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A FIXED POINT ITERATION PROCESS FOR HAMMERSTEIN 
EQUATIONS INVOLVING ANGLE-BOUNDED OPERATORS* 

BY CHIKA MOORE 

I. Introduction 

Let X be a real Banach space and T: X-+ x• where x• is the dual of X. 
Then T is said to be monotone if 

(1) (Tx -Ty,x - y) 2:: 0 

which coincides with the monotonic condition in the sense of Browder [4] and 
Minty [20] (see [8]). The mapping Tis said to be strongly monotone if for each 
x, y E D(T) and for some constant a > 0 

(2) (Tx - Ty, x - y) 2:: all x - y 112 

w 
and Tis said to be hemicintinuous if T(x + tny)--+Tx as tn-+ o+ for each 
pair x,y E D(T) where--+ denotes weak convergence. 

A linear monotone operator L: X--+ X* is called angle-bounded with con­
stant u > 0 if for all x, y E D(L), 

(3) l(Lx,y)- (Ly,x)I ~ 2u(Lx,x) 112 (Ly,y) 112 ; 

Lis called symmetric ifit is angle-bounded with constant u = 0. 

2. Preliminaries 

In this paper, we are concerned with operator equations of the form 

(4) u+KNu=f; 

which are called Hammerstein equations in the light of [16]. Equations of 
the form (4) have been studied by several authors (see e. g., [1, 5-6, 10-13, 
15-17, 21-24]) and it is known that several problems occurring in Differential 
Equations can be put in the form (4) (see e. g., [23]). It is also known (see e. 
g., [13], Chapter N) that Hammerstein operators i. e., operators of the form 
I+ AB, play a crucial role in the study of feedback control systems. 

Angle bounded operators turn out to play an important role in the theory 
of Hammerstein equations (see e. g., [1, 6, 11, 12, 15, 23]). An important 
result on the solvability of Hammerstein equations involving angle-bounded 
operators is the following: 

THEOREM (BG 1). (Browder-Gupta, [6]). Let X be a real Banach space and 
X* its dual. Let K : X --+ x• be an angle-bounded (with constant u > 0) 
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bounded (in the sense that for some /3 > 0 and for all x E X, II K x II :S /3 II x II) 
linear nwnotone operator and kt N : X* --> X be a hemicontinuous mapping 
such that for some constant a 2:: 0 

(5) (Nu - Nw, u - w) 2:: -all u - w 112 ; u,w EX", 

with a(l + u 2)/3 < 1. Then the Hammerstein equation (4) is uniquely solvable 
in x•. 

In 1975, Brezis-Browder [1], established the strong convergence of suitably 
defined Galerkin approximations to a solution of a Hammerstein equation 
involving angle-bounded nonlinear operators. It is the aim in this paper to 
establish the norm convergence of a suitably defined Mann iteration process 
(see e. g., [19]) to such a solution. 

An essential tool in the study of angle-bounded operators which we shall 
use in the sequel is the spliting of linear maps. We shall, therefore, find the 
following results useful in what follows. 

THEOREM (BG2). (Browder-Gupta, [6]). Let K : X E X$ be a linear 
monotone angle-bounded (with constant u 2:: 0) operator. Then there exists 
a Hilhert space H, a continuous linear map S of X into H withs• (the ad­
joint of S) injective, and a skew-symmetric linear map B of H into H such 
that K = S"(I + B)S, where I denotes the identity map on H, with the fol­
lowing inequalities holding: (i) II B 11:S u, and (ii) II S 112 :S /3 <---+ Vx E X, 
(Kx, x) :::; .BIi x 112 -

Moreover, (I+ B)- 1 : H --> His a bounded linear isomorphism such that 
((I+B)- 1x,x) 2:: (l+o- 2)- 1 11 x 112 , VxEH. 

THEOREM (DG). (De Figueiredo-Gupta, [11]). Let K: D(K) ~ X--> X* be 
a linear symmetric nwnotonic densely defined operator in X. Then there exists 
a Hilbert space H and a linear map S : D ( K) ~ H --> H such that K = S ~ S. 

