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AVERAGE OPTIMALITY IN SEMI-MARKOV CONTROL MODELS
ON BOREL SPACES: UNBOUNDED COST AND CONTROLS

By OscAr VEGA-AMAYA

1. Introduction

We deal with semi-Markov control models (SMCMs) with Borel state and
control spaces, allowing unbounded one-stage cost functions and non-compact
constraint sets. The problem we are concerned with is the existence of
optimal stationary policies for the (long-run) average cost (AC) criterion.
Most of literature related to this problem is concentrated on the countable
state case under restrictive recurrence/ergodicity assumptions and/or conti-
nuity/compactness requirements; see, e.g. [1,2,5,7,8,9,10]. However, recents
works by Herndndez-Lerma {3} and Hernéndez-Lerma and Lasserre [4] on
Markov control processes provide weak conditions that ensure the existence
of AC optimal sationary policies. In both works, variants of the so-called
“vanishing discount factor” approach are used. ‘

In this paper we extend the assumptions in Hernandez-Lerma [3] to the
context of SMCMs. We show the existence of AC optimal stationary policies
under three kinds of hypothesis: a) the first one guarantees that the processes
are “regular” (Assumption (2.3)); b) the second one is associated to the
discounted expected cost criterion (Assumption (4.1)); ¢) the third one is
concerned with the AC criterion itself (Assumption (5.1)).

The remainder of the paper is organized as follows. In Section 2 we
introduce the SMCM and the regularity assumption; the perfomance criteria
are introduced in Section 3, together with a 'Tauberian Theorem’ which
relates these criteria. In Section 4 we present some preliminary results on
the o- discounted expected cost criterion, and Section 5 contains our main
result. Finally, Section 6 contains the proof of the purely technical results
stated in previous sections.

2. The semi-Markov control model

We will use the following notation. Given a Borel space S (i.e., a Borel
subset of a complete and separable metric space), its Borel sigma-algebra is
denoted by 8(5) and M (S) stands for the space of real - valued nonnegative
measurable functions on S.

Definition (2.1). A semi-Markov control model (SMCM) is specified by the
following objects:

a. a state space X, which is assumed to be a nonempty Borel space;
b. an action (or control) space A, a nonempty Borel space;
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c. a collection {A(z): z € X} of nonempty Borel subsets of A. For each
z € X, A(z) is the set of admissible actions (or controls) in the state
z € X. Moreover, we assume that the set K := {(z,a) : z € X,a € A(z)}
is a Borel subset of X x A and contains the graph of a measurable map
from X to A. The set of all such maps will be denoted by F, i.e., F' denotes
the class of all measurable functions f: X — A such that f(z) € A(z) for
all z € X;

d. a transition law Q( | ), which is a stochastic kernel on X given K;

e. a distribution function F(t|z,a,y) for every.(:c, a,y) € K x X, which we
assume to be jointly measurable in (z, a,y) for each ¢t € R;

f D,d € M*(K), are the so-called cost functions.

The SMCM is interpreted as representing a controlled stochastic system for
which, whenever the current state is z € X and an action a € A(x) is chosen,
the following things happens: a cost D(z,a) is incurred instantaneously; the
next state y € X is chosen according to the probability measure Q( |z, a);
conditionally on the next state being y € X, the time § until the transition
into that state occurs has the distribution functiont — F(t|z, a, y, ); and finally,
6d(z,a) is the cost incurred during the sojourn time in z. When the transition
to the new state y € X occurs, a new action a’ € A(y) is chosen and the process
continues in the same way indefinitely.

Let Zn, an, On+1 be the state of the system after the n!* transition, the
action chosen in that state and the corresponding sojourn (or holding) time,
respectively.

