Boletín de la Sociedad Matemática Mexicana Vol. 38 1993

STABILITY OF MAPPINGS BETWEEN FOLIATED MANIFOLDS By Liliana Maxim-Răileanu

The problem of stability of mappings between manifolds equipped with geometric structures of the same type was first posed by V. Poenaru in [6]. Namely, the stability of equivariant maps between compact G-manifolds is studied, G being a compact Lie group.

The definition of a concept of stability for the mappings between foliated manifolds is given by L. A. Favaro in [1]. Namely, given smooth regular foliations \mathcal{F}_M , \mathcal{F}_N on the manifolds M, N respectively, a mapping $F \in$ $\mathscr{C}^{\infty}(M, N)$ is called *stable in tangential sense* if there is a neighbourhood $V_F \subseteq \mathscr{C}^{\infty}(M, N)$ of F such that for each $G \in V_F$ satisfying the condition G(x) and F(x) belong to the same leaf of \mathcal{F}_N for each $x \in M$, there are the diffeomorphisms $H \in \text{Diff}^{\infty}(M)$, $K \in \text{Diff}^{\infty}(N)$ taking each leaf of \mathcal{F}_M , respectively \mathcal{F}_N , onto itself such that $G = K \circ F \circ H$.

Favaro gives a proper concept of infinitesimal stability and proves the implication: infinitesimal stability implies stability (both in the tangential sense).

Later, in the paper [4], S. Izumiya shows that foliation preserving mappings $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ are the natural objects for which Favaro's notation of stability in the tangential sense is defined and for a such mapping F the equivalence: F stable $\iff F$ infinitesimally stable is proved.

Denoting by $\mathscr{C}^{\infty}(M, N, F) = \{G \in \mathscr{C}^{\infty}(M, N), F(x) \text{ and } G(x) \text{ belong to the same leaf of } \mathcal{F}_N \text{ for each } x \in M\}$, S. Izumiya observes in the same paper that Favaro's stability concept for $F \in \mathscr{C}^{\infty}(M, N)$ is a stability in the space $\mathscr{C}^{\infty}(M, N, F)$. If $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$, then $\mathscr{C}^{\infty}(M, N, F) \subseteq \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$. In this case, denoting by $f: M|_{\mathscr{F}_M} \to N|_{\mathscr{F}_N}$ the mapping between the spaces of leaves defined by F, it is obvious that each mapping $G \in \mathscr{C}^{\infty}(M, N, F)$ induces the same mapping f between the spaces of leaves.

Thus the Favaro-Izumiya stability concept is the stability of (F, f) in the category of commutative diagrams of the following type:

Now we propose a more general concept of stability for a mapping $F \in \mathscr{C}^{\infty}_{\#}(M,N)$, namely the stability in $\mathscr{C}^{\infty}_{\#}(M,N)$.

DEFINITION 1. Let (M, \mathcal{F}_M) , (N, \mathcal{F}_N) be \mathscr{C}^{∞} -foliated manifolds and let $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$. We say that F is \mathscr{C}^{∞} - \mathscr{F} -stable if there is a neighbourhood $V_F \subseteq \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ of F in the \mathscr{C}^{∞} -fine topology such that for every $G \in V_F$ there is a \mathscr{C}^{∞} -diffeomorphism $H \in \text{Diff}^{\infty}(M) \cap \mathscr{C}^{\infty}_{\mathscr{F}}(M, M) = \text{Diff}^{\infty}_{\mathscr{F}}(M)$ and

LILIANA MAXIM-RĂILEANU

a \mathscr{C}^{∞} -diffeomorphism $K \in \text{Diff}^{\infty}(N) \cap \mathscr{C}^{\infty}_{\mathscr{F}}(N, N) = \text{Diff}^{\infty}_{\mathscr{F}}(N)$ such that $G = K \circ F \circ H$.

Remarks

- 1. If, for a mapping $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ denoted by a capital letter, we denote by the corresponding small letter the associated mapping between the spaces of leaves, the condition from the previous definition implies that for every $G \in V_F$ we have $g = k \circ f \circ h$.
- 2. If we require in Definition 1 that $h = \mathrm{id}_{M|_{\mathscr{F}_M}}$; i.e. H takes each leaf of \mathscr{F}_M onto itself, we obtain the application of Favaro's $(\mathscr{F}_M, \mathscr{F}_N)$ -stability ([1]) for a foliation preserving mapping F.
- Denoting by Φ the following natural action of the group Diff[∞]_F(M) × Diff[∞]_F(M) on the space C[∞]_F(M, N):

$$\Phi: \operatorname{Diff}_{\mathscr{F}}^{\infty}(M) \times \operatorname{Diff}_{\mathscr{F}}^{\infty}(N) \times \mathscr{C}_{\mathscr{F}}^{\infty}(M,N) \to \mathscr{C}_{\mathscr{F}}^{\infty}(M,N),$$
$$((H,K),F) \mapsto K \circ F \circ H,$$

we obtain that $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ is a \mathscr{C}^{∞} - \mathscr{F} -stable mapping iff the orbit of F under the action Φ is an open subset of $\mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$.

4. If \mathcal{F}_M and \mathcal{F}_N are simple foliations, the previous concept of stability leads to an adequate concept of stability in the category of fibre bundle morphisms.

In order to give a corresponding infinitesimal concept of stability, let $T\mathcal{F}_M$ be the involutive subbundle of vectors tangent to the foliation \mathcal{F}_M on M and let Q_M be the normal bundle, the quotient defined by the short exact bundle sequence:

(1)
$$O_M \longrightarrow T\mathcal{F}_M \longrightarrow TM \xrightarrow{\Pi_M} Q_M \longrightarrow O_M.$$

We denote by $\mathscr{C}^{\infty}_{\mathscr{F}}(TM)$ the following set of all \mathscr{C}^{∞} infinitesimal automorphisms of \mathscr{F}_{M} :

$$\mathscr{C}^{\infty}_{\mathscr{F}}(TM) = \{ Y \in \mathscr{C}^{\infty}(TM), \Pi_{M}([X,Y]) = 0 \text{ for each } X \in \mathscr{C}^{\infty}(T\mathcal{F}_{M}) \}.$$

Let $\mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN) = \{ \widetilde{X} \in \mathscr{C}^{\infty}(F^*TN), \Pi_N \circ \widetilde{X} \text{ is locally constant along the leaves of } \mathscr{F}_M \}.$

DEFINITION 2. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be \mathscr{C}^{∞} -foliated manifolds and let $F \in \mathscr{C}^{\infty}_{\mathcal{F}}(M, N)$. We say that F is \mathscr{C}^{∞} - \mathcal{F} -infinitesimally stable if

$$tF(\mathscr{C}^{\infty}_{\mathfrak{F}}(TM)) + \omega F(\mathscr{C}^{\infty}_{\mathfrak{F}}(TN)) = \mathscr{C}^{\infty}_{\mathfrak{F}}(F^*TN)$$

where the mappings

$$tF: \mathscr{C}^{\infty}_{\mathscr{F}}(TM) \to \mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN),$$
$$\omega F: \mathscr{C}^{\infty}_{\mathscr{F}}(TN) \to \mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN).$$

are given by $tF(\xi) = TF \circ \xi$, $\omega F(\eta) = \eta \circ F$.

Our main result is the following:

THEOREM 1. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be foliated manifolds with M compact and $F \in \mathscr{C}^{\infty}_{\mathcal{F}}(M, N)$. Then $F \mathscr{C}^{\infty}$ - \mathcal{F} -stable implies F is a \mathscr{C}^{∞} - \mathcal{F} -infinitesimally stable mapping.

Proof. We will use the same terminology and notation of [2] and [5].

