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SOME RESULTS ON WALLMAN COMPACTIFICATIONS 

BY ADALBERTO GARCIA-MAYNEZ 

L Introduction 

We shall be concerned with normal Wallman basis and their associated com
pactifications (see [GT], 3.44-3.48). All spaces we consider will be completely 
regular and Hausdorff and all maps will be continuous. Our main results will 
deal with rim compact spaces and their Freudenthal compactifications. We 
give an upper bound for the weight of the Freudenthal compactification of a 
rim compact space and prove a set theoretic lemma which has some useful ap
plications to extend a map to certain Wallman compactifications of its domain 
and codomain. 

2. Rim compact spaces 

Recall a space X is rim compact if its topology has as a basis the family 8 
consisting of all open sets with compact boundary. In this case, 8 happens to 
be a normal Wallman basis of X and its associated compactification, denoted 
by F X, is the so called Freudenthal compactification of X. For any space 
( X, r), the family of cl open subsets of X is a basis for a topology r0 of X and, 
of course, r0 c r. The quasi-component space Q(X) (see [Is]) consists of all 
quasi-components of X and a subset g of Q(X) is defined to be open in Q(X) 
if u{ GIG E 9} E r0 , i.e., if u{ GIG E 9} is a union of clopen subsets of X. 
Clearly Q(X) is 0-dimensional and T1 (and hence, it is completely :regular and 
Hausdorff) and there is an onto map between f3X and f3Q(X) which extends 
the map h sending each x E X to the quasi-component of X which contains it. 

Recall the weight (resp., net weight) of a space X, wX (:resp., nwX), is the 
minimum cardinality of a basis (resp., a net) of X. 

We give some other definitions: 

(2.1). a) If Xis any space, zX and z 1X denote, respectively, the cardinalities 
of the families {HIH is a ze:ro set in X} and {HIH is clopen in X}. Also, V LX 
denotes the least infinite cardinal a such that every open cover of X has a 
subcove:r consisting ofless than a: elements. Thus, Xis compact if and only if 
v LX = Xo and Xis Lindelof if and only if V LX:::; Xi. 

b) A space X is Q-compact (resp., Q-Lindelo{) if Q(X) is compact (resp., 
Lindelof). 

c) If a, j3 are infinite cardinal numbers, we define 

a<f3 = I: 
i<(3 

In [DC] it is proved that if Xis rim compact, then wFX = wX • z 1X. We 
shall prove the following inequality: 

(2.2). z 1 X::::; wQ(X)<V LQ(X) for any rim compact space X. 
17 
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Proof. For any space X, it is easy to prove that z1X = z'Q(X) and z 1X::; 
wx<VLX_ Hence, z' X = z'Q(X)::; wQ(X)<VLQ(X). 

Combining (2.2) with the equality wF X = wX • z' X we obtain the inequal
ities: 

(2.3). Let X be a rim compact space. Then: 
a) wFX :=:; wX •wQ(X)<VLQ(X)_ In particular, if Xis Q-compact, we have 

wFX=wX. 
b) wFX :s; wx<VLX_ 

Definition. (see [Sk]). Let X c Z be dense. Z is a perfect extension of X if given 
two closed sets A, B c Xwith X = ALJ B, we have Cz(AnB) = Cz(A)nCz(B). 

We know {3X is a perfect compactification of X for any space X and F Xis 
a perfect compactification of X for any rim compact space X. We prove now 
that if X is a rim compact Lindelof space and F X is first countable, then X is 
Q-compact. More generally: 

(2.4). Let X be a Q-Lindelof space and let Z be a perfect, Q-compact, first 
countable extension of X. Then Xis Q-compact. 

Proof. Suppose, on the contrary, that Xis not Q-compact. Since Xis Q
Lindelofbut not Q-compact, there exists a sequence L1, L2, ... ofclopen, non

oo 
empty, mutually disjoint subsets of X such that X = U Lm. Since Z is a 

m=l 
perfect extension of X, for each m = 1, 2, ... there exists a clopen subset L:n 
of Z such that Lm =L:n n X (in fact, we may take L:n =CzLm). The density of 
X in Z implies that L;n.L; = cl> fori =I-i- Since Z is Q-compact, we must have 

00 00 

Z =I- U L:n. Choose a point p E Z - U L:n. Since Z is first countable, there 
m=l m=l 

exists a subsequence L:n1 , L:n2 , ••• of Li, L2, ... , such that p E liminf L:n;. 
Let H be the union of the Lm; with i an odd integer and let J be the union of 
the Lm; with i an even integer. We let also K = X - (HU J), J* = CzJ and 
H* = Z - J*. Then H*, J* are disjoint clopen subsets of Z with union Z and 
J* n X = J, H* n X =Hu K. However, ifp EH*, then H* is an open set in 
Z containing p and disjoint from each L:n. for even i, and if p E J*, r is an 
open set in Z containing p and disjoint froin each L:n, for odd i. In both cases 
we contradict the fact thatp E liminf L:n .. Therefore, X must be Q-compact. 

