SOME SURGERIES IN COMPACT REDUCIBLE 3-MANIFOLDS WHICH PRODUCE IRREDUCIBLE MANIFOLDS

By Antonio Lascurain Orive

1. It is proved that, given M_1 and M_2 3-manifolds which are closed, connected, compact, orientable, irreducible and different from S^3 , then the manifold obtained by doing non integral surgery in $M_1 \# M_2$ along certain closed curves is irreducible. These curves are obtained by glueing two arcs properly embedded in M_1 and M_2 punctured, whose extensions to closed loops, using the boundary spheres, are not contained in 3-balls. We will work in the piecewise linear category.

This result may have some consequences in knot theory. For instance, there is a conjeture which says that the knot obtained by applying a full twist to the connected sum of two prime knots, represented by braids, cannot be composite. Using two-fold branched covers, the above result may give some information about this conjecture. I would like to thank José María Montesinos for suggesting the original problem and Francisco González Acuña, who has acquainted me in many ways with this subject.

2. In the following, M_1 and M_2 will be as above.

By M_j^0 , j = 1, 2, we will mean $\overline{M_j - B_j^3}$, where B_j^3 denote 3-balls embedded in M_1 and M_2 respectively.

To perform Dehn surgery along a curve γ in a manifold M we will assume that:

a) A regular neighbourhood $N(\gamma)$ of γ is chosen.

b) A homeomorphism

$$H:T^2\to N(\gamma)$$

is chosen, where T^2 is a solid torus; thereby one has a natural selection for a meridian and a longitude.

Hence, $\frac{p}{q}$ surgery along γ in M will mean to attach a 2-handle along a "thickened" curve in $\partial \{\overline{M - N(\gamma)}\}$, which runs p times meridinally and q times longitudinally, and then cap the resulting manifold. Our results will apply to all such framings.

We will use a result of González Acuña called the Six Lemma. First we need a definition:

Definition. Let X, Y be topological spaces. A function $f: X \to Y$ is called π_1 -injective, if given a loop α in X such that $f(\alpha)$ is contractible in Y, one has that α is contractible in X.

LEMMA (González Acuña). Let W_1 , W_2 be n-submanifolds of W^n such that $W = W_1 \cup W_2$ and $W_1 \cap W_2$ is a submanifold of both ∂W_1 and ∂W_2 . Suppose also that

a) The following inclusion maps are π_1 -injective

$$\partial W_1 \xrightarrow{i_1} W_1, \qquad \qquad W_1 \cap W_2 \xrightarrow{i_2} W_2$$

 $\partial W_2 - W_1 \xrightarrow{i_3} W_2.$

and

b) A loop in $\partial(W_1 \cap W_2)$ is simultaneously contractible or non contractible in $W_1 \cap W_2$, $\overline{\partial W_1 - W_2}$ and $\overline{\partial W_2 - W_1}$.

Then the natural inclusion map $\partial W \to W$ is π_1 -injective. A reference can be found in [3].

3. Before proving the main result we need a lemma.

LEMMA 1. Let $M^3 = T_1 \cup T_2$ be a 3-manifold obtained by glueing two solid tori T_1 , T_2 along an annulus A, which is an essential submanifold of both ∂T_1 and ∂T_2 . Suppose also that the homomorphisms

$$i_{j\#}: \Pi_1(A) \to \Pi_1(T_j), \qquad j = 1, 2$$

induced by the natural inclusions $i_j : A \mapsto T_j$, j = 1, 2 are neither zero nor epimorphisms. Then M^3 has incompressible boundary.

Proof. If ∂M^3 is compressible, by Dehn's lemma, there is a properly embedded 2-disk D^2 in M^3 such that ∂D^2 is essential in ∂M^3 , hence one may construct a homeomorphism

$$H: (\partial M^3 \times I) \cup \{2\text{-handle}\} \to T^0,$$

where T^0 denotes a punctured solid torus and I an interval. This can be achieved by sending $\partial D^2 \times I$ onto {meridian} $\times I$. Furthermore, we may extend H to a homeomorphism between M^3 and a solid torus, being the former an irreducible manifold (union of two solid tori glued along an incompressible annulus in both tori). However, M^3 can not be homeomorphic to a solid torus, since $\Pi_1(M^3)$ is not abelian, being a proper free product with amalgamation.

Given a closed three manifold M and a properly embedded arc γ in M^0 , we denote by $\overline{\gamma}$ any closed loop in M^0 obtained from γ using the boundary sphere, ∂M^0 . Now we can state the main result:

THEOREM. Let M_1 , M_2 be two 3-manifolds which are closed, connected, compact, orientable, irreducible and different from S^3 , α and β properly embedded arcs in M_1^0 , M_2^0 respectively, such that $\overline{\alpha}$ and $\overline{\beta}$ are not contained in 3-balls. It is also assumed that $\partial \alpha = \partial \beta$ in $M_1 \# M_2$. Then

$$\mathfrak{M} = \{ M_1 \# M_2, \ \alpha \cup \beta, \ \frac{p}{q} \in \mathbb{Q} - \mathbb{Z} \}$$

is irreducible, where \mathfrak{M} is the manifold obtained by doing $\frac{p}{q}$ surgery, $q \neq 1$, along $\alpha \cup \beta$, in $M_1 \# M_2$.