Also, the following result shall be usefull in the sequel. 

LEMMA (D). (Dunn, [14]). Let {o:n} be a recursively generated by 

O'.n+l = (1- 6n)an + u; 

with n 2:: 1, 0:1 2:: 0, {6n} c [0,1], and 

then Hm an= 0. 
n---->oo 

3. Main results 

THEOREM (1). Let X, K, N, H, Sand B be as in theorem (BG2)with o:(1 + 
u 2),B < 1. Let M = (I+ B)- 1 + SNS* and let C be an appropriate bounded 
closed convex nonempty subset of H. Define T : C --> H by Tx = h + x - M x 
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whereh = (S"(I+B))- Let{cn}n?_obearealsequencesatisfyingO::; en< 1 
for all n ~ 0, 2:Cn = oo and I.:C! < oo. Then, the sequence {Pn} c H 
recursively generated from arbitrary zo E C by 

(6) 

where {xn} c C is such that 

(7) II Pn-1 - Xn II= inf II Pn-1 - XII 
xEC 

converges strongly to the unique solution q E H to M x = h so that s• q is the 
unique solution to the Hammerstein equation(4). 

Proof. Existence and uniqueness of a solution to the Hammerstein equa­
tion (4) follows from Theorem (BGl). Since K = S"(I + B)S (see Theorem 
(BG2)), (4) now becomes 

w+S*(I+B)SNw=f 

where w E X" is the unique solution to (4). By the injectiveness of s•, there 
exists a unique x EH such that S"x = w. We, therefore, have 

(8) S"x + S"(I + B)SNS"x = f, 

s• (I+ B) is single-valued and invertible, hence (8) reduces to 

(9) 

which is an equation in H. Now, M = (I +B)- 1 +SNS" is strongly monotone 
since 

(Mx - My, x - y) = ((J + B)- 1 (x - y), x - y) + (SNS"x - SNS"y, x - y) 

~ (1 + u 2f 1 11 x - y 112 + (NS"x - NS"y, S"(x - y)) 

~ (1+0'2f 1
1I x-y ll2 +all S"(x-y) 112 

2 -1 2 
:::0: [(l+u) -01,8] II x-y II 
=). II X - y 112 

where>. = ((1 + u 2)- 1 - a,8) E (0, 1). Also, Mis hemicontinuous. Thus, 
M : H -,. H is surjective and hence the equation M x = his uniquely solvable. 
Let q EH denote such a solution. Then q is also a fixed point of T. Moreover, 

(Tx - Ty, x - y) ~ (1- >.) II x - y 112 
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Let R : H -+ C be the proximity map, i.e., the map which assigns the 
unique element of C nearest to x E H, Vx. Then R is nonexpansive (see e.g., 
[7]). Then Xn+1 = R(Pn), Now, 

II Pn - <J 112 = (1 - Cn)2 II Xn - q 112 +c! II Txn - Tq 112 

+ 2cn(1 - cn)(Txn - Tq, Xn - q) 

:::; { (1- cn) 2 + 2(1- ..\)cn(l - en)} II Xn - q 112 

+ c~ II Txn - Tq 112 

:::; (1- ..l.cn)2 II Pn-1 - q 112 +c;i 1 

on adding (1 - >.)2c~ II Xn - q 112 to the RHS, setting d = sup II Txn - Tq II 
n~O 

and using the nonexpansiveness of R. Observe that d < oo since D(T) c C 
and R(N) is bounded. Routine argument, using lemma (D), now shows that 
Xn-+ q, in norm, as n-+ oo (see e.g., [9,14]). However, for completeness, we 
present the details. 