Definition (2.2).

a. A control policy is a sequence m = (m,) such that, for each n = 0,
1, ..., m, is a conditional probability on S(A) given the history h, =
(zo, a0, .-, Tn—1,an-1,%s) and which satisfies m, (A(zn)|h,) = 1. The
class of all policies is denoted by II;

b. a policy m = (m,) € Il is said to be stationary if there exist f € F such
that 7, ( |hy,) is concentrated at f(z,) foralln =0, 1, ...; in this case we
identify = with f, and refer to F' as the set of stationary policies.

Given x € X and 7 € I, there exists a probability space (3, F, PT) such
that

i. P [z, = 2] = 1;

il. PT [#n+1 € Blhn,an] = Q(B|zy, ay) for all B € S(X), hy, and a,, € A(z,),
n=0,1...;

iii. P [ay € Clhy] = ma(C|hy) forall C € A(A) and by, n=0,1, ...;
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iv. P [6, < tlhns1] = F(t|Zn, an, Tns1) for all t € R, hpe1 and a, € Alz,),
n=20,1,...;

v. The random variables 61, 62, 83, ... are conditionally independent given
the processes (z,, ao, ..., Try Ay, --)- '

The expectation with respect to P is denoted by ET.

To ensure that the process is regular, i.e., it has only finitely many transi-
tions during any finite time interval, we need to impose some condition. To
do this, we introduce the following notation:

2.1 H(t|z,a) := / F(t|=za,y)Q (dylz,a)
, X
and
(2.2) T(x,0) 1= /00 tH(dt|z, a)
0

denote the distribution function and the mean holding time in the state
z € X when the action a € A(z) is chosen. We also intreduce the auxiliary
functions '

(2.3) Az, a) := /OO exp(—at)H(dt|z, a)
0

(2.4) Ta(@,a) = [1 = Aq (z,0)] /o

for o € (0,1) and (z,a) € K.

~ Assumption (2.3). Thereexiste > 0and 6§ > Osuchthatl—H (6'>]:c, a) >e¢
for all (z,a) € K.

Assumption (2.3) yields the regularity condition in part (¢) of the following
proposition, which is proved in the Appendix (Section 6).

PrROPOSITION (2.4). If Assumption (2.3) holds, then

a. ilf‘éf 7(z,a) > eb;

b. Ay < 1, where A, := sup A,(z, a);
K

c. PT

x

ooZénzoo} =1forallz € X and 7 € IL

n=1
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3. Perfomance criteria

We define the "one-stage cost” functions as

(3.1) Cy (z,0) := D(z,a) + 1o(z,a)d(z, a)
(3.2) C(z,a) := D(z,a) + 7(z,a)d(z, a)

for « € (0,1) and (z,a) € K, and let

n—1
(3.3) Zy =y Clak,ar)

k=0
(3.4) T =Th 1+ 6,forn=1,2...and T, =0
for any policy w € Il and initial state z, =z € X, let

(3.5) ¢(r,z) := limsup [EXT,] " ET 2,
be the expected average cost, and

(3.6) Va(m,2) := E7 Y exp(—aTn)Ca(@n, an)

n=0

the a-discounted expected cost, 0 < a < 1.
The functions

(8.7 ¢(z) := inf ¢(m, z) and V,(z) := inf V, (7, )

are the optimal average cost and o-discounted cost, respectively, when

the initial state is x € X. A policy w € Il is said to be average cost optimal

(ACO) if ¢(x) = ¢(m, z) for all x € X, and similary for the a-discounted case.
The two perfomance criteria are related by the following “Tauberian The-

orem”, which is proved in the Appendix (Section 6).

LEMMA (3.1). Let {¢c, : n=0,1,...} be a sequence of nonnegative numbers
and {b, : n=0,1,...} a sequence of positive numbers such that

(3.8) ‘ 0 < limsupn=°b, < c©
for some real number s > 1. Then

(3.9) limsup(l— @) Y ", < limsupb, 'S,
BTl n=0 n
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where Sy ==Y g ex,n=1,2...,and S, = 0.