The proof uses several lemmas.

First we give a generalized Malgrange Preparation theorem for the local ring of germs of basic functions on a foliated manifold.

Let (M, \mathcal{F}_M) be a smooth, connected, *n*-dimensional foliated manifold where \mathcal{F}_M is a smooth *l*-codimensional foliation on M. A smooth real-valued function f on M is called basic (foliated) related to \mathcal{F}_M (or, shortly, \mathcal{F}_M -basic) if Xf = 0 for all $X \in \mathscr{C}^{\infty}(T\mathcal{F}_M)$. We denote by $\mathscr{C}^{\infty}_{\mathcal{F}}(M)$ the ring of these functions. For an arbitrary point $p \in M$ and $f \in \mathscr{C}^{\infty}_{p,\mathcal{F}}(M)$, let $[f]_p$ denote the germ of f at p, that is the equivalence class of f in the germ equivalence relation on $\mathscr{C}^{\infty}_{\mathcal{F}}(M)$ in p. Let $\mathscr{C}^{\infty}_{p,\mathcal{F}}(M)$ denote the set of all germs of smooth, \mathcal{F}_M -basic, real-valued functions defined on a neighbourhood of p.

LEMMA 1. $\mathscr{C}^{\infty}_{p,\mathscr{F}}(M)$ is structured as a local ring by the usual addition and multiplication of functions.

Proof. Let $\mathcal{M}_{p,\mathfrak{F}}(M) = \{[f]_p \in \mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M), f(p) = 0\}$. It is easy to see that $\mathcal{M}_{p,\mathfrak{F}}(M)$ is an ideal of $\mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M)$. Let \mathcal{M} be another ideal in $\mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M)$, and let $\mathcal{M} \supset \mathcal{M}_{p,\mathfrak{F}}(M)$ and $[f]_p \in \mathcal{M} - \mathcal{M}_{p,\mathfrak{F}}(M)$. Then $[\frac{1}{f}]_p$ is defined and $[\frac{1}{f}]_p \in \mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M)$ because for every $X \in \mathfrak{C}^{\infty}(T\mathcal{F}_M)$ we have locally $X(\frac{1}{f}) = -\frac{1}{f^2}X(f) = 0$. Therefore $[\frac{1}{f}]_p \cdot [f]_p = [1]_p \in \mathcal{M}$ so that $\mathcal{M} = \mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M)$. Thus $\mathcal{M}_{p,\mathfrak{F}}(M)$ is the unique maximal ideal of $\mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M)$.

LEMMA 2. Let $F \in \mathscr{C}^{\infty}_{\mathfrak{P}}(M, N)$, $p \in M$, q = F(p). Then F induces a ring homomorphism $F_{p,q}^*: \mathscr{C}^{\infty}_{q,\mathfrak{F}}(N) \to \mathscr{C}^{\infty}_{p,\mathfrak{F}}(N)$ given by $[f]_q \mapsto [f \circ F]_p$. Moreover, if F is locally (near p) a leaf-preserving diffeomorphism, then $F_{p,q}^*$ is an isomorphism.

Proof. To see that $F_{p,q}^*$ is well defined, let $[f]_q \in \mathscr{C}_{q,\mathscr{F}}^{\infty}(N)$. We prove that $[f \circ F]_p \in \mathscr{C}_{p,\mathscr{F}}^{\infty}(M)$; that is, $X(f \circ F) = 0$ for every $X \in \mathscr{C}^{\infty}(T\mathscr{F}_M)$ defined on a neighbourhood of p.

But $[f]_q \in \mathscr{C}^{\infty}_{q,\mathscr{F}}(N)$ is equivalent to the condition Yf = 0, for every $Y \in \mathscr{C}^{\infty}(T\mathcal{F}_M)$ defined on a neighbourhood V of q in M. This last condition is equivalent to the fact that $f|_V$ is constant along the leaves. Thus it follows that $(f \circ F)|_{F^{-1}(V)}$ is constant along leaves, which is equivalent to the fact that $X(f \circ F) = 0$ for every $X \in \mathscr{C}^{\infty}(T\mathcal{F}_M)$ defined on $F^{-1}(V)$.

If *F* is a local foliation preserving diffeomorphism, then $(F_{p,q}^*)^{-1} = (F^{-1})_{q,p}^*$; therefore $F_{p,q}^*$ is an isomorphism.

If we consider the mapping $\mathscr{C}_{p,\mathscr{F}}^{\infty}(M) \to \mathbb{R}$, $[f]_p \mapsto f(p)$, we obtain the isomorphisms $\mathbb{R} \simeq \mathscr{C}_{p,\mathscr{F}}^{\infty}(M)/\mathcal{M}_{p,\mathscr{F}}(M) \simeq \mathscr{C}_{q,\mathscr{F}}^{\infty}(N)/\mathcal{M}_{q,\mathscr{F}}(N)$. Therefore by [2], Corollary 3.5, Ch. IV, for every finite generated $\mathscr{C}_{p,\mathscr{F}}^{\infty}(M)$ -module A, the quotient $A/\mathcal{M}_{p,\mathscr{F}}(M)A$ is a finite dimensional vector space over \mathbb{R} .

We now state the following version of the generalized Malgrange Preparation theorem for the local rings of germs of basic functions on a foliated manifold.

LEMMA 3. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, let $F \in \mathscr{C}^{\infty}_{\mathcal{F}}(M, N), p \in M, q = F(p)$ and let A be a finitely generated $\mathscr{C}^{\infty}_{p,\mathcal{F}}(M)$ -module. Then A is a finitely generated module over $\mathscr{C}^{\infty}_{q,\mathcal{F}}(N)$ (via $F^*_{p,q}$) iff $A/\mathcal{M}_{q,\mathcal{F}}(N)A$ is a finite dimensional \mathbb{R} -vector space.

Proof. Since this is a local result, with a proper choice of F-adapted foliate coordinate systems in p and q we may assume that $M = \mathbb{R}^n$, $N = \mathbb{R}^n$, $p = 0 \in \mathbb{R}^m$, $q = 0 \in \mathbb{R}^n$, \mathcal{F}_M is defined by $x^{\alpha} = a^{\alpha}$, $\forall \alpha = 1, \ldots, l, l = \operatorname{codim} \mathcal{F}_M, \mathcal{F}_N$ is defined by $y^{\alpha'} = b^{\alpha'}$, $\alpha' = 1, \ldots, l', l' = \operatorname{codim} \mathcal{F}_N$, and F is locally given by $F(x) = (F^1(x), \ldots, F^n(x))$ with $F^{\alpha'}(x) = F^{\alpha'}(x^1, \ldots, x^l)$, for $\alpha' = 1, \ldots, l'$. Then locally $\mathscr{C}_{0,\mathcal{F}}^{\infty}(\mathbb{R}^m)$ and $\mathscr{C}_{0,\mathcal{F}}^{\infty}(\mathbb{R}^n)$ may be identified with $\mathscr{C}_0^{\infty}(\mathbb{R}^l)$ and $\mathscr{C}_0^{\infty}(\mathbb{R}^{l'})$ respectively, and $F_{p,q}^*$ defines the mapping $\widetilde{F}_{0,0}^*: \mathscr{C}_0^{\infty}(\mathbb{R}^{l'}) \to \mathscr{C}_0^{\infty}(\mathbb{R}^l)$ associated to $\widetilde{F}: \mathbb{R}^l \to \mathbb{R}^{l'}$ given by

$$\widetilde{F}(x^1,\ldots,x^l) = (F^1(x^1,\ldots,x^l),\ldots,F^{l'}(x^1,\ldots,x^l)).$$

Since for every $[f]_0 \in \mathscr{C}^{\infty}_{0,\mathscr{F}}(\mathbb{R}^m)$ the germ $[f \circ F]_0$ depends only of \widetilde{F} , it follows that A is a finitely generated module over $\mathscr{C}^{\infty}_{0,\mathscr{F}}(\mathbb{R}^n)$, via $\widetilde{F}^*_{0,0}$, iff Ais a finitely generated module over $C_0(\mathbb{R}^{l'})$, via $\widetilde{F}^*_{0,0}$. Now, based on the generalized Malgrange Preparation theorem ([2], Th. 3.6, Ch IV), this last fact is equivalent to the fact that $A/\mathcal{M}_0(\mathbb{R}^{l'})A$ is a finite-dimensional \mathbb{R} -vector space, which in turn is equivalent to the fact that $A/\mathcal{M}_{0,\mathscr{F}}(\mathbb{R}^n)A$ is a finite dimensional \mathbb{R} -vector space, and the lemma is proved.