' 
COROLLARY ( 1). Let X be a rim compact Lindelof space. If F Xis first count-

able, then Xis Q-compact and therefore wFX = wX. 

COROLLARY (2). (see [Is]) The Freudenthal compactification of a rim com
pact separable metrizable space Xis metrizable if and only if Xis Q-compact. 

Extensions of maps to Wallman compactifi.cations 

The universal property of the Stone-Cech compactification of a space X 
may be stated as follows: 
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(3.1). If ip: X --+ Y is any map, I() has an extension to map 1()1 : /3X -> f3Y. 

Considering f3X as the Wallman compactification of X associated to the ba
sis of X consisting of all its co zero sets, (3.1) has the follm.-ving generalization 
(see [GT], 3.48) 

(3.2). Let I(): X--+ Y be any map and let Bx, 811 be normal Wallman basis 
of X, Y, respectively. Let x•, y• be the corresponding Wallman compactifica
tions. Then I() has an extension to a map <p1: X* --+ Y* if and only if for every 
pair H, K of disjoint elements of C (By), there exist disjoint elements L, M of 
O(Bx) such that l()- 1 (H) c Land l()- 1(K) c M. 

The following definition is apparently unrelated to (3.2). However, we shall 
exhibit a connection. 

Definition. Let X be a set, U a cover of X and Ac X. A is subordinated to 
U if every member of U contains, at most, a finite number of elements of A. 

(3.3). Remark: a) If U is an open cover of a space X and A c Xis subordi
nated to U then A is closed and discrete. 

b) If U is a normal cover of a space X and A c X is subordinated to U then 
A is C-discrete (see [Gh). 

The following set theoretic lemma has several topological applications: 

(3.4). Let f: X -> Y be a function, a, /3 cardinal numbers with f3 regular 
and w :S: /3 :S: a. Let Ube a cover of X such that l{U E Ulx E U}I < f3 for each 
x EX. Then at least one of the following properties holds: 

a) There exist Uo c U and Yo c Y such that IUol < a, IYol < a and X = 
u Uo u 1- 1 (Yo). 

b) There exists Ac X such that IAI = a, A is subordinated to U and /IA is 
1-1. 

Proof. Suppose a) does not hold. Choose any point xo EX. Let Uo ={VE 
Ulxo EV}. By hypothesis, there exists a point x1 EX - [u Uo U 1- 1 f(xo)]. 
Inductively, let i be an ordinal number < a and suppose Xj E X has already 
been defined for each i < i. Let Uj = {V E Ulxi E V}, j < i and let W = 

u {Uj I j < i} If i < ,B, the regularity of ,8 implies that IW I :S: I: IUil < /3 :S: a. If 
j<i 

i 2: /3, then IWI :S: I: IUil :S: ,Blil =Iii< a. By hypothesis, there exists a point 
j<i 

xi EX - [u WU 1- 1 f({xjli < i})]. This completes the inductive construction 
of the xi. The set A = { xi Ii < a} is subordinated to U because each V E U 
contains, at most, one element of A. Besides, /IA is 1-1. Therefore, b) holds. 

COROLLARY (3.4.1). (see [Gh, 3.7). Let f: X -, Y be an onto C(a)-map, 
where a is a regular cardinal. If Y is a-pseudocompact and for every y E Y, 
f- 1(y) is a-relatively pseudocompact, then Xis 0t,-pseudocompact. 
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Proof. Let U be an arbitrary locally finite cozero cover of X. We have to 
prove that U has a subfamily of cardinality < a covering X. Apply theorem 
taking ,8 = a. If condition a) holds, there exist Uo c U and Yo c Y such that 
IUol < a, IYol < a and X = U Uo u /- 1(Yo). Since each fiber off is a-relatively 
pseudocompact, for each y E Yo there exists Uy c U such that IUvl < a and 
f- 1 (y) c U U11• Hence, 1- 1 (Yo) c u W, where W = U {U11IY E Yo}. The 
regularity of a implies that I WI < a. 

Hence, u W is a subfamily of U of cardinality < a covering X. I/ b) 
holds and A c X is as in the statement of b), then A is C-discrete (use (3.3) 
b)). But since f is a C(a}map and /IA is 1 - 1, f (A) is a C-discrete subset of 
Y of cardinality a, contradicting the fact that Y is a-pseudocompact. Hence b) 
cannot hold, a) has to hold and the proof is complete. 