Remark (3.2).
a. Since A,(z,a) T 1, uniformly in (z,a) € K when « | 0, then: i. A, :=
supAy(z,a) T1; ii) the functions C,(z, a) and 7,(z, a) converge increas-
K
ingly and uniformly to C(z, a) and 7(z, a), respectively, as o | 0;
. Observe that

Va(m,z) = ET {C’a(azo, o) + Y AalTo,00) ... ba(Tn1,an1)Calzn, an)}

n=1

for all m € Il and z € X. Thus, from Remark (3.2)(a),

lim sup(l — Aa)Va(r,2) < limsup(l — A) S AZETC(@n, an);
al0 all

n=0

hence:
e. Taking ¢, = EXC(z,,a,) and b, = EXT, in Lemma (3.1), we see that

(3.10) lim sup(l — AV, (r, z) < ¢(rr, z)
al0

if the condition in (3.8) holds for some real s > 1.
d. On the other hand, note that

n—1
b, = ETT, = ET Z T(@k, ak)
k=0

forallz €¢ Xandw € I, n = 1, 2, ... Thus, if there exists M > 0
such that 7(z,a) < M for all (z,a) € K, from Proposition (2.4)(a), then
ef < n~ b, < M. Hence, (3.8) holds with s = 1.

4. The discounted case

In this section we consider an arbitrary but fixed discount factor o €
(0,1) and provide conditons under which there exists an optimal stationary
policy for the a-discounted expected cost criterion. To guarantee that F
contains suitable “minimizers”, we require the following (semi) continuity and
compactness assumption, which is of commonly use in the related stochastic
control literature. ‘

Assumption (4.1).

a. D(z,a) and d(z,a) are nonnegative, lower semi-continuous (1.s.¢c) func-
tions in a € A(z) for each z € X;
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b. /v(y)Q(dy|a;, a) is Ls.cin a € A(z) for every z € X and every bounded

function v € M*(X));

¢c. F(t|z,a,y) is continuousin a € A(z) forevery z, y € X and t € R;

d. the set A(r,z) := {a € A(z) : D(z,a) < r} is compact for every r € R and
reX.

The next proposition is proved in the Appendix (Section 8).

PROPOSITION (4.2). If Assumption (4.1) holds, then for every z € X:

a. H(t|z,a) is continuous in a € A(z) for all t € R.
b. the functions 7,(z,a), A,(z,a) and T(z,a) are continuous in a € A(z);

¢c. Colz,a) and C(z,a) are 1.s.cin a € A(z);
d. for any two sequences {a,} C A(z) such that a, — a € A(z) and
{an} C (0,1) such that o, | 0 as n — oo,

liminf C,, (z,a,) > C(z,a).

Remark (4.3). Note that Proposition (4.2) implies that the following sets

{a € Alz) : Colz,a) + Aa(:n,a)/v(y)Q(dylx,a) < r}
{a € Alz) : C(z,a) + /v(y)Q(dy | z,a) < r}

are both compact forallz € X, 7€ R,v € M*(X) and « € (0,1).

The following Measurable Selection Theorem will be repeatedly used below.
For a proof see [3] and references therein.

LEMMA (4.4). If Assumption (4.1) holds, then the functions on X defined

by
v*(z) ;= inf {Ca(w,a)+Aa(:c,a)/v(y)Q(dyII,a)}

a€A(x)

w*(z) ;== inf {C(:c, a) + /u(y)Q(dy[:c, a)}
acA(z)
are measurable, and there exist f, f* € F such that

v# () = Colz, f2) + Aulz, f(z)) / v(Q)dy|z, f(x))

wt (@) = Cla, f*(z) / w@)Qdylz, F*(z))



SEMI-MARKOV CONTROL MODELS ON BOREL SPACES 53

forall z € X.
The next theorem provides a solution to the a-discounted problem in (3.6)
and (3.7).