Now we define inductively the sequence of ideals $\mathcal{M}_{p,\mathcal{F}}^{k}(M)$ in $\mathcal{C}_{p,\mathcal{F}}^{\infty}(M)$ by letting $\mathcal{M}_{p,\mathcal{F}}^{1}(M)$ be $\mathcal{M}_{p,\mathcal{F}}(M)$ and, for $k \geq 2$, letting $\mathcal{M}_{p,\mathcal{F}}^{k}(M)$ be the ideal generated by germs of the form $[f \cdot g]_{p}$ where $[f]_{p} \in \mathcal{M}_{p,\mathcal{F}}(M)$, $|g|_{p} \in \mathcal{M}_{p,\mathcal{F}}^{k-1}(M)$. Applying the same ideas from [2] used in the proof of the theorem 3.10,

ChIV, we obtain:

LEMMA 4. Let A be a finitely generated $\mathscr{C}_{p,\mathscr{F}}^{\infty}(M)$ -module, $F \in \mathscr{C}_{\mathscr{F}}^{\infty}(M, N)$, q = F(p) and let l_1, \ldots, l_k be the elements of A. Then $\{e_i\}$, $i = 1, \ldots, k$, generates A as a $\mathscr{C}_{q,\mathscr{F}}^{\infty}(N)$ -module iff $\{\eta(e_i)\}_{i=1,\ldots,k}$ generates $A/\mathcal{M}_{p,\mathscr{F}}^{k+1}(M)A$ as a $\mathscr{C}_{q,\mathscr{F}}^{\infty}(N)$ -module, where $\eta: A \to A/\mathcal{M}_{p,\mathscr{F}}^{k+1}(M)A$ is the obvious projection.

Our first objective is to show that the concept of \mathscr{C}^{∞} -F-infinitesimal stability for a foliation-preserving mapping F is, locally, a condition of finite order; i.e., if the equations which express this type of stability can be solved locally to some finite order, they can be solved for smooth data.

In the following considerations we denote by A_p the set of the germs at $p \in M$ of all sections from a set A of smooth sections of a foliated bundle over the foliated manifold (M, \mathcal{F}_M) .

REMARK. Based on the considerations from [7], "any locally free $\mathscr{C}^{\infty}_{\mathscr{F}}(M)$ module of finite rank is the sheaf of germs of foliated sections of a \mathscr{F}_M -foliated vector bundle over M". Thus $\mathscr{C}^{\infty}_{\mathscr{F}}(TM)$, $\mathscr{C}^{\infty}_{\mathscr{F}}(TN)$, and $\mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN)$, are such sheafs.

DEFINITION 3. Let $p \in M$, $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ and q = F(p). The germ $[F]_p$ is called \mathscr{F} -infinitesimally stable if for every germ $[\tau]_p \in (\mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN))_p$ there exists germs of vector fields $[\xi]_p \in (\mathscr{C}^{\infty}_{\mathscr{F}}(TM))_p$ and $[\eta]_q \in (\mathscr{C}^{\infty}_{\mathscr{F}}(TN))_q$ such that

(*) $[\tau]_p = [(TF) \circ \xi]_p + [\eta \circ F]_p$

The mapping f is called \mathcal{F} -locally infinitesimally stable at p if the germ $[F]_p$ is \mathcal{F} -infinitesimally stable.

We choose now the following foliated charts: (U, ϕ) , $\phi(U) = U_1 \times U_2 \subseteq \mathbb{R}^{m-l} \times \mathbb{R}^l$, $\phi(p) = (x, y)$, on (M, \mathcal{F}_M) , based at p, and (V, ψ) , $\psi(V) = V_1 \times V_2 \subset \mathbb{R}^{n-l'} \times \mathbb{R}^{l'}$, $\psi(q) = (x', y')$, on (N, \mathcal{F}_N) , based at q, which are F-adapted, i.e. $F(U) \subseteq V, l = \operatorname{codim} \mathcal{F}_M, l' = \operatorname{codim} \mathcal{F}_N$. We have $(F_{\phi,\psi}(x, y) = (\psi \circ F \circ \phi^{-1})(x, y) = (F_1(x, y), F_2(y)), \forall (x, y) \in U_1 \times U_2$, where $F_1 \in \mathscr{C}^{\infty}(U_1 \times U_2, V_1), F_2 \in \mathscr{C}^{\infty}(U_2, V_2)$.

We will compute the equation (*) in these coordinates. To do this, for the fixed Riemannian metrics g_M, g_N on M and N, let σ_M, σ_N be splittings of the exact sequences of the type (1) over the foliated manifolds (M, \mathcal{F}_M) and (N, \mathcal{F}_N) . Via these splittings, we have

$$\begin{aligned} & \mathscr{C}^{\infty}(TM) = \mathscr{C}^{\infty}(T\mathscr{F}_M) \oplus \mathscr{C}^{\infty}(Q_M), \\ & \mathscr{C}^{\infty}(TN) = \mathscr{C}^{\infty}(T\mathscr{F}_N) \oplus \mathscr{C}^{\infty}(Q_N), \\ & \mathscr{C}^{\infty}(F^*TN) = \mathscr{C}^{\infty}(F^*T\mathscr{F}_N) \oplus \mathscr{C}^{\infty}(F^*Q_N) \end{aligned}$$

so that we obtain:

$$\mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN) = \mathscr{C}^{\infty}(F^*T\mathcal{F}_N) \oplus \mathscr{C}^{\infty}_{\mathscr{F}}(F^*Q_N),$$

LILIANA MAXIM-RĂILEANU

$$\begin{aligned} \mathscr{C}^{\infty}_{\mathscr{F}}(TM) &= \mathscr{C}^{\infty}(T\mathscr{F}_M) \oplus \mathscr{C}^{\infty}_{\mathscr{F}}(Q_M), \\ \mathscr{C}^{\infty}_{\mathscr{F}}(TN) &= \mathscr{C}^{\infty}(T\mathscr{F}_N) \oplus \mathscr{C}^{\infty}_{\mathscr{F}}(Q_N). \end{aligned}$$

It is obvious that, locally,

$$\mathscr{C}^{\infty}(T\mathscr{F}_M), \mathscr{C}^{\infty}(F^*T\mathscr{F}_M)$$

are finite generated modules over $\mathscr{C}^{\infty}(M)$, $\mathscr{C}^{\infty}(T\mathcal{F}_N)$ is a finitely generated module over $\mathscr{C}^{\infty}(N)$, while $\mathscr{C}^{\infty}_{\mathscr{F}}(Q_M)$, $\mathscr{C}^{\infty}_{\mathscr{F}}(F^*Q_N)$ are finitely generated modules over $\mathscr{C}^{\infty}_{\mathscr{F}}(M)$ and $\mathscr{C}^{\infty}_{\mathscr{F}}(Q_N)$ is a finitely generated module over $\mathscr{C}^{\infty}_{\mathscr{F}}(N)$.

