark (1.4). If *G* is a topological group and weakly acts on a discrete space *X* then the map $G \times X \to X$ is jointly continuous. Let $(s, x) \in G \times X$. Since $g \mapsto gx$ is a continuous function of G into X, there exists a neighbourhood U of *s* such that $gx = sx$ for all $g \in U$. Now $U \times \{x\}$ maps into $\{sx\}$ and hence it follows that $G \times X \to X$ is continuous.

THEOREM (1.5). Let G be a compact totally disconnected topological group *and* S *a dense subgroup of* G. *Then the following conditions are equivalent:* a) S is pseudocompact.

b) If G weakly acts on a discrete space X, $B \subset X$ is a countable subset, σ : $B \to X$ is a map such that if $b_1, \ldots, b_n \in B$ there exists a $g \in G$ such that $\sigma(b_i) = gb_i$ for $i = 1, \ldots, n$ then there exists an $s \in S$ such that $s|_B = \sigma$.

Proof. (a) \Rightarrow (b): For each $b \in B$ let $G_b = \{s \in G | sb = b\}$. Since *G* acts on the discrete space X, G_b is a clopen subgroup of G. Further let $s_b \in G$ be such that $\sigma(b) = s_b b$. Now the collection $\{s_b G_b\}$ is a countable family of nonempty clopen sets in *G* with finite intersection property. Since *S* is dense $\{S \cap s_b G_b\}$ is a countable family of nonempty clopen sets in S with finite intersection property. Since S is pseudocompact we get easily from (1.1) (b) that $\bigcap_{b\in B} (S\cap$ $s_b G_b$) $\neq \emptyset$.

Let $s \in \bigcap (S \cap s_b G_b)$. Then for each $b \in B$ we get $\sigma(b) = s_b(b) = s(b)$. This establishes (b).

(b) \Rightarrow (a): Let $\{U_i\}$ be a sequence of open sets in *G* such that $\bigcap_{i=1}^{\infty} U_i \neq \emptyset$. We assert that $\bigcap_{i=1}^{\infty} U_i \cap S \neq \emptyset$. Let $\sigma \in \cap U_i$. Since *G* is a compact totally disconnected group it has a basis at the identity consisting of compact open normal subgroups of finite index $[11, 2.5, p. 56]$. Hence for each *i* we get a compact open normal subgroup N_i of finite index such that $\sigma N_i \subset U_i$. Now *G* weakly acts on the finite discrete space $G/N_i = \{N_i, b_{i1}N_i, \ldots, b_{in_i}N_i\}$ transitively. Let $X = \{ \ldots, N_i, b_{i1}N_i, \ldots, b_{in_i}N_i, \ldots \}$ with discrete topology. If $s \in G$ we define $s(b_{ij}N_i) = b_{ik}N_i$ if $sb_{ij}N_i = b_{ik}N_i$ and $s(N_i) = (sN_i)$. This yields easily that G weakly acts on X. Let $B = \{b_{11}N_1, b_{21}N_2, b_{31}N_3, \ldots\}$. Consider the map of *B* into *X* given by $(b_{i1}N_i) \rightarrow \sigma(b_{i1}N_i)$. Since $\sigma \in G$, the map of *B* into X easily satisfies the condition in (b). Hence by (b) there exists an $s \in S$ such that $\sigma(b_{i1}N_i) = s(b_{i1}N_i)$ for $i = 1, 2, \ldots$ Hence $\sigma^{-1}s(b_{i1}N_i) = (b_{i1}N_i)$ for all *i*. Now if $t \in G$ and $t(b_{i1}N_i) = (b_{i1}N_i)$ we claim $t \in N_i$. For $tb_{i1} = b_{i1}x$, $x \in N_i$. So $t \in b_{i1}N_i b_{i1}^{-1} = N_i$. Hence $\sigma^{-1} s \in N_i$ for all i; i.e. $s \in \sigma N_i$ for all i. So $s \in \bigcap_{1}^{\infty} U_i$.

Now S is pseudocompact follows straight from (1.5) of $[2]$ or theorem (4.2) of [5].