THEOREM (4.5). Suppose that Assumptions (2.3) and (4.1) hold. If V (z) <
oo for every x € X then

a. V() satisfies the equation
Vo lz) = arenjg) {C’a(z,a) + Aa(m,a)/Va(y)Q(dylﬂfya)} , TE€X;
b. there exists f € F such that
Vo) = Ca (2, /(@) + Aa (2, F@) / Va@)Q (dyla, (@)

forall z € X;
c. any stationary policy f as in b) is a-discounted optimal.

Proof. The proof of this theorem can be obtained using the some argu-
ments provided in [3,4] or [6]. 7 e

5. The average case

In this section we state our main result. The following notation and
Assumption (5.1) are adapted from [3] to our present context. (Related papers
are referred to in [3]).

For each z € X and «e(0, 1) let

(5.1) M ;= inf V,(z)
zeX
(5.2) gt = ].imiionf(l — Al)mg gY :=limsup(l — Ay)maq
« al0
(5.8) 9a(x) :=Vo(z) — (1 — Ap)me

Note that g, () is nonnegative.

Assumption (5.1). ,

a. There exists M > 0 such that 7(z,a) < M for all (z,a) € K;

b. thereexists p > 0 suchthat sup {g(z) : 0 < @ < p} < o foreveryz € X;
¢. thereexist z* and 7* such that ¢(7*, z*) < oo.

Remark (5.2).
a. From Assumption (5.1)(b), we see that V,,() < co for all & € (0, p);
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b. From Assumption (5.1)(a), (3.10) and Remark (3.2)(d), the following
chain of inequalities holds for all z € X and 7 € I,

(5.4) g" <limsup (1 — Ay) V, (7,2) < ¢ (7, )
2 X1]

and therefore:
c. From Assumption (5.1)(c) we see that

(5.5) gF<gV<j <0
where j* := inf; ¢ (7, z).
We state next our main theorem.

THEOREM (5.3). Suppose that Assumption (2.3), (4.1) and (5.1) hold. Then
a. there exists g € M*(X) such that

5.6) glx) > lén,ail%l) {C’(:z,a) + /g(y)Q(dy{m,a) — g1z, a)} Vo € X

b. there exists f* € F such that
(5.7)

9(0) = Olo, @) + [ g0)Qglo, @) - g1, f*@) Vo€ X;
c. gt > ¢(f*,x); hence, from (5.5), ¢(f*,x) = g* = gV = j* Voe X,
In order to prove this theorem we need a preliminary results:

LemmMa (5.4). For each z € X sequence a, | 0,
a. there exists a sequence {a,} C A(z) such that

(5.8) Vi (@) = Ca. (@, a0) + A, (=, az) / Vi ()Q(y|z,an)  ¥n >0

b. if {an} C Alz) satisfies (5.8), then it has an accumulation point a € A(x).

Proof. The property in (a) is an immediate consequence of Lemma (4.4)
and Theorem (4.5). To prove (b) note that the equation (5.8) can also be
written as

[1 = A, @, a1 = Aa, Ima, + ga, (@) =
(5.9) o o (@, 01) + A (3, ) / G 0)Q(dy]2, )
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foreachn=0,1,2,.... Sincea,, <1
(5.10) [1-A,,(z,an)] <[1- Ay, (z,a0)]/an = Ta, (T, a7) < 7(z,0,) < M,

we obtain
(5.11) Co. (@, 0n) + A, (z, a7) / Goon )y, ) < [1— A, Imo, M + g, (2)

foreachn =0, 1, .... Define

(5.12) R* :=liminf(1 — A, )m,, and h(y) :=liminf g, (y), ye€ X.

Then given € > 0 there exist N and a sequence {n;} such that
(5.13) (1- Ao, )M, + Ga, (&) < h(z) + KM + e

for all m; > N.
Let r := h(z) + h*M + € and H,(z) = infy>, go, (x). Since H,( ) <
h( )foralln=0,1, ..., from the inequalities (5.11) and (5.13) we get

(5.14)  Ch,, (z,an,) + A, (a:,ani)/Hani WQWy|z,a,,) < Vn; > N.
For i such that n; > N we define the following sets
(5.15) Di(x) := {E A(z): Can,- (z,a) + Aani (a:,a)/Hani WRWy|z,a) < r} .