Let $(X_{\alpha})_{\alpha=(m-l+1),...,m'}$, $(Y_{\alpha'})_{\alpha'=(n-l'+1),...,n}$ be the sets of tangent vector fields on U and V respectively, such that

$$\left(\frac{\partial}{\partial x^{i}}, X_{\alpha}\right)_{\substack{i=1,\ldots,m-l,\\\alpha=(m-l+1),\ldots,m}}, \left(\frac{\partial}{\partial x'^{i}}, Y_{\alpha'}\right)_{\substack{i'=1,\ldots,n-l',\\\alpha'=(n-l'+1),\ldots,n}},$$

generate locally the modules $\mathscr{C}^{\infty}(TM)$ and $\mathscr{C}^{\infty}(TN)$ respectively. For $\tau \in \mathscr{C}^{\infty}_{\mathfrak{F}}(F^*TN), \xi \in \mathscr{C}^{\infty}_{\mathfrak{F}}(TM), \eta \in \mathscr{C}^{\infty}_{\mathfrak{F}}(TN)$ we have, locally, via the previous decompositions: $\tau = (\tau_1, \tau_2), \xi = (\xi_1, \xi_2), \eta = (\eta_1, \eta_2)$ where $\tau_1(x, y) = \tau_1^{i'}(x, y) \frac{\partial}{\partial x'^{i'}}, \tau_2(x, y) = \tau^{\alpha}(y)Y_{\alpha'}, \xi_1(x, y) = \xi^i(x, y)\frac{\partial}{\partial x^i}, \xi_2(x, y) = \xi^{\alpha}(y)X_{\alpha}, \eta_1(x', y') = \eta^{i'}(x', y')\frac{\partial}{\partial x'^{i'}}, \eta_2(x', y') = \eta^{\alpha'}(y')Y_{\alpha'}.$ Then the equation (*) becomes:

(1)
$$[\tau_1]_{(x,y)} = [TF_1 \circ \xi]_{(x,y)} + [\eta_1 \circ F]_{(x,y)}$$

(**)

(2)
$$[\tau_2]_u = [TF_2 \circ \xi_2]_u + [\eta_2 \circ F_2]_u$$

We obtain the following result:

LEMMA 5. The foliation preserving mapping F is \mathcal{F} -locally-infinitesimally stable at p iff the equation (*) can be solved to order $\max(l', n - l') = n'$.

Proof. First, we observe that $[F]_p$ is \mathcal{F} -infinitesimally stable iff $\{l_{i'}\}_{i'=1,\dots,n-l'}$, generates the $\mathscr{C}^{\infty}_q(N)$ -module via $F^*_{p,q}, M^p_1 = (\mathscr{C}^{\infty}(F^*T\mathcal{F}_N))_p/A_1$ and $\{l_{\alpha'}\}_{\alpha'=(n-l'+1),\dots,n}$ generates the $\mathscr{C}^{\infty}_{q,\mathcal{F}}(N)$ -module $M^p_2 = (\mathscr{C}^{\infty}_{\mathcal{F}}(F^*Q_N)_p/A_2$ where $A_1 = \{[(TF_1) \circ \xi]_p, \xi \in (\mathscr{C}^{\infty}_{\mathcal{F}}(TM))_p\}, A_2 = \{[(TF_2) \circ \xi_2]_p, \xi_2 \in (\mathscr{C}^{\infty}_{\mathcal{F}}(Q_M))_p\}, l_{i'} = pr_1(F^*(\frac{\partial}{\partial x^{i'}})), l_{\alpha'} = pr_2(F^*(Y_{\alpha'}))$ with $pr_1: (\mathscr{C}^{\infty}(F^*T\mathcal{F}_N))_p \to M^p_1$, $pr_2: (\mathscr{C}^{\infty}_{\mathcal{F}}(F^*Q_N))_p \to M^p_2$ the natural projections.

Applying Theorem 3.10, Ch. IV of [2] and Lemma (4) we obtain that the germ $|F|_p$ is \mathscr{F} -infinitesimally stable iff the module $M_1^p/\mathcal{M}_p^{n-l'+1}(M)M_1^p$ is generated over $\mathscr{C}_q^{\infty}(N)$ by the projections of l_1, \ldots, l_{n-q} , and the module $M_2^p/\mathcal{M}_{p,\mathscr{F}}^{l'+1}(M)M_2^p$ is generated over $\mathscr{C}_{q,\mathscr{F}}^{\infty}(N)$ by the projections of $l_{n-q'-1}, \ldots, l_n$. This last statement is equivalent to solving the equation (**)(1) to order (n-l') and (**)(2) to order l'. Thus the Lemma is proved. In the following considerations, for a locally free $\mathscr{C}^{\infty}_{\mathscr{F}}(M)$ -module of finite rank A, that is, a sheaf of germs of foliatesections of a \mathscr{F}_M -foliatevector bundle over M, we denote by $J^k_S(A)$ the following set of k-jets at $p: J^k_S(A) = \{j^k_p \sigma, \sigma \in A, p \in S\}$. Let $J^k_{\{p\}}(A) = J^k_p(A)$. By using such notation we obtain the following lemma which is just a restatement of the previous lemma.

LEMMA 6. The mapping $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ is \mathscr{F} -locally infinitesimally stable at p iff

$$J_p^{n'}(\mathscr{C}_{\mathscr{F}}^{\infty}(F^*TN)) = (TF)_p(J_p^{n'}(\mathscr{C}_{\mathscr{F}}^{\infty}(TM)) + F_{p,q}^*(J_q^{n'}(\mathscr{C}_{\mathscr{F}}^{\infty}(TN)))$$

where by $(TF)_p$ and $F_{p,q}^*$ we denote the obvious mappings into $J_p^{n'}(\mathscr{C}_{\mathscr{F}}^{\infty}(F^*TN))$ induced by the action of tF and ωF on vector fields.

In order to obtain a global form of *F*-infinitesimal stability we give, firstly, the following two results.

LEMMA 7. For a fixed point $q \in N$ and a finite subset $S = \{p_1, \ldots, p_k\}$ of $F^{-1}(q)$, the mapping $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M, N)$ is simultaneously locally infinitesimally stable at p_1, \ldots, p_k iff

(2) $J_S^{n'}(\mathscr{C}_{\mathscr{F}}^{\infty}(F^*TN)) = (TF)(J_S^{n'}(\mathscr{C}_{\mathscr{F}}^{\infty}(TM)) + F^*(J_a^{n'}\mathscr{C}_{\mathscr{F}}^{\infty}(TN)).$

Proof. For S consisting of a single point this result is just that from Lemma 6. As in the single point case, the proof for general S with more than one point uses Lemma 1.4 from [2], Ch. V and Lemma 4.

LEMMA 8. The mapping $F \in \mathscr{C}_{\mathfrak{F}}^{\infty}(M, N)$ is \mathfrak{F} -infinitesimally stable iff (+) for every $q \in N$ and if for every finite subset S of $F^{-1}(q)$ with no more than n'' + 1 points we have the relation (2) where n'' is denots the dimension of the fibre of the foliated vector bundle over N, the sheaf of sections of which is the $\mathscr{C}_{\mathfrak{F}}^{\infty}(N)$ -module $\mathscr{C}_{\mathfrak{F}}^{\infty}(TN)$.

