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AN EXTENSION RESULT FOR FUNCTIONS DEFINED ON A
STRAIGHT LAYER

By JosE A. CANAVATI

Introduction

Letw be an open subset of R™ such that the boundary of w satisfies somekind
of regularity condition. The problem of constructing a continuous extension
operator between Sobolev spaces E: W*?(w) — WHP(R™), originates, among
others, in the works of Deny and Lions [4], for the case p = 2; Calderén [3],
for the case 1 < p < oo; Adams, Aroszajn and Smith [2], for the case p = 2;
and Stein [7], for the case 1 < p < oo. This last author has constructed
a“universal” extension operator E: W5?(w) — W*P(R"™) for 1 < p < oo and
all non-negative integral k, when the boundary of the domain w is“minimally
smooth” (cf. [7; p. 189]). This extension operator satisfies

| Eullwrrmey < O,y |ullwrew if uw€ WEP(W),

and is universal in the sense that F is defined for all the Sobolev spaces and
the constant C(k,n,w) does not depend on p for 1 < p < co.

Now, the problem of giving explicit bounds on the norm of the operator F
in terms of the“shape” of w, is of a more difficult nature. Here we study the
following particular case:

Let 6 > 0 be fixed, and consider the open subsets of R™:

w=R""1x]-60 and Q=R""!'x]—6 +ool.

In this note we prove that is possible to define an extension operator between
the usual Scbolev spaces

E:WhE2(w) — Wk2(Q)

such that its norm satisfies an estimate of the type ||E| < C/1+ 1/, and
C is a constant depending only on n and k. We also show that this extension
operator is optimal in a sense made precise in Theorem 3.5.

1. Notation and basic terminoclogy

A general point of R™ will be denoted by z = (z1,...,%,). Frecuently we
will write z = (2/,z,), 2’ = (z1,...,7,—1). If { is an open set in R™ and
0 < k < oo is an integer, we denote by W*2({)) the Hilbert space consisting
of all measurable functions v on Q such that 6% € L*(Q), | « |< k, where
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the derivatives are taken in the sense of distributions. The inner product and
norm on W52(Q) are given respectively by

(1.1 (u,vb);g,nz Z (2)/3“%80‘7}(&:,
Q

|| <k
and
' 1/2
(1.2) lullo=14 > ( )/ | 0% [2dx s
lal<k N /0
where

(k) _ k!
a) (k=] alal’

We let Wé“ 2(Q) be the closure in W52(€2) of D()), the space of all C* functions
on Q) with compact support contained in {}. Define D(Q)) as the space consisting
of the restrictions to () of functions in D(R™). It is well known (cf. [5], p. 248),
that if the boundary 8Q of () is of class C, then D({)) is dense in W*2(Q).

From the formula of integration by parts it follows immediately that if
u e Wk2(Q) and ¢ € D(Q)), then

(u, Pl 0 = / uw(l — A ddz,
0

where A = §%/0z% + ... + 8%/ is the Laplace operator.
If u € L?2(R™), then its Fourier transform will be denoted by

I 1 —ié.z
(1.3) Fu(é) = a(&) = G j;n e~ ry(z)de.

Sometimes we will have to take the Fourier transform of u but only with
respect to the first n — 1 variables ' = (z1, ..., z,.1), and it will be written as

1

(1.4) Flu, zq) = @n)n-D72

Y 14
/ e T (e, z,)de.
Rn—1

If s > 0, we denote by H*(R") the Hilbert space consisting of all functions
u € L2(R™) such that (1 + [£]2)%/20 € L*(R™), together with the inner product

(1.5) wy0)n = / (1 + R a)B ) de,
| .

and associated norm

1/2
16) P { /R L+ € | ) P dg} .
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As is well known, (cf. [1], [5]), D(R™) is a dense subspace of W*2(R") and
H*(R™) respectively. Also, if s = k an integer, then

WE2@R™) = H¥(R™),

and the norms (1.2) and (1.6) are equivalent.