From Remark (4.3) and (5.14) we see that the D;(z) are nonempty and
compacts sets. Since V(z,a) € K, C,, (z,a) T C(z,a) and A,,, (z,a)H,, ()T
g( ) as n; tends to oo, the sets D;(z) form a nonincreasing sequence of
nonempty compacts susbsets of A(z) converging to the nonempty compact
set

_D(:c) = {a € Az) : Clz,a) + /g(y)@(dyix, a) < 7’}

Therefore, there exists a a € A(z) and a subsequence of {n;}, which we denote
by {n;} again, such that a,, — a as n; tends to co. 22

Proofof theorem (5.3). Let first note that part (a) implies (b) and (c¢). Indeed,
if (5.6) holds, then (b) follows from Lemma (4.4). Now if (b) holds, iteration
of (5.7) yields

n—1 n—1
9@ +g"Bf" Y r(@r,a) > B | Clak,ar) + g(l‘n)} :
k=0 k=0
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Thus, since g( )is a nonnegative real-valued function, we obtain

n—1 n—1
9@) + g"EL" > rlwr,an) 2 EL S Clay, ax)
k=0 k=0

or equivalently,
glx) + g"EI' T, > Ef Z,,,

which implies that g© > ¢(f*, z). Hence, (c) follows from (5.5).

Now we will prove part (a). Let ¢” be as in (5.2), and let o, | 0 be such
‘that g% = lim,(1 — A,,)m,,. The Lemma (5.4) guarantees the existence of
a; € A(z) and a sequence n; such that a,, — a, as n; — co. Moreover, the
equation (5.9) and the first two inequalities in (5.10), substituing n by n,,
yields (as in (5.11))

Con, (T,0n,) + Aq,, (x,ani)/gani )Qdy|z, an,) <

(5.16) (1- Aani)m%i T(z, an, )gani (z).
We define on X the following real-valued functions (see Assumption

5.1)b))

Gi(z) = igfk o, (z) and g(x):= liin Gi(z),

then, taking ¢ > 0 and using similar arguments in the proof of Lemma (5.4)(b),
we get

C(z,a;) + /Gk(y)Q(dy[a:,az) < g(z) + ¢¥7(z,a.) + &

thus, by the Monotone Convergence Theorem,

Clz,az) + /g(y)Q(dy[m,az) < g@) + ¢rr(z,az) + €.

Sincez € X ande >0 are arbitrary, we conclude that (5.6) holds.

. Remark (5.5). Note that the boundedness hypothesis of 7(z, ) on Assump-
tion (5.1)(a) has an important role in the proof of Lemma (5.4). (b), which in
turn is essential for the proof of Theorem (5.3). This hypothesis can be weak-
ened as long as the (Tauberian) Lemma (3.1) holds. For example, if either
D(z, a) is bounded or the sets A(z), z € X are compacts, then the conclusion
of Lemma (5.4) (b) is obvious. However, we are unaware of conditions easy to
verify the Tauberian Lemma (3.1) when 7(z, a) is unbounded.
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Appendix

Proof of proposition (2.4).
From (2.1) and (2.2),

T(z,a) := / tH(dt|z,a)
o .
= /00[1 — H(dt|z, a)]dt
0

6
> / (1 — H(dt|o, a)] dt
0
>ef >0, by Assumption (2.3).

Hence, infy 7(z,a) > €6.

b. From (2.3) and “integration by part”,
Ay(z,a) = / exp(—at)H(dt|z, a)
0

—a / exp(—at) H(t|z, a) dt
0

6 oo ’
—a { / exp(—at) H(t|z, a) dt + / exp(—at) H(t|z, a) dt}
0 [’

< (1 -8l — exp(—ah)] + exp(—ab) (by Assumption 2.3)

=1—¢[l —exp(—af)l <1

and then A, = supg Ay(z,0) < 1.