Proof. By using the previous results it is straightforward that if F is \mathcal{F} -infinitesimally stable, then F satisfies the condition (+). We assume that F satisfies (+). Let $T_p^{\mathcal{F}}(M)$, respectively $T_q^{\mathcal{F}}(N)$, be the \mathbb{R} -linear subspaces of T_pM , respectively of T_qN , defined by

$$T_p^{\mathscr{F}}(M) = \{X(p), X \in \mathscr{C}_{\mathfrak{F}}^{\infty}(TM)\} \ (T_q^{\mathscr{F}}(N) = \{Y(q), Y \in \mathscr{C}_{\mathfrak{F}}^{\infty}(TN)\}).$$

Let $\Sigma^{\mathfrak{F}}(F) = \{p \in M, \dim(T_pF)(T_p^{\mathfrak{F}}(M)) < \dim T_{F(p)}^{\mathfrak{F}}(N) = n''\}$. If F satisfies (+), then for each $q \in N$, the set $(Cl_M\Sigma^{\mathfrak{F}}(F)) \cap F^{-1}(q) = \Sigma_q^{\mathfrak{F}}(F)$ has no more than n'' points.

Indeed, since F satisfies (+), as in [2], §1, Ch. V, it results that for every finite set $S = \{p_1, \ldots, p_k\} \subset F^{-1}(q)$ the subspaces $H_i = (T_{p_i}F)(T_{p_i}^{\mathscr{F}}(M))$, $i = 1, \ldots, k$ are in general position as subspaces of $T_q^{\mathscr{F}}(N)$. It is easy to see that $\Sigma^{\mathscr{F}}(F) \cap F^{-1}(q)$ has no more than n'' points. Now suppose that for some $q \in N$ there are $p_1, \ldots, p_{n''+1}$ the distinct points in $Cl_M(\Sigma^{\mathscr{F}}(F)) \cap F^{-1}(q)$. For each $i \in \{1, \ldots, n'' + 1\}$ let $(p_{ij})_{j \geq 1}$ be a sequence of points of $\Sigma^{\mathscr{F}}(F)$ converging to p_i and let $H_i = \{z \in T_q^{\mathscr{F}}(N), z = \lim_{j \to \infty} (T_{p_{ij}}F)(u_{ij}), u_{ij} \in (T_{p_{ij}}F)^{-1}(T_{F(p_{ij})}^{\mathscr{F}}(N)) \cap T_{p_{ij}}^{\mathscr{F}}(M))\}$. We have that H_i is a vector subspace of $T_q^{\mathscr{F}}(N)$ and dim $H_i < n''$ because dim $(T_{p_{ij}}F)(T_{p_{ij}}^{\mathscr{F}}(M)) \cap T_{F(p_{ij})}^{\mathscr{F}}(N) < n''(p_{ij} \in \Sigma^{\mathscr{F}}(F))$. Then codim $H_i \geq 1$ in $T_q^{\mathscr{F}}(N)$ and $\sum_{i=1}^{n''+1} \operatorname{codim} H_i \geq n'' + 1$. Therefore $\{H_i\}_{i=1,\ldots,(n''+1)}$ are not in general position in $T_q^{\mathscr{F}}(N)$. This means that there exist $\{w_i\}_{i=1,\ldots,(n''+1)} \subset T_q^{\mathscr{F}}(N)$ such that the equations $w_i = h_i + z$ have no solution for $h_i \in H_i$ and $z \in T_q^{\mathscr{F}}(N)$. But this is in contradiction with the hypothesis (+).

Now let $\tau \in \mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN)$. From (2), applied with $S = \Sigma^{\mathscr{F}}_q(F)$, and the fact that the projections $J^k(\mathscr{C}^{\infty}_{\mathscr{F}}(TM)) \to J^k_S(\mathscr{C}^{\infty}_{\mathscr{F}}(TM))$, $J^k(\mathscr{C}^{\infty}_{\mathscr{F}}(TN)) \to J^k_S(\mathscr{C}^{\infty}_{\mathscr{F}}(TN))$ are onto, it follows that there exist $\xi_q \in \mathscr{C}^{\infty}_{\mathscr{F}}(TM)$, $\eta_q \in \mathscr{C}^{\infty}_{\mathscr{F}}(TN)$ such that $(tF)(\xi_q) + (\omega F)(\eta_q)|_{U_q} = \tau|_{U_q}$ for a suitable open neighbourhood U_q of $\Sigma^{\mathscr{F}}_q(F)$ in M. Since M is compact, it results that $F(Cl_M\Sigma^{\mathscr{F}}(F)\setminus U_q)$ is closed in N. Let V_q be its complement in N. Since $\Sigma^{\mathscr{F}}_q(F) \subset U_q$ it follows that $q \in V_q$. Let $\{\rho_\alpha\}_{\alpha \in I}$ be a \mathscr{C}^{∞} -basic partition of unity which is subordinate to $\{V_q\}_{q\in N}$. The existence of such a partition subordinate to a locally finite covering by open (saturated) subsets of a foliated manifold is proved by R. Wolak in [8]. Let $\xi_1 = \sum_{\alpha \in I} (\rho_\alpha \circ F)\xi_{q(\alpha)}, \eta_1 = \sum_{\alpha \in I} \rho_\alpha \eta_{q(\alpha)},$ where for $\alpha \in I$ we denote by $q(\alpha)$ a point $q(\alpha) \in N$ such that $\sup \rho_\alpha \subset V_{q(\alpha)}$. Writing by $U = \bigcap_{\alpha \in I} (U_{q(\alpha)} \cup F^{-1}(N - \sup \rho_\alpha))$ we have that U is open and $(tF)(\rho_\alpha \circ F)\xi_{q(\alpha)} + (\omega F)(\rho_\alpha \eta_{q(\alpha)}) - (\rho_\alpha \circ F)\tau$ is identically 0 on $U_{q(\alpha)} \cup F^{-1}(N - \sup \rho_\alpha)$ so that we obtain:

$$[(tF)(\xi_1) + (\omega F)(\eta_1)]|_U = \tau|_U.$$

Since $Cl_M \Sigma^{\mathcal{F}}(F) \subseteq U$, it follows that $\tau - (tF)(\xi_1) - (\omega F)(\eta_1)$ vanishes on a neighbourhood of $Cl_M \Sigma^{\mathcal{F}}(F)$. Moreover, since $T_p F: T_p^{\mathcal{F}}(M) \to T_{f(p)}^{\mathcal{F}}(N)$ is onto for all $p \notin Cl_M \Sigma^{\mathcal{F}}(F)$ it follows that there exists $\xi_2 \in \mathscr{C}_{\mathcal{F}}^{\infty}(TM)$ such that $\tau - (tF(\xi_1) - (\omega F)(\eta_1) = (tF)(\xi_2)$. Hence $\xi = \xi_1 + \xi_2 \in \mathscr{C}_{\mathcal{F}}^{\infty}(TM), \eta = \eta_1 \in \mathscr{C}_{\mathcal{F}}^{\infty}(TN)$ and $\tau = (tF)(\xi + (\omega F)(\eta)$ and the Lemma is proved.