Let 1 - rn = (1 - Acn) 2 > 0 so that rn = Acn(2 - Acn) and set <pn+l =II 
Pn - q 112 to obtain 

(10) 

A simple induction on (10) easily yields 

(11) 

where µn 2: 0 is recursively generated by 

(12a) 

and 

(12b) 

Conditions on the real sequence now yield 

(13) 

From I: c~ < oo we have lim en = 0. Hence, we can choose an integer 
no > 0 sufficiently large such that fo:r all n ?: no, rn E [o, 1]. Now, for i?: 1, set 
Ot.j = Jl,n0+j, 6j = rn 0+j, O"j = Cno+i· So that, from or.1 = Jl,no+l 2: 0, Lemma 
(D) applies to show that JJ,n -+ 0 as n -+ oo. The inequality (11) now implies 
that <pn-+ 0 as n-+ oo so that {Pn} converges strongly to q. 

Now from M q = h, or equivalently 
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we have 

so that 

S"q + KNS"q = f 

and S"q is the unique solution to (4) and completes the proof. 

Remark If N is monotone, the hypothesis on K can be significantly weak­
ened. We have the following result. 

COROLLARY (1). Let X, X*, C, M, T, {xn} and {en} be as in Theorem (1). 
Suppose K : X -+ x• is an angle-bounded (with constant u > 0) linear mono­
tone operator, and N : x• -+ X is a hemicontinuous nwnotone operator. Then 
the conclusions of Theorem ( 1) reamain valid. 

Proof. The Corollary follows immediately from Theorem (1) on setting 
a= O so that..\= (1 + o-2)- 1 E (o, 1). 

Remark. (i) Theorem (1) remains valid if the requirement that R(N) be 
bounded is replaced with the condition that N be a bounded map or more 
generally, that N(C) be a bounded set. 

(ii) If N is assumed to be Lipschitzean (with constant LN > 0) in Theorem 
(1), we obtain the additional information of an explicit error estimate. More­
over, in this case, T defined on the whole of H is Lip ( L) with L = 1 + 6 + /3 L N. 

Observe that if O = H, then (6) reduces to 

Xn+l = (1- en)Xn + enTXn, n 2'. 0. 

COROLLARY (2). In theorem (1) (as well Corollary (1)), let T: H-+ Hand let 
N be additionally Lipschitzean. Further, kt { en} be a real sequence satisfying 
(i) 0 :S: en :S: ..\(L2 + 2..\ - 1)- 1, for all n 2: 0, and (ii) I: en = +oo. Then the 
conclusions of theorem (1) remain valid. Moreover, if en= -A(L2 + 2-1)- 1 for 
all n 2: 0, then 

II Xn - q 11:S: (1 - µ)n/ 2 II XO - q II 

withµ= >.2 (L2 + 2,\ - 1)- 1 E (0, 1). 

Proof. II Tx - Ty 11:S:II x - Y II +o II x - Y II +f3LN II x - Y II 

II Tx-Ty ll=L II x-y II; L= l+o+f3LN 

so that we obtain 

II Xn+l - q 112 :S: [(1- en)2 + 2(1- ..\)cn(l - en)+ L2c~] II Xn - q 112 

(14) :S: (1 - ..\en) II Xn - q 112 

exp (->.en) II Xn - q 112 
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Thus, iterating from o to N, using (iii), yields 

N 

II XN+l - q 112~ exp(->. Len) 11 xo - q 112--. 0 as N-. oo. 
n=O 

If en = >i(L2 + 2>. - 1)- 1, inequality (14) reduces to 

Routine induction now yields the desired error estimate. 
This completes the proof. 

In the case K is not everywhere defined on X, some alternative hypotheses 
on K yield the same result as the foregoing ones. 

THEOREM (2). Suppose K : D(K) c X-. x• is a densely-defined linear 
symmetric ( or self-adjoint) monotonic operator such that\/ x E D ( K) and some 
/3 > 0, (Kx, x) ~ /3 II x 112, and N : x• -. Xis a hemicontinuous bounded 
below operator with constant -a, a E Ifl; (i.e., N satisfies (5)) with 0:/3 < 1. Let 
M =I+ SNS" and define T: 0-. H by Tx = g + x - Mx where g = (S")- 1 f 
and C is an appropriate bounded closed convex nonempty subset of the Hilbert 
space H. Then the conclusions of Theorem (1) remain valid. 

