AN APPLICATION OF SARD'S THEOREM

BY M. R. R. HOOLE

Introduction

Sard's theorem states that : if $U \subseteq R^m$ and $f: U \rightarrow R^n$ is a smooth function (C^{∞}) , then the image of the singular points of U (= the singular values of R^n) has measure zero [1].

This theorem together with the inverse function theorem provides an interesting link between Analysis and Algebraic Topology, For instance Brouwer's fixed point theorem can by proved using techniques from analysis [2]. We consider the following result from degree theory which is proved using relative homology theory (see [3]):

Let O be an open subset of R^m with compact closure \overline{O} and B the boundary of \overline{O} . $F: (\overline{O}, B) \times [0,1] \rightarrow (\overline{O};B)$, $f: (\overline{O};B) \rightarrow (\overline{O},B)$ if F, f are continuous and $F(x,t)$, $f(x) \in B$ for $x \in B$ and $t \in [0,1]$. *F* is a homotopy of f if $F_o = f$ $(F_t(x) = F(x, t))$. *f* is said to be null homotopic if there is a homotopy F of f with $F_1[0]$ consisting of just one point $y \in B$.

THEOREM. If $f : (\overline{O}; B) \rightarrow (\overline{O}; B)$ is C^1 in a neighbourhood of $f^{-1}(D)$ and $2n + 1$ *to 1 at any regular value x of f inside D, then f is not null homotopic.*

What our analytic proof does is to give an insight into the intermediate process and thus clarify the geometric content of the algebraic proof. Thus we arrive at a clearer understanding of the interplay between analysis and algebraic topology.

Proof. Let $f : f(\overline{O}; B) \to (\overline{O}; B)$ as in the statment of the theorem with b ϵ *O* a regular value of f with $f^{-1}\{b\}$ having exactly the elements $a_1, ..., a_{2n+1}$.

Then there are neighbourhoods $B(b, \epsilon)$, $B(a_1, \delta_1)$, $B(a_{2n+1}, \delta_{2n+1})$, ϵ , $\delta_1, ..., \delta_{2n+1} > 0$, such that

 $f: B(a_i, \delta_i) \to B(b, \epsilon)$ is a diffeomorphism into its range, $i = 1, ..., 2n+1$.

Let $F : (\overline{O}; B) \times [0, 1] \rightarrow (\overline{O}; B)$ be a homotopy with $F_o = f$. We shall prove that $b \epsilon F_1[0]$ so that f is not null homotopic. Extend F to a homotopy G on [-1,2] such that

 $G_t = F_o, - \leq t \leq 0; G_t = F_t, 0 \leq t \leq 1; G_t = F_t, 1 \leq t \leq 2.$

Then G is C^1 in a neighbourhood of $-\frac{1}{2}$.

Let $\alpha: R^{m+1} \to [0, \infty)$ be a C^{∞} convolution kernel with small suport radius $r_{\alpha}(\int_{R^{m+1}} \alpha = 1, \alpha(x) = 0$ for $|x| \leq r_{\alpha}$, and the convolution transform G_{α} of G given by $G_{\alpha}(x,t) = \int_{R^{m+1}} G(y) \alpha(y-(x,t)) dy$

It is easily shown that G_{α} is C^{∞} and given any $\eta_1, \eta_2 > 0$ we can take the support radius r_{α} so small that $|G_{\alpha}(x,t) - G(x,t)| < \eta_1$, $|DG_{\alpha} - DG| < \eta_2$; for

 $g_{\alpha}(z) - g(z)| \leq \frac{\delta u_{\alpha}}{|y - z| < r_{\alpha}} |g(z) - g(y)|.$ $\frac{\partial g_{\alpha}(z)}{\partial s} - \frac{\partial g(z)}{\partial s}| \leq \frac{\sup}{|y-z| < r_{\alpha}} \left| \frac{\partial g(z)}{\partial s} - \frac{\partial g(y)}{\partial s} \right|$ for any C^1 function g.