2. Trace operators on half-space

Consider the Hilbert space
Tk — ch—l/2(Rn—-1) % Hk—3/2(Rn——l) XX Hl/Z(R'n—l)’

together with the inner product

k-1

F e =Y (F59k—j-1/2n1

J=0

—

= o fe-1), 3= (g0,---,9r1) € T*, and asociated norm

o1 1/2
| flre = {Z Ifjli—j—l/&n——l} :

=0

Let R? = {(z/,z,) € R™ : z,, > 0}. Then we have the following well known
result [6, p.84]: There exists a bounded linear operator

F:WE2R?) — TF,
’7“‘ = (’)’Oua MY, 7’719—1“')1“ € Wk’Z(Rji)’

such that

v =0 ul, ,(G=0,1,..., k—1), forallu € DRY)

It is clear that ¢ = 0 for every ¢ € D(R%), and if we use the fact that
D(R?) is dense in Wé“ 2(R7), we see that Ju = 0 for all u € W: 2(R7). In fact,
it can be shown (cf. [6], p. 90) that

WEAR?) = {fu e WP2®R?) i yju=0  (j=0,1, ..., k—D}.

The following is a well known existence, uniqueness, and continuity of the
solutions (with respect to the data) result, for strong solutions of the Dirichlet
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problem in R7 (cf. [6]): Given § = (g9, 91,---,9k_1) € T*, there exists a unique
u € WE2(R%) N C*®(R7}) such that

[A-2)Fu=0 inRY

(2.1) ) :
1 vu=g; (G=0,1,. .., k=1).

Furthermore, if we let u = Z§, then Z: T* — W*2(R%) is a bounded linear
operator, i,e., there is a constant C' = C(n, k) such that
2.2) | Z§llk,rr < Clglge, forall g§eT*.

3. An extension operator on a straight layér

First we need a lemma.

LEMMA (3.1). Let G = R* 'xla,b[, —co < a < b < o0. Ifu, v € Wh3(Q®),
then

b k
(3.1) (u, V)i, = / / > (k) o9, F'u.0, F'v dar, ¢ de,
Rr—1 a =0 J

where o = (1 + | & |HY/2.

Proof. Let a = (¢, a,). We have from Parseval’s identity

) = ' (k 0%u.0%0 d dz’
(u,vk,c;~—/]Rn_1 /Z a) w.0%0 dzy, » dz

¢ lal<k
b k ‘ R
_ / ¥ ( )(ig')a B (i) 02 7o dz,y b dE'.
Rn—l a (6%
o<k
Noticing that
k kN (k—an
= )i k] o = (Q{ ] an)v
oY% Qn o
and

. k—a
A k— Qp N T\n k— Qp : : I n2a’
- ( o )(g) T = ( ! ) m(& a

o | <k—an 1=0 =

k—on

=y <k_lo‘”>(g% o)
1=0

— (1 + ‘gll2>k——an
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we obtain

k
3 ( g )a;:np'u.agnma + |2,
Qn

=0

T p—
Ja|<k

and from this result follows.
PROPOSITION (3.2). There exists a bounded linear trace operator
F=(r0, 71, .., Te_1) : WFE(w) — T*,
such that

iU = Gflu]m oU=0,1,...,k-1), forallue D@W),

and

(3.2) 17 < /1 +1/6.

Proof Letw € D(@),and g; =7;u (j =0,1,...,k—1) If h; = F'g;, then

b€ = 5 (@n + DI F uE e )2

SRS

0
/5 —&% ((zn + 8)]0% Fu(€’, m@)}z) dz,,

0
3.3) _ % j/_ 5 Ez‘g'; ((@n + OO F'ule’, )00 Ful@, ) ) de

= % /_ Z (]ag;F’uF + (zn + )OI F U0 Flu
+ (zn + 5)871F'u.ag;+1“ﬁ’f_u) .
We want to bound g; in H*~7—1/2(R"~1), and there
l95lk—j—1/2,n-1 = /ﬁ{n;l oK=L (¢ de

Consider the contribution of the second term in (3.3); since (z, + §)/6 < 1

02’“—%"1-*—*%; 61331“F’u.8%ml < %|a‘k_j_13£+lF’ulz + %10’“‘j3¥;F'u I,
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and similarly for the third term in-(3.3). Thus, setting m = j + 1 in the terms
involving 87+ F'u we obtain

k-1
[Fulfn =3 /R oy (€ P!
3=0 VK"

0 k-1 k
1 L
S/ {/ (5 Zazk_%lale'uF + Z o2k=2m | gm ply 24
N A N m=1 :
k-1 o
Za%—magf'uF) dt}d{f’.
§=0
The last two sums combine to yield
k—1 o ki
0_2k:|Flu|2 + 220_219—2_]’8%F/u|2 + Iarkl:F/uIZ < Z (j>02k_2jla$;,Fl'U/]2
j=1 §=0

and so, reference to (3.1) shows that
[Fulfe < (1+1/6) [|ull} -

REMARK (3.3). There is a class of functions {u. : ¢ > 0} in W*2(w) for
which

(3.4) | e | > V61— 0] ue ||y, € >0
Thus, the bound in (3.2) is sharp.

