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CESA..RO CONVERGENCE OF THE UNDISCOUNTED VALUE 
ITERATION METHOD IN MARKOV DECISION PROCESSES 

UNDER THE LYAPUNOV STABILITY CONDITION* 

BY ROLANDO CAVAZOS-CADENA 

1. Introduction 

This work concerns Markov Decision Processes (MDP's) with denumerable 
state space and discrete time parameter; the reward function is continuous 
and bounded and the performance of a control strategy is measured by the 
(long~run expected) average reward criterion. In this context the following 
problems are addressed: 

Construct 

(i) A solution of the average reward optimality equation (AROE), 
and 
(ii) A sequence of policies whose limit points are optimal. 

These problems are approached via the Value Iteration (VI) procedure 
which has been successfully used, for instance, in the following cases: (a) For 
MDP's with finite state space [12], (b) when the transition law of the system 
satisfies strong ergodicity conditions like simultaneous Doeblin or Scrambling 
[3], or (c) when the initial 'error function' in the VI procedure is bounded [8); 
see also [5] and inner references. Besides standard continuity-compactness 
assumptions, conditions (1) and (2) below are supposed to hold true: 

(1) Under the action of any stationary policy, the state space is a communi
cating class, 

and 
(2) the Lyapunov Function Condition (LFC) for bounded rewards holds true 

[7, 13]; 

the latter assumption can be safely classified. as the weakest among the 
conditions presently available to guarantee the existence of optimal stationary 
policies for arbitrary continuous and bounded rewards. 

Within this framework, an answer to the problems posed above is contained 
in Theorem (2.1), which is the main result of this note. At this point it should 
be mentioned that the solution is based on convergences that are weaker 
than those obtained under conditions stronger than LFC. For instance, under 
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(MAXFAPS) under Grant No. 01-01-56/04-93, and by the Third World Academy of Sciences 
(TWAS). 
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(simultaneous) scrambling the relative value functions produced by the VI 
method converge uniformly at a geometric rate to a solution of the AROE [3] 
whereas, under LFC, Theorem (2.1) yields pointwise convergence in a Cesaro 
sense; however, just this type ofresult is sufficient to achieve the desired goals. 

The remainder of the paper is organized as follows: Section 2 contains 
a brief description of the control model, the VI procedure as well as the 
statement of the main result in the form of Theorem (2.1), which is proved 
in Section 4 after the preliminaries given in Section 3. Finally, this work 
concludes in Section 5 with some brief comments. 

2. Decision model and main result 

Let (S, A, r,p) be the usual MDP where the metric space A and the denu
merable set Sare the action and state spaces, respectively; for each x E S, 
A(x) c A stands for the nonempty set of admissible actions at state x. On 
the other hand, r is the reward function and p is the transition law. The in
terpretation of this model is as follows: At each time t E N := {O, 1, 2, · · ·} 
the state of a dynamical system is observed, say Xt = x E S, and an action 
At = a E A(x) is chosen. Then, (i) a reward r(x, a) is obtained and (ii) regard
less of the previous states and actions, the state of the system at time t + 1 
will be Xt+l = y E S with probability p(ylx, a); this is the Markov property of 
the process. 

AsSUMPTION (2.1). (i) For each x ES, A(x) is a compact subset of A. 
(ii) For each x, y E S, the mappings a r-+ p(ylx, a), and a r-+ r(x, a) are 

continuous on A(x). 
(iii) r is a bounded function, i.e., 

11,11 := sup{llr(x,a)II Ix ES, a E A(x)} < oo. 

Control Policies. Fork EN, the information vector his defined as follows: 