Proof. By theorem (DG), K = s•s. Let w Ex• be the unique solution to 
(4). Then we have 

w+S"SNw=f 

so that the injectiveness of s• yields the existence of a unique x E H such that 

S"x+ S"SNS"x = f 

and hence by the unique invertibility of s•, 

x + SNS"x = (S")- 1 f = g 

which is an equation in H. Now, 

(M x - My, x - y) ~ >. II x - y 112 ; >. = (1 - a,8) E (0, 1) 

The rest of the argument now follows as in theorem (1) and the proof is 
complete. 

COROLLARY (3). In theorem (2), let N: x• -. X be a hemicontinuous nwno­
tone map and let K : X -. x• be a linear densely-defined symmetric nwnotone 
map. Then the conclusions of theorem (2) reamin valid. 

Proof. Set a= O in theorem (2) so that>.= 1. Now, in the proofoftheorem 
(1), set A = 1 and the corollary follows. 
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COROLLARY (4). In corollary (2), let X, M, Kand T be as in theorem (2) 
(with T: H-> H). Then the same conclusions are obtained. 

COROLLARY (5). Let X, M, T and {xn} be as in corollary (4) and let K be as 
in corollary (3). Suppose N is Lipschitzean monotone map and {en} satisfies 
(i) 0:::; en :::; (L2 + 1)- 1 for all n 2: 0 and (ii) I: en= oo. Then the conclusions 
of theorem (2) all hold. Moreover, if en = (L2 + 1)- 1 for all n 2: 0, then with 
µ = (L2 + 1)-1 

II Xn - q II::; (1 - µf/ 2 II XO - d 

Further, if en = (n + L 2)- 1 for all n 2: 1, then the rate of convergence is of 
the order 0( n- 112). 

Proof. Clearly, I::Cn(l - en) = I:(n + L2 - l)(n + L2 )- 2 = oo. Setting 
'Pn = II Xn - q II 2 gives that 'Pn+l ::; <pn for each n and also 

(15) 

Summing from 1 to N, observing that the LHS of (15) telescopes, yields 

so that 

This yields the stated order of convergence and completes the proof. 

It turns out to be that if N is Lipschitzean, the usual Picard iterations 
converges. We have the following result 

COROLLARY (6). Let X, X", K, N, Mand H be as in theorem (1) or (2) and 
let N be additionally Lipschitzean. Then the usual Picard iterations generated 
from an arbitrary xo E H converges strongly to the unique solution q E H to 
M x = h. Moreover, convergence is at least as fast as a geometric progression 
with ratio c = (1- ) 2 L- 2 ) 112 E (0, 1). 

Proof. Define the iteration operator Tr : H -> H by 

Now, 

T,.x = x - r(Mx - h); x EH and some r > 0. 

II Trx - T,.y 112 =II x - y 112 -2r(Mx - My,x - y) + r 2 II Mx- My 112 

:::; (1-2>.r+r 2L2) II x-y 112 

::;c 2 Jlx-vll 2 (c=1-,\ 2 L- 2 , r=>.L- 2 >0) 
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Hence, T,. is a contraction so that the usual Picard iterations defined by xn+ 1 = 
Trxn converges strongly to the unique fixed point of Tr with the stated error 
estimate. This completes the proof. 

Remarks. The Mann process converges with convergence being (i) at least 
as fast as a geometric progression with ratio k = ( 1 - >.. 2 ( L 2 + 2>. - 1 )- 1) 1/ 2 E 

(0, 1) provided en= ,\(L 2 + 2>.. - 1)- 1 (ii) oforder O(n- 112) if en= (n + L2 )- 1 

for al! n 2". 0. The usual Picard iterations converge with convergence being at 
least as fast as a geometric p:rogresion with ratio c = (1- >.2 L- 2 ) 112 E (0, 1). 

Thus, if 2.,\ - 1 < 0 then the Mann process has a faster rate of convergence 
than the usual Picard iterations while otherwise, the Picard iterations have a 
faster rate of convergence and so the Mann process is unnecessary. However, 
since, in general, .>. can be made as small as possible, it stands that 2.>.-1 < 0 so 
that the Mann process affords an improvement on the usual Picard iterations. 