Definition (1.6). Let *G* be a topological group weakly acting on an Abelian topological group $(A,+)$. If $n \in \mathbb{N}$ we define $C^0(G, A) = A$ and $C^n(G, A) =$ ${f : Gⁿ \to A | f \text{ is continuous and } f(x_1, \ldots, x_n) = 0 \text{ whenever any one of the }$ x_i is 1}. $C^n(G, A)$ is an Abelian group under +. If $f \in C^n(G, A)$ we define *df* on G^{n+1} by

$$
df(x_1,...,x_{n+1}) = x_1 f(x_2,...,x_{n+1}) + \sum_{1}^{n} (-1)^{i} f(x_1,...,x_i x_{i+1},...,x_{n+1}) + (-1)^{n+1} f(x_1,...,x_n).
$$

d is a map from $C^n(G, A)$ into $A^{G^{n+1}}$ such that d is a homomorphism and $d^{2} = 0$. For each $n \geq 0$ we define $Z^{n}(G, A) = \{f \in C^{n}(G, A)|df = 0\}$. Elements of $Z^n(G, A)$ are called *n*-cocycles. We define $B^0(G, A) = 0$ and if $n \geq 1$, $B^{n}(G, A) = \{f \in C^{n}(G, A)|f = dg \text{ for some } g \in C^{n-1}(G, A)\}.$ Elements of $B^n(G, A)$ are called *n*-coboundaries. $Z^n(G, A)$, $B^n(G, A)$ are subgroups of $C^n(G, A)$ and $B^n(G, A) \subset Z^n(G, A)$. We define $H^n(G, A) = Z^n(G, A)/B^n(G, A)$ and call it the nth cohomology group of *G* with coefficients in A.

Remark (1.7) . (a) Let G be a topological group acting on an Abelian topological group $(A,+)$ such that $(g, a) \rightarrow ga$ is a continuous map from $G \times A$ into *A.* Then *d* maps $C^n(G, A)$ into $C^{n+1}(G, A)$. This is easy.

(b) Let *G* be a topological group acting on an Abelian topological group $(A,+)$ such that $(g, a) \rightarrow ga$ is a continuous map from $G \times A$ into A. Define $C_1^n(G, A) = \{ fG^n \to A | f \text{ continuous } \}, \text{ define } d \text{ as in (1.6), define } Z_1^n, B_1^n \text{ cor-}$

respondingly and define $H_1^n(G, A)$. By exactly following the proofs of section 6 in Eilenberg-Maclane [8] we can easily get $H_1^n(G, A) \simeq H^n(G, A)$ for all *n*.

THEOREM (1.8). *Let G be a compact totally disconnected group and Sa pseudocompact dense subgroup. For any discrete abelian group (A,+) on which G weakly acts, S also weakly on* $(A,+)$ *and for all n,* $H^n(G, A) \simeq H^n(S, A)$

Proof. That *S* weakly acts on $(A,+)$ whenever *G* weakly acts on $(A,+)$ easily follows.

If $f \in C^n(G, A)$ then $f|_{S^n}$ belongs to $C^n(S, A)$ and f cocycle (coboundary) implies $f|_{S}$ is a cocycle (coboundary). Conversely if $g \in C^{n}(S, A)$ by (1.2), *g* has a unique extension $\overline{g} \in C^n(G, A)$ (Since S^n is also pseudocompact [2]) and g cocycle (coboundary) implies \bar{g} is a cocycle (coboundary). Hence the theorem easily follows.

Remark (1.9) . By remark (1.4) and (1.7) (b) , theorem (1.8) holds if $H^n(G, A), H^n(S, A)$ are replaced by $H^n_1(G, A), H^n_1(S, A)$.

Remark (1.10). That dense pseudocompact subgroups exist in plenty was proved by H. T. Wilcox [13,14]. They can be even chosen with stronger properties as it is shown in [3] and [4]

2.

LEMMA (2.1). *Let G be a topological group weakly acting on a space* X. *Let K* be a compact set in G and $(b_d)_{d \in D}$ a net in X converging to b in X. Let W *be an open set in X such that Kb* \subset *W. Then there exists* $d_0 \in D$ *such that* $Kb_d \subset W$ for all $d \geq d_0$.