(2.1) Io := Xo and Ik := (Xo, Ao, ... ' xk-1, Ak-1, Xk), k > 0, 

whereas, for each t EN, ht := (xo, ao, · · ·, Xt-1, at-1, Xt) denotes an admissible 
history of the process up to time t; this means that xk E S for k :::; t, and 
ak E A(xk) if k < t. A policy 1r = {1rt} is a (measurable, possibly randomized) 
rule for choosing actions which may depend on the current state as well as on 
the record of previous states and actions. If 1r is the policy being used and B is a 
Borel subset of A, theprobabilityoftheevent [At EB] given It= ht is ?Tt(Blht), 
where ?Tt(A(xt)lht) = 1 always holds. Set lF := I1xEsA(x), that is, lF consists 
of all choice functions f: S-+ A such that J(x) E A(x), x E S; notice that lF is 
compact in the product topology. A policy 1r is stationary if there exists f E lF 
such that 1 = 1r({JCxt)}lht) is always valid and, as usual, lF is identified with 
the class of stationary policies. Given the initial state X 0 = x 0 and the policy 1r 
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being used, the distribution of the state-action process { (Xt, At)} is uniquely 
determined; it is denoted by P1r[·IX0 = x], whereas E1r[·IXo = x] stands for 
the corresponding expectation operator (see, for instance, [5, Ch.1]). On the 
other hand, it can be shown that under the action of any stationary policy the 
state process { Xt} is a Markov chain with stationary transition mechanism 
[5, 9]. 

ASSUMPTION (2.2). Under the action of any stationary policy, the state space 
is a communicating class. More explicitly, for all f E F and x, y E S, there 
exists n = n(x, y, J) such that P1[Xn = y!Xo = x] > 0. 

Performance Index. The (long-run expected) average reward at state x E S 
under policy rr is defined by 

J(x, rr) := lim sup kl i E1r [t r(Xt, At)IXo = x] 
k--+oo t=O 

whereas 
J(x) := sup J(x, rr) 

7r 

is the optimal average reward at state x. A policy 1r is optimal if J(x, rr) = J(x) 
for all x ES. 

Optimality Equation. Throughout the remainder z E S is a fixed state and 
the hitting time T is defined by 

(2.2) T := min{n > 0 I Xn = z}. 

On the other hand, for an event W, I[W] denotes the corresponding indicator 
function. Under the following assumption the average reward optimality 
equation (AROE) given by (2.3) below has a solution yielding an optimal 
stationary policy. 

ASSUMPTION (2.3). (LFC for bounded rewards [7, 13).) There exists l: S--+ 
[O, oo) which satisfies conditions (i)-(iii) below; such a function is referred to 
as a Lyapunov function for bounded rewards. 

(i) 1 + I:y'i"z p(ylx, a)l(y) :S l(x), x E S, a E A(x). 

(ii) For each x E S, the mapping 

f 1---+ I:p(ylx, J(x))l(y) = E1[l(X1)I[T > l]IXo = x] 
y=Jz 
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is continuous on IF. 

(iii) For each f E IF and x ES, E1[l(Xn)I[T > n]IXo = x]-+ 0 as n-+ oo. 

The main consequence of Assumptions (2.1) and (2.3) is the following [7]. 

LEMMA (2.1). Under Assumptions (2.1) and (2.3), there exists h: S -+ ID;_ 

and g E R such that (i)-(iv) below occur. 

(i) g = J(x), x E S; 

(ii) h(z) = 0, and for all x ES, lh(x)I S 2llrlll(x). 

(iii) The AROE is satisfied by g and h(-), that is, 

(2.3) g + h(x) = sup [r(x, a)+ Lp(ylx, a)h(y)], x E S. 
aEA(x) y 

(iv) An optimal stationary policy exists. Furthermore, for each x E S, the right 
hand side of (2.3)-considered as a function of a E A(x)-has a maximizer 
j*(x), and the corresponding policy f* E IF is optimal. 

REMARK (2.1). The notation in Lemma (2.1) will be used consistently. 
Notice that g is the optimal average reward at every state, and then it is 
uniquely determined; the uniqueness of h will be established in Lemma (3.2) 
below. 

REMARK (2.2). There are two additional consequences of Assumption (2.3) 
which will be important in the next sections: 

(i) For any policy 7r, Err[TIXo = x] s l(x), x E S, where Tis as in (2.2); see, 
for instance [2, 7]. 

(ii) For each policy f E IF, the corresponding Markov chain has a unique 
invariant distribution, say { qj(x) I x E S}; in this case, for any bounded 
reward function r' and x E S, 

Ji_,~ n ! 1 E1 [I>'(Xt,At)!Xt = x]-+ Lqf(y)r'(y,f(y)) as n---+ oo; 
t=O Y 

in particular [9], J(x, f) = I:Y qf(y)r(y, f(y)), x ES. 