A linear strongly monotone map K with constant .>. > 0 is angle-bounded 
with constant u = >..-1 II K II, since 

l(x,Ky)-(y,Kx)I :S;jl x 1111 Ky II+ II Y 1111 Kx II 
:::; 211 K 1111 x 1111 Y II 
:::; 2,\-1 II K II (x, Kx)l/2(y, Ky)l/2 

If K is quasi positive with constantµ > 0, i.e., 

(x,Kx) 2 µ 11 Kx 112 

and also satisfies a weak coercivity condition of the form 

II Kx 112 () II x II, for some 0 > 0 

then it follows that K is angle-bounded with constant u = µ- 10- 1 . 

Using these facts, we obtain the following generalisations of the result in 
Chidume-Moore [10] and Moore [21,22]. 

THEOREM (3). In Theorem (1), let K be a linear strongly nwnotone ,nap 
with constant A > 0. Then the conclusions of Theorem (1) remain valid. 

THEOREM (4). In Theorem (3), let K be a linear quasi-positive and weakly 
coercive. Then the same conclusions are obtained. 

Setting u = 6- 1 II K II and /3 =II K II in the first instance and u = µ- 10- 1 

and f:J = µ- 1 in the second instance in Theorem (1) yields the assertions. 
It is definitely routine now to see that the Corollaries also apply to Theo­

rems 3 and 4. 

General remarks 

If Xis a reflexive Banach space (in particular, if Xis Lp or lp, 1 < p < =,) we 
then consider the Hammerstein operator I+ KN defined on X (instead of X$ 



HAMJ\/!ERSTEIN EQUATIONS INVOLVING ANGLE-BOUNDED OPERATORS 4 7 

as done above). The same results as in Theorems (1)-(4) and their Corollaries 
are easily obtained in the new setting where K : x• --+ X and N : X --+ x• . 

The basic tool we have __ _.,,., .. -J all through is the splitting oflinear angle­
bounded monotone maps; i.e., for K : X --+ x• we have that either K = 
S* + B)S where S : X--+ H, hence, S" : H--+ X", and I+ B: H--+ H 
or K = s• S with S : X --+ H and s• : H ....., x•. If however, D(K) ~ X", 
then we would have S : X* --+ Hands• : H --+ xu. We, therefore, need 
the :reflexivity of X to indentify x•• with X. We have not been able to dis­
pense with reflexivity in this regard so far. It would, therefore, be interesting 
to obtain results analogous to Theorems (1)-(4) and their Corollaries for the 
Hammerstein operator I+ KN defined on X, a Banach space, which need not 
be reflexive. 

Furthermore, these results were possible because we were able to reduce 
the Hammerstein equation (I+ KN)u = fin x• (or for a reflexive X, (I+ 
KN)x = fin X) to an equivalent equation Mx = h in Ha Hilbert space, 
which process, in tum, was made possible by the splitting of angle-bounded 
linear monotone maps. In a setting where such splitting is not possible, the 
method above fails; we require an alternate method. The methods used in 
Chidume-Moore [10] and Moore [21] i.e., defining T by 

(i) Tx = K- 1 f + x - (K- 1 + N)x, (16a) 
and (ii) Tx = f + x -- (K• + KNK")x, (16b) 
are adequate only for X = H, a Hilbert space. For a real Banach space with K : 
X" -> X (or K : X....., x•) and N : X....., x• (or N: x• --+ X), the definitions 
(16) fail to make nice sense. The alternate approach used in Chidume [8] and 
Moore [21,22] i.e., defining T thus 

Tx = f- KNx 

is again disadvantaged by the fact a product (i.e., composition) of monotone 
operators need not be monotone. 

It would, therefore, be of considerable interest to define a mapping T : 
X ....., X or T : x• ....., x•, for a :real Banach space X, that will be suited for 
approximating solutions to the Hammerstein equations involving monotone 
operators using fixed point iteration processes. 
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