We shall use now the notation from [4]. Let $J^k(M, N) = \{j_p^k f, f \in \mathfrak{C}_{\mathscr{F}}^{\infty}(U, N)$ where U is some open neighbourhood of $p\}$, let $L^k(m)$ be the Lie group consisting of k-jets of origin preserving diffeomorphisms $(\mathbb{R}^m, 0) \to (\mathbb{R}^m, 0)$, $L^k(m, l) = \{j_0^k \psi \in L^k(m), \psi : (\mathbb{R}^{m-l} \times \mathbb{R}^l, 0) \to (\mathbb{R}^{m-l} \times \mathbb{R}^l, 0), \psi(x, y) =$ $(\psi_1(x,y),\psi_2(x,y)), \forall (x,y) \in \mathbb{R}^{m-l} \times \mathbb{R}^l\}$. By Prop. 2.12 from [4] it is known that the mapping source-target $(\alpha,\beta): J^k_{\mathcal{F}}(M,N) \to M \times N$ defines a structure of a subbundle of the bundle $(\alpha,\beta): J^k(M,N) \to M \times N$ with structure group $L^k(m,m-l) \times L^k(n,n-l')(J^k(\mathbb{R}^m,\mathbb{R}^n) \cap J^k_{\mathcal{F}}(\mathbb{R}^m,\mathbb{R}^n) \simeq \mathbb{R}^m \times \mathbb{R}^n \times J^k(m,n-l') \times J^k(l,l')).$

The natural action of $L^k(m, m-l) \times L^k(n, n-l')$ on $J^k(m, n-l') \times J^k(l, l')$ is given by

$$((j^{k}\Phi))(0), (j^{k}\Psi)(0)) \cdot (j^{k}F)(0) = j_{o}^{k}(\Psi \circ F \circ \Phi^{-1}).$$

Let $\mathfrak{U}_{\mathscr{F}}^k$ be a good coordinate system of $J^k(M, N)$ with respect to \mathscr{F}_N in the sense of [4], and let $\mathfrak{U}_{\mathscr{F},p}^k$ be the associated good coordinate system of $J_{\mathscr{F}}^k(M, N)$ with respect to $\mathscr{F}_M \times \mathscr{F}_N$,

$$\mathfrak{U}_{\mathcal{F},p}^{k} = \{ J^{k}(U_{i}, V_{i}) \cap J_{\mathcal{F}}^{k}(M, N), J^{k}(U_{i}, V_{i}) \in \mathfrak{U}_{\mathcal{F}}^{k} \}.$$

This system induces canonically the foliated structure $\mathcal{F}^k(M, N)$ on $\mathcal{T}^k_{\mathcal{F}}(M, N)$ by the local submersions:

$$p_i: J^k(U_i, V_I) \cap J^k_{\mathcal{F}}(M, N) \to \mathbb{R}^{l'}$$
$$p_i = pr_2 \circ \Psi_i \circ \Pi \circ \Phi_{U_i, V_i}$$

where

 $\Phi_{U_i,V_i}: J^k(U_i,V_i) \cap J^k_{\mathcal{F}}(M,N) \to U_i \times V_i \times J^k(m,n-l') \times J^k(l,l')$

is the coordinate system on $J^k_{\mathcal{F}}(M, N)$ induced by the foliated coordinate systems (U_i, Φ_i) and (V_i, Ψ_i) on (M, \mathcal{F}_M) and (N, \mathcal{F}_N) respectively and $\Pi: U_i \times V_i \times J^k(m, n - l') \times J^k(l, l') \to V_i, \ pr_2: \mathbb{R}^n \to \mathbb{R}^{l'}$ are the canonical projections.

DEFINITION 4. We call $\mathbb{O} \subset J^k(M, N)$ a *pseudo-orbit* in the weak sense with respect to $\mathfrak{A}_{\mathcal{F},p}^k$ if $\mathbb{O} = \bigcup_{i=1}^{l} \mathbb{O}_i(c^i, z^i)$ for some $c_i \in \mathbb{R}^{l'}, z^i \in J^k(m, n - l') \times J^k(l, l')$ where $\mathbb{O}_i(c_i, z^i) = U_i \times \Psi_i^{-1}(c^i \times \mathbb{R}^{n-l'}) \times [L^k(m, m-l) \times L^k(n, n-l')] \cdot z^i, (V_i, \psi_i)$ beeing a foliated coordinate system on (N, \mathcal{F}_N) .

REMARK. Here $[L^k(m, m-l) \times L^k(n, n-l')] \cdot z^i$ denotes the orbit of z^i by the above action in $J^k(m, n-l') \times J^k(l, l')$. If in the previous definition instead of this orbit we take the orbit $(L^k_{m-l}(m) \times L^k_{n-l'}(n))(z^i)$ with $L^k_{m-l}(m) = \{j^k_o \Psi \in L^k(n, m-l), \Psi_2(y) = 0\}$, we obtain the concept of pseudo-orbit in $J^k_{\mathcal{F}}(M, N)$ given by Izumiya in [4] (Def.3.1).

We obtain the following result:

LILIANA MAXIM-RĂILEANU

LEMMA 9. Any pseudo-orbit \mathbb{O} in the weak sense with respect to $\mathfrak{A}_{\mathcal{F},p}^k$ is a local submanifolds correction in $\mathfrak{F}^k(M, N)$ with respect to $\mathfrak{A}_{\mathcal{F}}^k, p$ (in Izumiya's sense). Moreover, if \mathbb{O}' is a pseudo-orbit in the weak sense with respect to $\mathfrak{A}_{\mathcal{F},p}^k$ and $z \in \mathbb{O} \cap \mathbb{O}'$ then we have $T_z \mathbb{O} = T_z \mathbb{O}'$.

Proof. It is clear that each $\mathbb{O}_i(c^i, z^i)$ is a submanifold of $J^k(U_i, V_i) \cap J^k_{\mathcal{F}}(M, N)$. Let $\mathbb{O}_i(c^i, z^i) \cap \mathbb{O}_j(c^j, z^j)$ be non-empty. Since any $L^k(m, n-l) \times L^k(n, n-l')$ -orbit in $J^k(m, n-l') \times J^k(l, l')$ is mapped on a $L^k(m, m-l) \times L^k(n, n-l')$ -orbit by the action of $L^k(m, m-l) \times L^k(n, n-l')$ and, by definition, $\mathbb{O}_i(c^i, z^i) \subset J^k(U_i, V_i) \cap J^k_{\mathcal{F}}(M, N) \cap L$ for some $L \in \mathcal{F}^k(M, N)$, there results that the second condition from the definition of local submanifolds correction (Definition 2.7 from [4]) is satisfied. The last part of the Lemma is obvious.

By this result, the notion of which $J^k F$ as a section of $J^k_{\mathcal{F}}(M, N)$ is transverse to a pseudo-orbit (in the weak sense) with respect to a good coordinate system is not dependent on the choice of good coordinate systems. Thus we say that $j^k F$ is transverse to a pseudo-orbit \mathbb{O} in the weak sense if $j^k F$ is transverse to \mathbb{O} with respect to a good coordinate system.

We obtain the following characterization for this notion:

LEMMA 10. Let $F \in \mathscr{C}_{\mathfrak{F}}^{\infty}(M, N)$, let $\mathbb{O} \subset J_{\mathfrak{F}}^{k}(M, N)$ be a pseudo-orbit in the weak sense and let $p \in M$ such that $(j^{k}F)(p) \in \mathbb{O}$. Then j_{F}^{k} is transverse to \mathbb{O} at p iff $(tF)((\mathscr{C}_{\mathfrak{F}}^{\infty}(TM))_{p}) + (\omega F)((\mathscr{C}_{\mathfrak{F}}^{\infty}(TN)_{F(p)}) + \mathcal{M}_{p.\mathfrak{F}}^{k+1}(M)(\mathscr{C}_{\mathfrak{F}}^{\infty}(F^{*}TN))_{p} = (\mathscr{C}_{\mathfrak{F}}^{\infty}(F^{*}TN))_{p}$

Proof. The proof is the same as in the usual case (cf. [5,V], 2). Namely, there is the following natural identification of \mathbb{R} -vector spaces,

$$T_z(J_n^k(M,N)) = (\mathscr{C}^{\infty}(F^*TN))_p / \mathscr{M}_n^{k+1}(\mathscr{C}^{\infty}(F^*TN))_p)$$

where $z = j_p^k F \in J_p^k(M, N)$ (cf. [5,V], §2).