Value Iteration. The sequence {Vn: S ---+ ID;_ j n = -1, 0, 1, · · •} of value 
iteration functions is recursively defined as follows: V_1 = 0 and, for n ;:::: 0, 

(2.4) Vn(x) = sup [r(x,a) + Lp(ylx,a)Vn-1(y)], x ES. 
aEA(x) y 
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It is known that for all n E N there exists a policy 1rn such that 

(2.5) 

Vn(x) = Errn [ t r(Xt, At)IXo = X] 
t=O 

= sup E,,.. [t r(Xt, At)IXo = x], x E S; 
"' t=O 

see [1, 5, 9, • · ·]. On the other hand it is clear that 

(2.6) IVnOI :S (n + l)llrll. 

The relative value functions { Rn : S -+ JR} are defined by 

(2. 7) Rn(x) := Vn(x) - Vn(z), x E S, n = -1, 0, 1, 2, · · ·. 

37 

MAIN RESULT. Define {gn} c JR and {Qn: S-+ JR} as follows: For n EN, 

(2.8) 

(2.9) 

With this notation, the following result solves the problems in Section 1. 

THEOREM (2.1). Under Assumptions (2.1)-(2.3) (i)-(iii) below occur. 

(i) limn-too 9n = g. 

(ii) For all x E S, 
lim Qn(x) = h(x); 

n-too 

see Lemma 3.2 below. 

(iii) For n EN, there exists a policy fn E IF such that, for all x E S, .fn(x) is a 
maximizer of the mapping 

a f-+ r(x,a) + Lp(yjx, a)Qn(y), a E A(x) 
y 

and, moreover, every limit point of Un} c IF is optimal. 

A proof of this theorem will be given in Section 4. 
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3. Preliminaries 

This section contains some preliminaries that will be used in the proof 
of Theorem (2.1). Throughout this section, Assumptions (2.1) and (2.3) are 
supposed to hold true. To begin with, for each n E N set 

(3.1) o(n) := supE1r[l(Xn)I[T > n][Xo = z], 
7r 

and 

(3.2) 
1 

Ll(n) := sup -- 1 E1r[l(Xn)[Xo = z]. 
7r n+ 

LEMMA (3.1) As n-+ oo, the following convergences hold: 

(i) o(n) -+ 0, and (ii) Mn) -+ 0. 

Proof (i) This part was obtained in [7]; see the proof of equation 5. 7.2 in 
[7, pp.43-44]. 

(ii)Letn E Nandthepolicy1rbearbitrarybutfixed, anddefineU := [Xk = z 
for some k ~ n]. It is clear that 1 = P1r[Xo = z[Xo = z] = P1r[U[Xo = z] and 
then, decomposing U into disjoint sets according to the last visit to z up to 
time n it follows that 

n 

~ I[Xk = z,Xt # z, k < t :Sn]= I[U] = 1, P1r[·[Xo = z]-a.s., 
k=O 

which implies 

n 

(3.3) E1r[l(Xn)[Xo = z] = L E1r[l(Xn)I[Xk = z, Xt # z, k < t :S n][Xo = z]. 
k=O 

Now observe that I[Xk = z] is h-measurable (by (2.1)) and then an application 
of the Markov property yields 

E1r[l(Xn)I[Xk = z, Xt # z, k < t :S n][h] 

= I[Xk = z]E1r, [l(Xn-k)I[Xt # z, 0 < t :Sn - k][Xo = z] 

where the shifted policy 1r is determined by ([5, p.5]) 

Hence, 

E1r[l(Xn)I[Xk = z, Xt # z, k < t :S n][Ik] 

= I[Xk = z]E,r,[l(Xn-k)I[T > n - k][Xo = z] 

:S o(n - k); 
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see (2.2) and (3.1). Taking expectation with respect to P7r[·IXo = z], the last 
inequality yields 

E1r[l(Xn)I[Xk = z, Xt f' z, k < t :=; n]IXo = z] :=; 8(n - k) 

which, via (3.3), implies that E11"[l(Xn)IXo = z] :=; E~=O 8(n - k) .. Then, since 
?T E lJJ> was arbitrary, it follows that 

1 n 
.6.(n) < -- '""'8(n - k) 

-n+lL, 
k=O 

(see (3.2)) and the conclusion is reached using part (i). 