To see this, fix a function ¢ € S(R™!), the Schwartz space, and let
ue(x',x,) = Plex’). Then, letting y = ex’ and = £’ /e we have

Flu (¢, z,) = cn_l/ e~ € B(ex)dz'
Rn-1
=cCp_1 / e~ WNPp(e " dy = cp_16” " TLF G(n).
Rn—1
By (3.1) with 8,/ Flu=0forj=1, ..., k,

0
/ / o* | Fluc |2z, b de'
Rn—=1 | J -6

Ci~166—n+1 / 1 UZk’FI¢(n)[2dn.
Rn—

2
lfute e o

(3.5)
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where o = (1 + [¢/|)Y/2 = (1 + €%[n|?)1/2. Also, since ju =0 (j = 1,..., k —1)
and rpue(z’, 0) = ¢(ex’),

3.6) FuelB = 2o / o251 F () [2dl.
]Rn—l
From (3.5) and (3.6) we get

l,]'-‘u l%k /]R 1(0_2Ic _ U’Zk_l)]F/(ﬁ(’I])Izd’r]
1—§—I= = LRe-

el / o2 |F' ()|
Rn-—l

3.7

Now, %at =logo.ot, sothat 0 < 0%k — g%~ < log 0.0?* (recall that o > 1.)
Define p = |n|. For p < e=1/2, '

N ™

logo = %log(l +e2p?) < %Iog(l +e) <
Thus
[ = brwlass [ o P P
P<E_1/2 2 Rn—1
Also, since F'¢ € S(R™1)
/ (o2 — 02’“—1)[1:”(77)[2(177 =0E™) forallm=0,1,....
p>e—1/2

Therefore in (3.7) the left hand side is 0(g).
Let u € W*2(w) be given. Then, the Dirichlet problem

3.8) { (1-A)y=0 inR7

ViV = Tju G=0,1,...,k—=1).

has a solution v € W*2(R7?) N C*(R?). Define

v inw
Bu = - T
v mR%,

then we have
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THEOREM (3.4). E: Wr2(w) — W*2(Q) is an extension operator, and

(3.9) ‘ IE|| < C/I+1/6,

where C is a constant depending only on n and k.

Proof. From (2.2) we know that
1Z8gs < Clflzs, forallg e T*.
In particular, if § = 7u, u € W*2(w), then
(3.10) [v]le,re < Cl7u|7x.
From (3.2) and (3.10) we obtain

[vllk, Ry < CV1+1/6]ullkw-

Therefore

[ Eullko < llullke + lvllerey < llullew + Cv/1 + 1/6{ullk,w

<A+ CV1+1/0|ullre <A+ O)1+1/6|ullkw,
where C' + 1 is a constant depending only on n and &.

THEOREM (3.5). Theextension operator E is opiimal in the following sense:
Let u € WR2(w). Then, for any w € W*2(R%) such that yw = Tu we have

lwliere > [[vllere,

where v € W52(R%) is the solution of the Dirichlet problem (3.8).

Proof. Let w = v+ f. Then f € Wy *(R%), and since v € C*°(R%), from (3.1)
we obtain

W, gy = /;n_l {/0
oo k k
:/ / Z (j)azk”%(—l)j@ﬁjF'v) F_’fdscn} ¢’
R=—1 | Jo 7 ,

k
(j) o290 Fly. 00 FT f dmn} de’
0

j=

3=0

= / { / m<02 — aﬁ)kF'v.F—gf‘dzn} d¢' = 0.
R~—1 LJO

The last equality follows from applying the Fourier transform F’ to the
equation (1 — A)*v = 0, yielding in this case (02 — ¢®)*F'v = 0, where
=0+ |¢PV2, ¢ = (&,...,&—1). From this result follows.
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