Put $h_{\alpha}(x) = (G_{\alpha})_{\alpha=1}^{n}(x) = G_{\alpha}(x, \frac{-1}{2})$, and consider $f: B(a_i, \delta_i) \to B(b, c)$ Let $T = Df(a_i)$. T can be represented as a non-singular $m \times m$ matrix. ${\rm Let}\ |T|=\frac{sup}{|x|=1}|T|.$

Taking r_{α} adequately small we can find $0 < \delta < \delta_i$ such that $|x - a_i| < \delta \rightarrow 1$ $|T-(Dh_{\alpha})(x)| < \frac{1}{2|T-1|}$ and given $\epsilon < \frac{\delta}{4|T-1|}$, find α' with $r'_{\alpha} \leq r_{\alpha}$ such that $|f(a_i) - h_{\alpha'}(a_i)| < \epsilon < \frac{\delta}{4|T-1|}$. It then follows from standard techniques in analysis that Dh_{α} , is non singular for $|x - a_i| < \delta$. Put $h_{\alpha'} = k$. By using the iteration $x_0 = a_i$, $y_{n+1} = z - k(x_n)$, $x_{n+1} = x_n + T^{-1}y_{n+1}$, we can prove that for $|z - k(x_0)| < \frac{\delta}{2|T-1|}$, $k^{-1}(z)$ exists and $|k^{-1}(z) - x_0| \leq 2|T^{-1}||z - k(x_0)|$. Uniqueness is given by $|k(u) - k(v)| \ge \frac{|u-v|}{2|T^{-1}|}$. It follows that k^{-1} is defined on *B* $\left(b, \frac{\delta}{4|T^{-1}|}\right)$ and its range is contained in $B(a_i, \delta)$.

Let $\{\epsilon_n\}$ be a sequence of positive numbers with lim $\epsilon_n = 0$. We shall obtain a sequence $\{x_s\}$ with $x_s \in \{0, 0\}$ and $|F_1(x_s) - b| < \epsilon_s$. By the compactness of \overline{O} we may assume $\lim x_s = \overline{x}$ exists and $F_1(\overline{x}) = b$ by continuity. This will prove the result.

We may take the δ above as common to all (a_i, δ_i) . Let $\eta = \inf \{ |f(x) - \delta_i(x)| \}$ $|b|||x-a_i| \geq \delta, i=1,..., 2n+1$ > 0. If r_α is so small that $|h_\alpha(x)-f(x)| < \frac{n}{2}$ in \overline{D} , then $h_{\alpha}(x) \neq b$ for $x \notin B(a_1, \delta) \cup ... \cup B(a_{2n+1}, \delta)$. We may assume that for all s $\epsilon_s < \frac{\eta}{2}$ and $\epsilon_s < \frac{\delta}{4|T|^{-1}}, i=1,..,2n+1$ $T_i=Df_i$

Using the foregoing we can obtain G_{α} such that $h_{\alpha}^{-1}(z)$ has exactly $2n+1$ points for $|z - b| < \epsilon_s$ and $|G_\alpha(x, t) - G(x, t)| < \frac{\epsilon_s}{2}$ for all (x, t) . By Sard's theorem we obtain $z \in B(b, \frac{\epsilon}{2})$ which is a regular value of G_{α} , since G_{α} is smooth. Since $G_{\alpha,t} = h_{\alpha}$ in a neighbourhood of $\frac{-1}{2}$, by the inverse function theorem $G_{\alpha}^{-1}(z)$ consists of exactly $2n+1$ lines intersecting the face $t = \frac{-1}{2}$ normally. Let $\mu = ln f |b - x| > 0$. Hence there is an open set H such that ${a_1, ..., a_{2n+1}} \subseteq H \subseteq 0$ and for any $(y, t) \in B dH \times [0, 1], |F(y, t) - b| \to \frac{n}{2}$. We may thus further assume that r_{α} is small enough to ensure that for $(y, t) \in$ $BdH \times \left[-\frac{1}{2}, 1\right], |G_{\alpha}(y, t) - z| > \frac{\mu}{4} > 0.$ Now since the number of points on the lines in $G_{\alpha}(z)$ is even, $(2n+1)$ of these are on the face $H \times \{-\frac{1}{2}\}\$ and none on $BdH \times \left[\frac{-1}{2}, 1\right]$, at least one, say (x_s, l) , must be on the face $H \times \{1\}$.

Then $|\overline{F}_1(x_s) - b| = |G_1(x_s) - b| \leq |G_1(x_s) - (G_\alpha)_1(x_s)| + |(G_\alpha)_1(x_s) - b| <$
 $\frac{\epsilon_g}{2} + \frac{\epsilon_g}{2} = \epsilon_g$.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF JAFFNA

REFERENCES

- [1] A. SARO, *The measure of critical points of differentiahle maps,* Bull. Amer. math. Soc. 48 (1942) .
- [2] M. HIRSCH *Differential Topology,* Springer STM (1976).
- [3] J. C. SCANLON *Fixed Points and Topological Degrees in Non Linear Analysis,* AMS, 1964.

 $\overline{}$