LEMMA (3.2). Let g be the optimal average reward and suppose that the 
functions hi: S ~ JR, j = 1, 2 satisfy conditions (i)-(ii): 

(i) hj(z) = O; 

(ii) jhj(x)j ::; c · l(x), x E S, where c is a finite constant; 

(iii) g + hj(x) = supaEA(x) [r(x, a)+ Lyp(yjx, a)hj(y)], x ES. 

Then 

Proof Let x ES be arbitrary. Using Assumptions (2.1) and (2.3) together 
with Proposition 18 in [10, p. 232], it follows that the mapping a t--+ r(x, a) + 
E p(yjx, a)h1(y) is continuous on the compact set A(x), so that there exists 
Ji (x) E A(x) such that 

r(x,fi(x))+I:p(yjx,fi(x))h1(y)= sup [r(x,a)+ Lp(yjx,a)h1(y)], x ES. 
y aEA(x) y 

Hence: 
g + h1(x) = r(x, fi(x)) + LP(yjx, fi(x))h1(y), 

y 

and 

y 

see assumption (iii) in the statemenf of the theorem. The last two relations 
tog~ther yield 

y 

I 

,=EJi[(h1(X1):-h2(X1))J[T> lJIXo=x], · 
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where h1(z) = h2(z) = 0 was used in the first equality. Then, an induction 
argument yields: For all n E N and x E S, 

h1(x) - h2(x) ~ EJ,[(h1(Xn) - h2(Xn))I[T > n]IXo = x] 

~ 2cEJ,[l(Xn)I[T > n]IXo = x], 

where assumption (ii) in the statement of the theorem was used to obtain the 
second inequality. Then, Assumption (2.3)(iii) implies that h1(-) - h2(-) ~ 0. 
Similarly, it can be shown that h1(-) - h2(-) 2: 0, and the result follows. lilill 

LEMMA (3.3). Let {Vn} and {Rn} be the sequences of value iteration and 
relative value functions in (2.4) and (2. 7), respectively. Then for all n E N and 
x E S, (i) and (ii) below hold true. 

(i) j(n + l)g + h(x) - Vn(x)j ~ 2JJrJJ sup1r E,r[l(Xn+1)IX0 = x], 

and 

(ii) IRn(x)J ~ 3llrJll(x). 

Proof (i). Let x E S and n E N be arbitrary. A standard induction 
argument using the AROE (2.3) yields 

(n + l)g + h(x) = s~p E1r [~ r(Xt, At) + h(Xn+1)IX0 = x]. 
This equation and (2.5) together imply, via Lemma 3.3 in [6], that 

J(n + l)g + h(x) - Vn(x)I ~ supE1r[lh(Xn+1)IJXo = x] 
7r 

~ 2llrll supE1r[ZCXn+1)JXo = x], 
7r 

where Lemma (2.l)(ii) was used to obtain the second inequality. 

(ii) First observe that (2.5) implies that, for all x E S, and n, k E N, 

and then 

(3.5) 
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Let n E N and x E S be fixed, take the policy 1rn as in (2.5) and set 
Tn := min{n, T}; see (2.2) for the definition of T. Then 

where Bellman's optimality principle was used to obtain the last equality [5]. 
Thus, 

(3.6) 

IRn(x)I = IVn(x) - Vn(z)I 

[
Tn-1 ] 

= IE1rn L r(Xt,At) + Vn-Tn(Xtn)IXo = X - Vn(z)I 
t=O 

:S llrlJE,rn[TnlXo = x] + JE,rn[Vn-Tn(Xyn)IXo = x] - Vn(z)j 

:S llrllE,rn[TJXo = x] + E,rn[JVn-Tn(XrJ - Vn(z)JIXo = x] 

Now observe that on the event [T :S n], (a) Xrn = z and (b) T = Tn. Then 
(3.5) implies that 

(3.7) 
I[T :S n]JVn-Tn(Xyn) ~ Vn(z)I = I[T :S n]JVn-r(z)- Vn(z)j 

:S I[T :S n]jjrjjT. 