In terms of this identification we have:

$$T_z(J^k_{\mathfrak{F}}(M,N)) = (\mathscr{C}^{\infty}_{\mathfrak{F}}(F^*TN))_p / \mathscr{M}^{k+1}_{p,\mathfrak{F}}(M)(\mathscr{C}^{\infty}_{\mathfrak{F}}(F^*TN))_p$$

Now, by using the same arguments of Mather's paper ([5,V], §2) we obtain the following formula for the tangent space at z of the fiber \mathbb{O}_p over p of local pseudo-orbit in the weak sense $\mathbb{O}(z \in \mathbb{O})$:

$$T_{z}(\mathbb{O}_{p}) = \left[(tF)(\mathcal{M}_{p,\mathscr{F}}(M)(\mathscr{C}_{\mathscr{F}}^{\infty}(TM))_{p}) + (\omega F)(\mathscr{C}_{\mathscr{F}}^{\infty}(TN)_{f(p)}) \right. \\ \left. + \mathcal{M}_{p,\mathscr{F}}^{k+1}(M)(\mathscr{C}_{\mathscr{F}}^{\infty}(F^{*}TN))_{p} \right] \left/ \left[\mathcal{M}_{p,\mathscr{F}}^{k+1}(M)(\mathscr{C}_{\mathscr{F}}^{\infty}(F^{*}TN))_{p} \right] \right.$$

We now give the following version of the transversality theorem in the tangential sense.

LEMMA 11. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, let $\mathfrak{U}_{\mathcal{F},p}^k$ be a good coordinate system of $J_{\mathcal{F}}^k(M, N)$ with respect to $\mathcal{F}_M \times \mathcal{F}_N$ and let $A = \bigcup_{i \in I} A_i$ be a local submanifold correction in $J_{\mathcal{F}}^k(M, N)$ with respect to $\mathfrak{U}_{\mathcal{F},p}^k$. Then the set $T_{A,\mathcal{F}} = \{F \in \overline{\mathfrak{C}_{\mathcal{F}}^\infty(M, N)}, j^k F \overline{\mathfrak{h}}_{\mathcal{F},p} A\}$ is dense in $\overline{\mathfrak{C}_{\mathcal{F}}^\infty(M, N)}$ where, as in [4], $j^k f \overline{\mathfrak{h}}_{\mathcal{F},p} A$ if $j^k f$ is transverse to A_i relative to $(\mathcal{F}^k(M, N), J^k(U_i, V_i) \cap J_{\mathcal{F}}^k(M, N))$, for all $i \in I$ (for the last notion see Def. 2.1 of [4]).

Proof. We shall use the following result the proof of which follows, in the main, that of Lemma 2.2 from [4].

Transversality lemma in the tangential sense

Let *B* be a smooth manifold, let (M, \mathcal{F}_M) , (N, \mathcal{F}_N) be foliated manifolds, let *U* be an open set of *M*, *A* a submanifold of *U*, and $j: B \to \mathscr{C}^{\infty}(M, N)$ a mapping. We denote by $\Phi: B \times M \to N$ the mapping given by $\Phi(b, p) = j(b)(p)$. If Φ is a smooth mapping and if $\Phi \overline{h}_{(\mathcal{F}_N,U)} A$, then the set $\{b \in B, j(b) \overline{h}_{(\mathcal{F}_N,U)} A\}$ is dense in *B*.

For each $i \in I$, let $\{A_i^j\}_{j \in \mathbb{N}}$ be an open covering of A_i such that for every $(i, j) \in I \times \mathbb{N}$ we have:

- a) the closure of A_i^j in $J^k(U_i, V_i)$ is contained in A_i ;
- b) A_i^j is compact.

We consider the sets:

Since $T_{A,\mathscr{F}} = \bigcap_{i \in I} T_{A_i^j, \overline{\mathscr{F}}}$ and $\overline{\mathscr{C}_{\mathscr{F}}(M, N)}$ is a Baire space, it is enough to show that for every $(i, j) \in I \times \mathbb{N}$, $T_{A_i^j}$ is open and $T_{A_i^j, \mathcal{F}}$ is dense in $\mathscr{C}_{\mathscr{F}}^{\infty}(M, N)$. The first result is proved by S.Izumiya in [4]. For the second, let $(U_i, \Phi_i), (V_i, \Psi_i),$ $\Psi_i(V_i) = V_1^i \times V_2^i \subset \mathbb{R}^{n-l'} \times \mathbb{R}^{l'}$ be foliated coordinate systems so that $(\alpha, \beta)(\overline{A_i^j}) \subset U_i \times V_j$ and $\rho \in \mathscr{C}_{\mathscr{F}}^{\infty}(\mathbb{R}^m, [0, 1]), \rho_1' \in \mathscr{C}^{\infty}(\mathbb{R}^{l'}, [0, 1]), \rho_2' \in$ $\mathscr{C}^{\infty}(\mathbb{R}^{n-l'}, [0, 1])$ such that:

$$\begin{split} \rho &= \begin{cases} 1 & \text{on a neighbourhood of } \Phi_i \circ \alpha(\overline{A_i^j}) \\ 0 & \text{off } \Phi_i(U_i) \end{cases} \\ \rho_1' &= \begin{cases} 1 & \text{on a neighbourhood of } pr_2 \circ \Psi_i \circ \beta(\overline{A_i^j}) \\ 0 & \text{off } V_1^i \end{cases} \\ \rho_2' &= \begin{cases} 1 & \text{on a neighbourhood of } pr_1 \circ \Psi_i \circ \beta(\overline{A_i^j}) \\ 0 & \text{off } V_2^i. \end{cases} \end{split}$$

The existence of a function ρ is assured by Lemma 3 of [8]. Let B_2 (resp. B_1) be the space of basic polynomial mappings, $\mathbb{R}^m \to \mathbb{R}^{l'}$ (resp. of polynomial mappings of $\mathbb{R}^m \to \mathbb{R}^{n-l'}$) of degree at most k.

Now we shall use the transversality lemma to show that $T_{A_i^j, \mathcal{F}}$ is dense in $\mathscr{C}^{\infty}_{\mathcal{F}}(M, N)$, for every $(i, j) \in I \times \mathbb{N}$. Let $F \in \mathscr{C}^{\infty}_{\mathcal{F}}(M, N)$ and for $(b_1, b_2) \in B_1 \times B_2$, let $G_{(b_1, b_2)}: M \to N$ given by

$$G_{(b_1,b_2)}(p) = \begin{cases} F(p) & \text{if } p \in U_i \text{ or } F(p) \notin V_i \\ \Psi_i^{-1}(\rho(\Phi_i(p))\rho'_1(F_1(p))b_1(\Phi_i(p)) + \\ F_1(p), \rho(\Phi_i(p)) \times \rho'_2(F_2(p))b_2(\Phi_i(p)) + F_2(p)) & \text{otherwise.} \end{cases}$$

where $(\Psi_i \circ F)(p) = (F_1(p), F_2(p)), \forall p \in F^{-1}(V_i).$

The choice of ρ , ρ'_1 , ρ'_2 guarantees that $G_{(b_1,b_2)}$ is a smooth foliation preserving mappings from M to N and $G_{(0,0)} = F$. Let

$$j: B_1 \times B_2 \to \mathscr{C}^{\infty}(M, J_{\mathscr{F}}^k(M, N)), j(b_1, b_2) = j^k G_{(b_1, b_2)}$$
$$\Phi: B_1 \times B_2 \times M \to J_{\mathscr{F}}^k(M, N), \ \Phi(b_1, b_2, p) = j(b_1, b_2)(p).$$