Proof. Let $a \in K$, $ab \in W$. Since *W* is open and *G* weakly acts on *X* there exists an open set U_a containing 1 in *G* such that $U_a a b \subset W$. Since *G* is a topological group there exists another open set V_a containing 1 such that $V_a \cdot V_a \subset U_a$. Now ab_d converges to ab since *G* weakly acts on *X*. Hence there exists $ad_a \in D$ such that $ab_d \in V_aab$ for all $d \geq d_a$. Now $\{V_a a\}_{a \in K}$ is an open cover for K and K is compact. Hence there is a finite subcover $\{V_{a_1}a_1,\ldots,V_{a_n}a_n\}$ for *K*. Let $d_0 \geq d_{a_1},\ldots,d_{a_n}$. Let now $a \in K$ and $d \geq d_0$. Consider ab_d . If $a \in V_a$, a_i then $ab_d \in V_a$, $a_i b_d$ and $a_i b_d \in V_a$, $a_i b$. Hence $ab_d \in$ $V_{a_i}V_{a_i}a_ib \subset U_{a_i}a_ib \subset W$. Hence the lemma follows.

We now recall a proposition of J. de Vries.

PROPOSITION (2.2). (J. de Vries [6]) *Let G be a topological group, Y a topological space and* $C_c(G, Y)$ *the space of all continuous maps from G into Y with compact open topology. If* $s \in G$ *and* $f \in C_c(G, Y)$ *we define* $s f \in C_c(G, Y)$ *by* $(s f)(x) = f(xs)$. Then G weakly acts on $C_c(G, Y)$ with this definition.

Proof. This is proposition $(2.1.2)$ of [6].

THEOREM (2.3). Let *G* be a topological group, *(A,+)* an Abelian topological group on which G weakly acts. With compact open topology $C^1(G, A)$ is a topological Abelian group and *G* weakly acts on $C^1(G, A)$ if we define for $s \in G$, $f \in C^1(G, A), s f$ by $(s f)(x) = f(xs) - xf(s).$

Proof. Since $C^1(G, A) \subset C_c(G, A)$ and the latter is a topological Abelian group [1] we get $C^1(G,A)$ is a topological Abelian group. It is well known that as a group G acts on A^G . We have only to show that if $s\in G,$ $f\in C^1(G,A)$ ther $s f \in C^1(G, A)$. If t_d converges to *t* in G then $f(t_d s)$ converges to $f(ts)$ since $t_d s$ converges to *ts* and *f* is continuous. Also *G* weakly acts on *A*. Hence $t_d f(s)$ converges to *tf*(s). Since A is a topological group $f(t_d s) - t_d f(s)$ converges to $f(ts) - tf(s)$. Hence $sf(t_d)$ convertes to $sf(t)$. Thus we get *G* acts on $C^1(G, A)$ as groups. We now complete the proof in two steps.

Step (1): Let $s \in G$ and f_d converge to f in $C^1(G, A)$. We claim sf_d converges to *sf.*

We now define the functions g_d , h_d , g , h on G by $g_d(t) = f_d(ts)$, $h_d(t) =$ $tf_d(s), g(t) = f(ts), h(t) = tf(s)$. First of all it is easily seen that g_d, h_d, g, h are continuous functions on G . By 2.2 we get g_d converges to g in the compact open topology. We claim now h_d converges to h . Let $h \in (K, O)$, *K* compact in G, O open in A and (K, O) is the set of all continuous maps from G into *A* mapping *K* into *O*. $h(k) \in O$ for all $k \in K$; i. e. $kf(s) \in O$ for all $k \in K$. Hence $K f(s) \subset O$. By (2.1) there exists a $d_0 \in D$ such that $K f_d(s) \subset O$ for all $d \geq d_0$, i.e. $h_d(k) \subset O$. Hence $h_d \in (K, O)$ for all $d \geq d_0$. Thus h_d converges to *h.* Since $C_c(G, A)$ is a topological group $g_d - h_d$ converges to $g - h$. Hence sf_d converges to *sf* in $C^1(G, A)$.

Step (2): Let s_d converges to s in *G* and $f \in C^1(G, A)$. We claim $s_d f$ converges to *sf.* We define g_d , h_d , g , h on G by $g_d(t) = f(ts_d)$, $h_d(t) = tf(s_d)$, $g(t) = f(ts), h(t) = tf(s)$. Easily g_d, h_d, g, h are continuous maps on *G.* g_d converges to *g* follows by (2.2) .