On the other hand, Tn = n on the event [T > n] and then 

I[T > n]JVn-Tn (Xrn) - Vn(z)j = I[T > n]JVo(Xn) - Vn{z)I 

:S [1 + (n + l)]Jlrl!I[T > n] (see(2.6)) 

:S 2(n + l)llrl!I[T > n] 

:S 2TllrllI[T > n]. 

Combining this inequality with (3.7) .it follows that 21irllE1rn[TIXo = x] ;::: 
E,rn[JVn-Tn (Xyn)-:- Vn(z)IIXo = x] which, together with (3.6), yields that 
3IJrllE1rn [TIXo = x] ;::: IRn(x)I, and the result follows from Remark 2.2(i). 

LEMMA (3.4). Assume that {Wn: S --+ IR.} and W: S --+ IR. satisfy the 
following. There exists a constant c such that, 

(i) for all x ES and n EN, JWn(x)I :Sc - l(x), and 
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(ii) limn-+c,o Wn(x) = W(x). 

Let x E S be arbitrary and suppose that { an} c A(x) converges to a. Then, 

J~~I_>(ylx, an)Wn(y) = Lp(ylx, a)W(y). 
y y 

Proof From Assumptions (2.1) and (2.3) it follows that, for any x E S, the 
mapping a f----+ zy p(ylx, a)l(y) = Ey# p(ylx, a)l(y) + p(zlx, a)l(z) is continuous 
and finite on .A(x). Then, an application of Proposition 18 in p. 232 of [10] 
yields the result. Ill 

4. Proof of Theorem (2.1) 

In this section a proof of Theorem (2.1) is given. Before going any further it 
is interesting to observe that Assumption (2.2) has not been used yet; however, 
it will play a central role in the argumentation below. 

Proof of Theorem (2.1) (i) From (2.8), (3.2) and Lemma 3.3(i) it follows 
that 

l9n - gl = 1-1-Vn(z)- 91 :S 2llrl1Mn) + ~ 11h(z)I = 2llrlli1Cn), n+l n+ 

since h(z) = 0, and then Lemma (3.l)(ii) yields that lirnn-+oo 9n = g. 

(ii) By (2.4) the following occurs: For all k EN, x ES and a E A(x), 

and then, 

(4.1) 

where 

Vk(x):::: r(x,a) + Lp(ylx,a)Vi-1(y) 
y 

§k + Rk(x) 2: r(x, a)+ Lp(ylx, a)Rk_1(y), 
y 

gk := Vk(z) - Vk-1(z); 

notice that I;~=O §k = Vn(z) - V_1(z) = Vn(z). Summing up from k = 0 to 
n > 0 in both sides of (4.1) it follows that 

n n 

Vn(z) + LRk(x) 2: (n + l)r(x,a) + Lp(ylx,a) LRk-1(y) 
k=O y k=O 

n-1 

= (n + l)r(x,a) + Lp(ylx,a) LRk(y); 
y k=O 



ITERATION METHOD IN Iv.tARKOV DECISION PROCESSES 43 

recall that R_1(-) = V_1(-) - V_1(z) = 0. Then, by (2.8) and (2.9), 

(4.2) gn + Qn(x) 2: r(x, a) + n : l Lp(y/x, a)Qn-1 (y). 
y 

On the other hand, (2.9) and Lemma (3.3)(ii) together yield that 

(4.3) {Qn(x) I /x ES} E IlxEs[-3llrlll(x), 3llrlll(x)] =: lK, n EN. 

Since lK is compact (metric) in the product topology, it is sufficient to establish 
that any limit point of { Qn} coincides with h. With this in mind, let Q E lK be 
a limit point of {Qn} and select a subsequence {Qnk} such that 

(4.4) lim Qnk (xr= Q(x), X E S. 
k-+oo 

Using that Qnk-1(-) = [(nk + l)/nk]QnJ) - RnJ)/nk, (by (2.9)) and the 
pointwise boundedness of { RnO} (see Lemma 3.3(ii)), it follows that 

(4.5) 

Now, replace n by nk in (4.2) and take limit ask goes to infinity in both sides 
of the resulting inequality. In this case, (4.4), (4.5) and Lemma (3.4) together 
yield 