 $\frac{Proof.}{M_1^0 - N(\alpha)} \text{ We will consider three cases according as the boundaries of } \frac{M_1^0 - N(\alpha)}{M_2^0 - N(\beta)} \text{ are compressible or not.}$

Case 1. $\overline{M_1^0 - N(\alpha)}$ and $\overline{M_2^0 - N(\beta)}$ have incompressible boundary.

González lemma implies that $\tau \cup \overline{M_1^0 - N(\alpha)}$ has incompressible boundary, where τ denotes the surgery solid torus. The hypothesis are satisfied because:

a) By assumption $\partial \{\overline{M_1^0 - N(\alpha)}\}$ is incompressible in $\overline{M_1^0 - N(\alpha)}$.

b) $\tau \cap \overline{M_1^0 - N(\alpha)}$ is an annulus which is incompressible in τ , as we are not considering the trivial surgery.

c) Also by the same reason $\partial \tau - \{\overline{M_1^0 - N(\alpha)}\}$ is an incompressible annulus in τ .

d) Condition 2 of González lemma follows, as each component of the boundary of an annulus is a strong deformation retract of such annulus.

Now it is well known that two irreducible manifolds glued along a surface which is incompressible in both of them form an irreducible manifold. Hence, as $\overline{M_1^0 - N(\alpha)}$ and $\overline{M_2^0 - N(\beta)}$ are irreducible, (since $\overline{\alpha}$ and $\overline{\beta}$ are not contained in 3-balls), one gets that \mathfrak{M} is irreducible. Observe that this case is true for all surgeries except for the trivial one.

Case 2. $\overline{M_1^0 - N(\alpha)}$ has incompressible boundary but $\overline{M_2^0 - N(\beta)}$ has not.

First observe that $\overline{M_2^0 - N(\beta)}$ is a solid torus because it is an irreducible 3-manifold whose boundary is a compressible torus. One also gets that M_2 is a lens space.

Again, as the union of two irreducible manifolds glued along an incompressible surface yields an irreducible manifold, the result follows from Lemma 1. applied to $\tau \cup \overline{M_2^0 - N(\beta)}$.

To show that the hypothesis of Lemma 1. are satisfied, we write

$$T_1 = \overline{M_2^0 - N(eta)}, \qquad T_2 = au \qquad ext{and} \qquad A = T_1 \cap T_2$$

The homomorphism

$$i_{1\#}:\Pi_1(A)\to\Pi_1(T_1)$$

is not zero, otherwise M_2 would be homeomorphic to $S^2 \times S^1$. Also

$$i_{2\#}:\Pi_1(A)\to\Pi_1(T_2)$$

is not zero, as we are not doing the trivial surgery. One also has that i_{1*} is not an epimorphism, otherwise M_2 would be S^3 .

Finally, i_{2*} is not an epimorphism, because this would imply that the core of A would run once along ∂T_2 in the longitudinal direction, however in that case the surgery performed is integral.

This last remark follows because if

$$\phi: \partial \tau \to \partial \{M_1 \# M_2 - N(\alpha \cup \beta)\}$$

is the surgery homeomorphism, $\partial \tau$ framed in the natural way and $\partial \{M_1 \# M_2 - N(\alpha \cup \beta)\}$ as originally, one would get that ϕ_* sends curves of type (q, 1) to curves isotopic to the curve (1, 0) and consequently curves of the type (1, 0) to curves isotopic to the curve (a, 1).

Case 3. $\overline{M_1^0 - N(\alpha)}$ and $\overline{M_2^0 - N(\beta)}$ have compressible boundary.

As in Case 2, these manifolds are solid tori. We denote $\overline{M_1^0 - N(\alpha)}$ and $\overline{M_2^0 - N(\beta)}$ and τ by T_1 , T_2 and T_3 respectively. With this notation \mathfrak{M} is homeomorphic to

$$\bigcup_{i=1}^{3} T_{i}$$

glued pairwise along annuli.

Let A_{ij} be the annulus obtained by intersecting T_i with T_j , $i, j \in \{1, 2, 3\}$, $i \neq j$. For each solid torus T_i , the common boundary of A_{ij} and A_{ik} in ∂T_i , $\{i, j, k\} = \{1, 2, 3\}$ consist of two parallel curves, whose class we denote by a_i .

Since trivial surgery is not considered and M_1 , M_2 are not homeomorphic to $S^2 \times S^1$, the curves a_i , i = 1, 2, 3 are not equivalent to the meridian class in T_i . Furthermore, the arguments used in Case 2 imply that for all i = 1, 2, 3, the curves a_i run along ∂T_i more than once longitudinally.

Hence, \mathfrak{M} admits a Seifert fibration with exactly three exceptional fibres and S^2 as orbit surface. See [1, Theorems 3 and 4]. Finally, it is known that these manifolds are irreducible. See [2, p. 89].

Notice that in cases I and II the manifold \mathfrak{M} has an incompressible torus and so, it is a Haken Manifold.

DEPARTAMENTO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNAM CIUDAD UNIVERSITARIA MÉXICO, D. F., 04510 MÉXICO

References

- W. HEIL, 3-manifolds that are sums of solid tori and Seifert fibre spaces, Proc. Amer. Math. Soc. 37 (1973), 609-614.
- [2] W. JACO, Lectures on three-manifold topology, Regional conferences series in Mathematics, (43) published by the American Mathematical Society, 1977.
- [3] M. T. LOZANO Archodies, Math. Proc. Camb. Phil. Soc. (1983), 94, 253-260.