57

¢. Let z € X and 7 € II be arbitrary. From the conditional independence

of sequence {6, : n=0,1,...,} (see (v) in Section 2),

ET {exp(—a > 22 6){(@n,an)}, n=0,1,...}

= H E7 {exp(—abp){(@n,a,)} :n=0,1,...}}

n=1

= H/ exp(—at)H(dt/zp, an)
P 0 .

= ﬁ Aa(l‘na a’n) = 07
n=1

where the last equality follows from part (b). Hence, Y - ; 6, = oo, PT a.s.
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Proof of lemma (3.1).
Note that if lim sup,, b, 1S, = co the conclusion is obvious. In order to prove
this lemma suppose that lim sup,, b; 15, < co and consider the following facts:

a > oo, =1 =P) 300, B Sn41 for all 8 € (0,1). This follows from

N-1
Zﬁ”cn AVSns1+ (A=) Y frSp forall N >0,
n=0 n=0

and, by (3.8),
BYSn+1 = {bns1} tON41bNaI N TIBVN® -0 as N — oo;

b. the series } .- ;(n + 1)°4™ is convergent; thus,

> n+1°p =0 as N-—oo;

n=N
e. note that 307« B"Sns1 = Yoo p{bna1}  Sn41bns1(n + D78(n + 134
thus
Z O Sn+1 < ¢ sup n” %, sup b,“LlSn Z(n + 16"
= n>N+1 n>N+1 ==

for all NV > 1 Now, from (a) and (¢) we see that the inequality

L=B)D Brea < (1-P)x

n=0
N-1 oo —l
Z B"Spe1 + < sup n” b, sup b;lSn Z(n + 1)°g"
o n>N+1 n>N+1 Syl |

holds for all N > 1. On the other hand, from (b) and (3.8), there exist
N* such that

-1
Z(’n + 18" < {(1 — B)lim supn*%n}

n=N

for all N > N*. Combining the last two inequalities, we obtain

A—p> prea <

n=0

N-1 , -1
1-p5) Zﬁ”5n+1+{ sup n—Sbn}{ sup b;lsn} {limsupn_sbn}

n=0 n>N+1 n>N+1 n v
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and taking limit as 8 7 1 and N — oo, in this order, we see that

oo
limsup(l—ﬁ)Zﬁ”cn < sup b;ls,
BTl ne0 - n2N+1

and conclude that

n

limsup(1 — 3) z B¢, < limsupb;1S,. H
ATl

n=0

Proof of proposition (4.2).
a. This part is an immediate consequence of Assumption (4.1).
b. First we will prove that A, (z, a) is continuous on a € A(z). From (2.3),

An(z,an) =/ exp(—at)H (dt|z, an) =a/ exp(—at)H (t|z, a,)dt
0 0

where the last equality is obtained by “integration by parts”. Since
exp(—at) is integrable on [0, co) and exp(—at) H (t|z, a,) < exp(—at), the
Dominated Convergence Theorem and part(a) yield

lim A, (z,a,) = a/ lim exp(—at) H (t|z, ay,) dt
n 0 n
= a/ exp(—at)H (t|z, a)dt = Ay (z, a).
0

Finally observe that the continuity of 7, follows from the continuity of A,
whereas the continuity of 7 results from the uniform convergence of 7, to 7
(Remark (3.2)(a)).

c. This follows from part (b) and Assumption (4.1)(a).

d. Since Cy,(z,a) > C,,(z,a) for all n > k (see Remark (3.2)(a)) and
(z,a) € K, we see that

liminf C,, (z,a,) > liminf Cy, (z, a,);

thus, form part (c),

liminf C,, (z,a,) > liminf C,, (z, a);

and letting & — oo,

liminf C, (z,a,) > C(z,a). ]
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