(4.6) g + Q(x) 2: r(x, a)+ Lp(y/x, a)Q(y), x ES, a E A(x). 
y 

Next, let f* E lF be an optimal stationary policy (cf. Lemma (2.l)(iv)) and let 
w E S be arbitrary but fixed. Define <I>: S --+ IR. by 

<l>(x) := 0 if x I w, 

(4.7) <l>(w) := g + Q(w) - r(w, f*(w)) - Lp(y/w, f*(w))Q(y), 
y 

and notice that 

(a) <l>(w) 2: 0 (by (4.6)), and 

(b) for all x ES, g + Q(x) 2: r(x, f*(x)) + <p(x) + 'Z,Yp(y/x, j*(x))Q(y), with 
equality for x = w. 

Then, an induction argument yields that, for all n E N and x E S, 

1 1 n 
(4.8) g + -- 1 Q(x) 2: --- Er ["(r(Xt,At) + <P(Xt)) + Q(Xn+d/Xo = x]. 

n+ n+l L., 
t=O 
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On the other hand, (4.3) and (4.4) together with Lemma (3.l)(ii) imply that 

1 
-- 1 Ef*[Q(Xn+1)IX0 = x]--+ 0 as n---+ oo, 
n+ 

and taking limit as n goes to infinity in both sides of (4.8) it follows, via 
Remark (2.2), that 

g 2: L qi* (y) (r(y, f*(y)) + ¢(y)) = g + q1• (w)¢(w), 
y 

where the equality is due to the optimality off* and (4. 7); recall that qi* is 
the unique invariant distribution off*. Therefore, 

(4.9) 0 2: qi* (w)q>(w). 

Finally, by Assumption (2.2), qi* (w) > 0 occurs [4, pp. 39-42], and then, (4.9) 
implies that ¢(w) :S O; since cp 2: 0, this yields ¢(w) = 0 or, equivalently, 

g + Q(w) = r(w, f*(w)) + Lp(ylw, f*(w))Q(y); 
y 

see (4.7). Since w E S was arbitrary, this equality and (4.6) together imply 
that 

g + Q(x) = sup [r(x, a)+ Lp(ylx, a)Q(y)], x ES, 
aEA(x) y 

and an application of Lemma (3.2) yields that Q(.) = h(-). In short, it has 
been established that any limit point of { Q n} coincides with h and, as already 
mentioned, this completes the proof of part (ii). 

(iii) Let f E lF be a limit point of {J n}, pick a subsequence {J nk} such that 

(4.10) lim f nk (x) = J(x), x E S, 
k--+oo 

and observe that for arbitrary k EN, x E Sand a E A(x), 

y y 

Taking limit as k goes to infinity in both side of this inequality it follows, 
combining (4.10), part (ii) and Lemma 3.4, that for all x ES and a E A(x), 

r(x, a)+ Lp(ylx, a)h(y) :S r(x, J(x)) + Lp(ylx, j(x))h(y), 
y y 

so that, by Lemma (2.l)(iv), f is optimal. 111!1 
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5. Concluding remarks 

The value iteration procedure has been studied in the context of commu
nicating MDP's endowed with the average reward criterion and bounded re
wards. The convergences in Theorem (2.1) are weaker than those obtained 
in other papers, but LFC in the basic Assumption (2.3) is also weaker than 
the conditions usually imposed to obtain the convergence of both the relative 
value functions {Rn} and {Vn(z)- Vn_1(z)}. One exception to this remark is a 
recent paper by Sennott [11] where the recurrence assumptions are extremely 
weak, but a very special combination in the transition-reward structure of the 
model is required; such a condition seems to be very difficult to verify in a gen
eral context. On the other hand there are, at least, three interesting problems 
to be considered. First, notice that Assumption (2.2) played an important role 
in the proof of Theorem (2.1), and that the Lyapunov function condition can 
be formulated to include unbounded rewards [7, 13]. Then, it is interesting 
to ask if it is possible to obtain a result similar to Theorem (2.1) when (i) 
Assumption (2.2) is violated, or (ii) the reward fuction is unbounded. On the 
other, a third interesting problem consists in investigating if the results in 
Theorem (2.1) can be improved to obtain, under LFC, convergence of {Rn} 
and {Vn(z) - Vn-1(z)}. Research in these directions is presently in progress. 
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