COROLLARY (3.4.2). Let f: X _. Y be an EC1-map, where Y is pseudocom
pact. If U is a locally finite cozero cover of X, there exist U 1, U2, ... , Un E U and 

n m 
Pl, ... ,Pm E Y such that X = LJ Ui U LJ f- 1 (p1). 

i=l j=l 

Proof. We apply the theorem with a = f3 = w. If condition b) held, we would 
have a countable subset A of X subordinated to U, such that /IA is 1 - 1. A 
would be then C-discrete. But EC 1-maps preserve countable C-discrete sets. 
Therefore, f(A) would be an infinite C-discrete subset ofY, contradicting the 
pseudocompactness of Y. 

COROLLARY (3.4.3). (compare with [N], thm. 1). Let f: X _. Y be a closed 
map, where Y is countably compact, and let U be a point finite open cover of 

n 
X. Then there exist U1, ... , Un EU and Pl ... ,Pm E Y such that X = LJ Ui U 

i=l 
m 

LJ f- 1(Pj)-
j=l 

Proof. We assume again that a = /3 = w. If A c Xis as in condition then 
A is a countably infinite closed discrete subset of X. Since / IA is 1 - 1 and f is 
closed, /(A) is a countably infinite dosed discrete subset ofY, contradicting 
the fact that Y is countably compact. 

COROLLARY (see [N], thm. 2), Let f: X _. Y be a closed map of the 
compact metacompact space X onto the compact space Y. Then tlwre 

exists a compact set Z c X such that is finite. 

Proof. If Xis compact, the result is obvious. Suppose then that Xis not 
compact. The assumptions on X imply the existence of a point finite open 
cover U of X such that u- is compact for each U E U, Applying the theorem 
with fJ =wand a= IUI, we know a) orb) holds. But ifb) held, there would 
exist a closed discrete subset A c X such that!AI = a and /IA is 1 - 1. But 
since / is closed, f (A) would also be a closed discrete subset of Y and this 
would contradict the compactness of Y. Hence a) holds and there exist Uo c 
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U, Yo c Y, finite, such that X = u Uo u J- 1 (Yo), It is enough to define 
z = u{u-iu E Uo}. 

COROLLARY (3.4.5). Let f: X -+ Y be a closed map of the wcally compact 
and metacompact space X onto the locally compact space Y. If H, K are closed 
disjoint subsets of Y and both of them have compact boundaries, then there 
exists a closed set L c Y such that r 1 (L) is compact and separates J- 1(H) 
and r 1 (K). 

Proof. The quotient space Y / { H, K} obtained by identifying H and K to 
single points is also locally compact and the canonical map q: Y - Y / { H, K} 
is closed. Due to these facts, we do not lose generality if we assume that H 
and K are different points '!/1, yz E Y. Let W be an open set in Y with compact 
closure such that Yl E W c w- c Y - {112}. According to Corollary (3.4.4), 
there exists a finite set {b1, ... , bn} c W such that 1- 1 (y) is compact for each 
y E w- - {b1, ... ,bn}, Let V be an open set in Y such that Yl EV c v- c W 
and such that {b1, ... , bn}nFr V = @'. The set A= J- 1(Fr V) is then compact 
and it separates r 1(yi) and r 1(y2). 

COROLLARY (3.4.6). Let f, X, Y, H, K be as in corollary (3.4.5). Then there 
exist disjoint closed sets H 1 , K 1 c X, both of them with compact boundaries, 
such that f- 1(H) c H1 and r 1(K) c K1. 

Proof. Let L c Y be such that /- 1(L) is compact and separates /- 1 (H) 
and f- 1 (K), say X - r 1(L) = U1 U U2, where r 1(H) C U1, r 1 (K) C U2 
and U1, U2 are disjoint open sets. Define H1 = U1 . Let T be an open set in 
X, with compact boundary, such that H1 c Tc r- c X - r 1 (K). Setting 
K 1 = X - T, we obtain the desired result. 

COROLLARY (3.4.7). (see [NJ). Let f: X-+ Y be a closed map of the locally 
compact and meta.compact space X onto the locally compact space Y. Then f 
can be extended to a map f*: F X -+ FY between the Freudenthal compactifi
cations of X and Y. 

Proof. Apply Corollary (3.4.6) and (3.2). 
As suggested by the referee of this paper, we include one more corollary: 

COROLLARY (3.4.8). ([Ju] 2.32). Assume Xis a T1 space such that pX ::; k, 
where pX = sup{IAI I Ac X closed and discrete}. Then every open cover of X 
of point weight::; k has a subcover of cardinality::; k. 

Proof. Let U be an open cover of X and let a = (3 = k+. Property (b) in (3.4) 
cannot hold because pX::; k. By property a), there exists Uo c U and Xo c X 
such that IUol ::; k and IXol ::; k. For each x E Xo, select an element Ux E U 
such that x E Ux, Hence Uo U {U xix E Xo} is a subcover of U of cardinality 
'5:. k. 
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