By the same techniques as in the proof of the ordinary jet transversality theorem we may prove that there are neighbourhoods B'_1 , B'_2 of the origin in B_1 , B_2 respectively and a neighbourhood A'^{j}_i of $\overline{A^j_i}$ in A_i such that, denoting by $\widetilde{\Phi} = \Phi|_{M \times B'_1 \times B'_2}$ we have $\widetilde{\Phi} \,\overline{h}_{\mathscr{F}^k(M,N),J^k_{\mathscr{F}}(M,N)} A_i$ on A'^{j}_i . We apply the transversality lemma and we obtain that $\{(b_1, b_2) \in B'_1 \times B'_2, j^k G_{(b_1, b_2)} \,\overline{h}_{\mathscr{F}^k(M,N)J^k_{\mathscr{F}}(M,N)} A_i$ on $A'^{j}_i\}$ is dense in $B'_1 \times B'_2$. Then we can find a sequence $\{b_n\} \subset B_1 \times B_2$ such that $\lim_{n\to\infty} b_n = (0,0) \in B'_1 \times B'_2$ and $j^k G_{(b_n)} \,\overline{h}_{\mathscr{F}^k(M,N),J^k_{\mathscr{F}}(M,N)} A_i$ on A'^{j}_i . But $G_{(0,0)} = F$ and, by construction, $G_b = F$ off U_i . Thus it follows that $\lim_{n\to\infty} G_{b_n} = F$ in $\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)$ and $T_{A'^{j}_i,\mathscr{F}}$ is dense in $\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)$. This completes the proof.

By using the techniques from [5] and [4] it is easy to generalize the above result to a multijet version. With the usual multijet notations we obtain the following:

LEMMA 12. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, let S be a finite subset of M, let ${}_{S}\mathbb{Q}^k_{\mathcal{F},p}$ be a good coordinate system of ${}_{S}J^l_{\mathcal{F}}(M, N)$ with respect to $\mathcal{F}_M \times \mathcal{F}_N$ and let A be a local submanifold correction in ${}_{S}J^l_{\mathcal{F}}(M, N)$ with respect to ${}_{S}\mathbb{Q}^k_{\mathcal{F},p}$. Then $T^S_{A,\mathcal{F}} = \{F \in \overline{\mathcal{C}^\infty_{\mathcal{F}}(M, N)}, S j^k F \restriction_{\mathcal{F},p} A\}$ is dense in $\overline{\mathcal{C}^\infty_{\mathcal{F}}(M, N)}$.

Analogously we obtain the multijet versions for Lemmas 9 and 10.

LEMMA 13. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, M compact, $F \in \mathscr{C}^{\infty}_{\mathcal{F}}(M, N), k \in \mathbb{N}, k \geq n', s \geq n'' + 1^k$. If F is a \mathscr{C}^{∞} - \mathcal{F} -stable

mapping, then for every subset S of M having S or fewer points, and such that F(S) is a single point, we have:

(13)
$$(tF)((\mathscr{C}^{\infty}_{\mathscr{F}}(TM))_{S}) + (\omega F)((\mathscr{C}^{\infty}_{\mathscr{F}}(TN))_{F(S)}) + \mathscr{M}^{k+1}_{p,\mathscr{F}}(M)(\mathscr{C}^{\infty}_{\mathscr{F}}(F^{*}TN))_{S}$$
$$= (\mathscr{C}^{\infty}_{\mathscr{F}}(F^{*}TN))_{S}$$

Proof. By Lemma 9 (the multijet version), \mathbb{O} is a local submanifold correction in $\mathscr{F}^k(M,N)$ with respect to a good coordinate system ${}_{S}\mathscr{U}^k_{\mathscr{F},p}$ and, by Lemma 12, we have that $T^S_{\mathscr{O},\mathscr{F}} = \{G \in \overline{\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)}, S j^k G \bar{\mathfrak{h}}_{\mathscr{F},p} \mathbb{O}\}$ is dense in $\overline{\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)}$. Since F is a \mathscr{C}^{∞} - \mathscr{F} -stable mapping there is a neighbourhood $V_F \subset \mathscr{C}^{\infty}_{\mathscr{F}}(M,N)$ such that for every $G \in V_F$ there are diffeomorphisms $H \in \operatorname{Diff}^{\infty}_{\mathscr{F}}(M), K \in \operatorname{Diff}^{\infty}_{\mathscr{F}}(N)$ such that $G = K \circ F \circ H$. Thus V_F is a neighbourhood of F in $\overline{\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)}$ and $V_F \cap T^S_{\mathfrak{O},\mathscr{F}} \neq \emptyset$. Let $G \in V_F \cap T^S_{\mathfrak{O},\mathscr{F}}$, so $sj^k G \bar{\mathfrak{h}}_{\mathscr{F},p} \mathbb{O}$. By Lemma 9 (the multijet version) it follows that $K^{-1} \circ \mathbb{O} \circ H^{-1} = \bigcup K^{-1} \circ \mathbb{O}_i \circ H^{-1}$ is a pseudo-orbit in the weak sense with respect to the good coordinate system $K^{-1} \circ_S \mathscr{U}^k_{\mathscr{F},p} \circ H^{-1}$. Since $sj^k G \bar{\mathfrak{h}}_{\mathscr{F},p} \mathbb{O}$, we have $sj^k F \bar{\mathfrak{h}}_{\mathscr{F}}(K^{-1} \circ \mathbb{O} \circ H^{-1})$. By using Lemma 10 (multijet version) it follows that for any element $x = (x_1, \ldots, x_s) \in M^{(s)}$ with $sj^k F(x) \in K^{-1} \circ \mathbb{O} \circ H^{-1}$ we have (3).

Since by Lemma 8, the last condition is equivalent to the fact that F is a \mathscr{C}^{∞} - \mathscr{F} -infinitesimally stable mapping, we obtain the proof of the implication:

F is a \mathscr{C}^{∞} -*F*-stable mapping \Longrightarrow *F* is a \mathscr{C}^{∞} -*F*-infinitesimally stable mapping.

Seminarul Matematic "Al Myller" Iaşı-Romănia

References

- L. A. FAVARO Differentiable mappings between foliated manifolds, Bol. Soc. Bras. Mat. 8 (1977), 39–46.
- [2] M. GOLUBITSKI. and V. GUILLEMIN Stable mappings and their singularities, Graduate Texts in Math. 14, Springer Verlag, 1973.
- [3] M. HIRSCH. Differential Topology, Graduate Texts in Math., 33, Springer Verlag, 1976.
- [4] S. IZUMIYA. Smooth mappings between foliated manifolds, Bol. Soc. Bras. Mat. 13 (1982), 3–17.
 [5] J. MATHER. Stability of C-mappings
 - 5.I The division theorem, Ann. of Math., 87, 1968, 89–104.
 - 5.II Infinitesimal stability implies stability, Ann. of Math., 89, 1969, 254-291.
 - 5.III Finitely determined map germs, Publ. Math. I.H.E.S., 35, 1968, 127–156
 - 5.IV Classification of stable germs by R-algebras, Publ. Math. I.H.E.S., 37, 1969, 223–248
 - 5.V Transversality, Advances in Math., 4, 1970, 301-336
 - 5.VI The nice dimensions, Liverpool Singularities Symposium I, Springer Lecture Notes in Math., **192**, 1970, 207–253
- [6] V. POENARU Stability of equivariant smooth maps, Bull. Amer. Math. Soc., 81, 1975.
- [7] I. VAISMAN Variétés riemanniennes feuilletées, Czechosl. Math. Journal, 21, 1971, 46–75.
- [8] R. A. Wolak. Maximal subalgebras in the algebra of foliated vector fields of a Riemannian foliation, Comment. Math. Helv., 64, 1989, 536–541.