Let $h \in (K, O)$ i. e. $Kf(s) \subset O$. By (2.1) there exists d_0 such that $Kf(s_d) \subset$ O if $d \geq d_0$. Hence $h_d \in (K, O)$. Thus h_d converges to h. Then $g_d - h_d$ converges to $g-h$. Hence we get *G* acts on $C^1(G, A)$ and the theorem follows.

THEOREM (2.4). *Let G be a topological group weakly acting on an Abelian topological roup* $(A,+)$ *. Let further* $Gⁿ$ *be a k-space for each* $n \in N$ *. Then* $H^{n+1}(G, A) \simeq H^n(G, C^1(G, A))$ for all $n > 0$.

Proof. We define a map σ_n

$$
\sigma_n: C^n(G, C^1(G, A)) \to C^{n+1}(G, A)
$$

by setting $(\sigma_n f)(s_1, \ldots, s_{n+1}) = (-1)^n f(s_2, \ldots, s_{n+1})(s_1)$. Since G^{n+1} is a kspace by Corollary (3.2) in [7, p. 261], σ_n is a bijection between $C^n(G, C^1(G, A))$ and $C^{n+1}(G, A)$. Now exactly as in [8] we get $d\sigma_n = \sigma_{n+1}d$. Hence we get easily for all $n \geq 0$, σ_n carries cocycles (coboundaries) into cocycles (coboundaries) and cohomologous cocycles into cohomologous cocycles. Hence we get easily an isomorphism between $H^n(G, C^1(G, A))$ and $H^{n+1}(G, A)$ for all $n \geq 0$.

Remark (2.5) . (a) If G is a metric group or a locally compact Hausdorff group then $Gⁿ$ is a k-sapace for each $n \in \mathbb{N}$.

(b) If K is a countable field of characteristic zero and E is an extension of countable trascendence degree then $G(E/K)$ wuth Krull topology is a metric group (weakly) acting on $(E,+)$ and (E^*,\cdot) .

(c) If K is any field and E is an extension of finite trascendence degree then $G(E/K)$ with Krull topology is a locally compact Hausdorff group (weakly) acting on $(E,+)$ and (E^*,\cdot) .

For both (b) and (c) one can consider Galois Cohomology.

DEPARTAMENT OF MATHEMATICS MADURAI KAMARAJ UNIVERSITY MADURAI 625 021, INDIA.

REFERENCES

- [1] R. AR.ENS, *A Topology for spaces of Transformations,* Annals of Maths. **47** (1946), 480-495.
- [2] W. W. COMFORT and K. A. Ross, *Pseudocompaetness and unifonn continuity in Topological groups,* Pacific J. Math. **16** (1966) 483-496.
- [3] \longrightarrow and V. SAKS, *Countably compact groups and finest totally bounded topologies*, Pacific J. Math. **49** (1973) 33-44.
- [4] \longrightarrow and T. SOUNDARARAJAN, *Pseudocompact group topologies and totally dense subgroups*, Pacific J. Math. **100** (1982) 61-84.
- [5] J. DE VRIES, *Pseudocompact and the Stone Cech Compactification of topological groups,* Nieuw Archiefvoor Wiskunde, XXIII (1975) 35-48.
- [6] *--Topological transfonnation groups I (A categorical approach),* Mathematical centre Tract **65** Math. Centrum. Amsterdam, 1975.
- [7] J. DUGUNDJI, Topology, Allyn and Bacon, Boston, 1966.
- [8] S. EILENBERG and S. MACLANE, *Cohomology theory in abstract groups,* I, Annals of Maths. **48** (1947) 51-78.
- [9] R. ELLIS, *Locally compact transformation groups,* Duke Math. J. **24** (1957) 119-125.
- [10] G. HOCHSCHILD and G.D. MoSTOW, *CohomologyofLiegroups,* IllinoisJ. Math **6** (1962) 367- 401.
- [11] D. MONTGOMERY and L. ZIPPIN, Topological transformation groups, Inter Science, New York, 1955.
- [12] R. S. PIERCE, *Rings of integer-valued continuous functions,* Trans. Amer. Math. Soc. **100** (1961) 371-394.
- [13] H.J. WILCOX, *Pseudocompact groups,* Pacific J. Math. **19** (1966) 365-379.
- [14] --, *Dense subgroups of compact groups,* Proc. Amer. Math. Soc. **28** (1971) 578-580.