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STABILITY OF MAPPINGS BETWEEN FOLIATED MANIF
By Liiana MAXIM-RAILEANU

The problem of stability of mappings between manifolds equipped with
geometric structures of the same type was first posed by V. Poenaru in [6].
Namely, the stability of equivariant maps between compact G- mamfolds is
studied, G being a compact Lie group.

The definition of a concept of stability for the mappings between foliated
manifolds is given by L. A. Favaro in [1]. Namely, given smooth regular
foliations %y, Fn on the manifolds M, N respectively, a mapping F €
@°(M,N) is called siable in tangential sense if there is a neighbourheod
Ve C €°°(M, N) of F such that for each G € Vp satisfying the condition
G(z) and F(x) belong to the same leaf of ¥y for each z € M, there are
the diffeomorphisms H € Diff (M), K € Diff*(N) taking each leaf of F,,,
respectively %y, onto itself such that G = Ko F o H.

Favaro gives a proper concept of infinitesimal stabilify and proves the
implication: infinitesimal stability implies stability (both in the tangential
sense).

Later, in the paper [4], S. Izumiya shows that foliation preserving mappings
F € (M, N) are the natural objects for which Favaro’s notation of stability
in the tangential sense is defined and for a such mapping F' the equivalence:
F stable «— F infinitesimally stable is proved.

Denoting by € (M, N, F) = {G € €*°(M, N), F(z) and G(z) belong to the
same leaf of Fyy for each x € M}, S. Izumiya observes in the same paper
that Favaro’s stahbility concept for F' € €°°(M, N) is a stability in the space
@°(M,N,F). If F € €(M,N), then €°(M,N,F) C 63 (M,N). In this
case, denoting by f: M|g,, — N|g, the mapping between the spaces of leaves
defined by I, it is obvicus that each mapping G € (M, N, F) induces the
same mapping f between the spaces of leaves.

Thus the Favaro-Izumiya stability concept is the stability of (F, f) in zhe
category of commutative diagrams of the following type:

F
—

M N
[ I
M|Fy L NFy
Now we propose a more general concept of stability for a mapping F €
@Y (M, N), namely the stability in €5 (M, N).

DerFINITION 1. Let (M, %), (N, Fy) be €>-foliated manifolds and let
F € 63 (M,N). We say that F is €°-F-stable if there is a neighbourhood
Ve C @3 (M,N) of F in the 6>-fine topology such that for every G € Vp
there is a ¢°°-diffeomorphism H € Diff™ (M) N6 (M, M) = Diff g (M) and
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a ¢°°-diffeomorphism K e Diff (V) N 62 (N,N) = Diffg(N) such that
G=KoFoH.

REMARKS

1. If, for a mapping F' € €5°(M, N) denoted by a capital letter, we denote
by the corresponding small letter the associated mapping between the
spaces of leaves, the condition from the previous definition implies that
for every G € Vp wehaveg=Fko foh.

2. If we require in Definition 1 that h = id Mlg,, 5 i.e. H takes each leaf of
% s onto itself, we obtain the application of Favaro’s (%, %y )-stability
([1]) for a foliation preserving mapping F.

3. Denoting by @ the following natural action of the group Diffg (M) x
Diffg (M) on the space 5° (M, N):

®: DIff (M) x Diff (V) x @2 (M, N) — € (M, N),
((H,K),F) — K o FoH,

we obtain that F' € €3 (M, N) is a €*°-F-stable mapping iff the orbit of
F under the action ¢ is an open subset of €3° (M, N).

4. If F; and Fy are simple foliations, the previous concept of stability
leads to an adequate concept of stability in the category of fibre bundle
morphisms.

In order to give a corresponding infinitesimal concept of stability, let T% s
be the involutive subbundle of vectors tangent to the foliation ¥, on M and
let Qs be the normal bundle, the quotient defined by the short exact bundle
sequence:

(1) Onr — TFrr — TME4Q 1 — Our.

We denote by €5°(T'M) the following set of all 6*° infinitesimal automorphisms
of Fpur:

@R (TM) = {Y € €°(TM), 1 ([X,Y]) = 0 for each X € 6= (TFp)}.

Let € (F*TN) = {)Af € @ (F*TN), Iy o X is locally constant along the
leaves of Fps}. '

DEFINITION 2. Let (M, %) and (N, Fy) be ¥>-foliated manifolds and let
F € 8P (M,N). We say that F is 6*°-F-infinitesimally stable if

tF(RF(TM)) + wF(@F(TN)) = 65 (F*TN)
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where the mappings

tF: 6L (T M) — GX(F*TN),
wF:@P(TN) — 6L (F*TN),

are given by tF(§) =TF o &, wF(n) =noF.
Our main result is the following:

THEOREM 1. Let (M, %) and (N,%Fy) be foliated manifolds with M
compact and F € €2(M,N). Then F €°°-F-stable implies F is a 6°°-%-
infinitesimally stable mapping. :

Proof. We will use the same terminology and notation of [2] and [5].

The proof uses several lemmas.

First we give a generalized Malgrange Preparation theorem for the local
ring of germs of basic functions on a foliated manifold.
- Let (M,%,;) be a smooth, connected, n-dimensional foliated manifold
where %, is a smooth [-codimensional foliation on M. A smooth real-valued
function f on M is called basic (foliated) related to %y, (or, shortly, F,s-basic)
if Xf = 0for all X € €°(I'%,). We denote by €3°(M) the ring of these
functions. For an arbitrary point p € M and f € <6 5(M), let [f1, denote
the germ of f at p, that is the equivalence class of f i m the germ equivalence
relation on €3°(M) in p. Let <6 (M) denote the set of all germs of smooth,
F pr-basic, real valued functlons deﬁned on a neighbourhood of p.

- LEMMA 1. 67%:(M) is structured as a local ring by the usual addition and
maultiplication of functions.

Proof. Let My g(M) = {[f], € €55(M), f(p) = 0}. It is easy to see that
My (M) is an ideal of 62% (M). LetJl/Lbe another ideal in 6% (M), and let M D '

My 5(M) and [f], € A/t .Mp #(M). Then [ 1p is defined and [1 ]p € 6 g(M)
because for every X € @ (T'%y) we have locally X ( ) = X (f) =
Therefore [1 7lp - [Flp = [1lp € M so that M = 6755 (M). Thus Jl/tp,g,r(M) is the
unique max1mal ideal of 6€2%(M).

LEMMA 2. Let F € C60"(M N), p € M, q = F(p). Then F induces
a ring homomorphzsm pa BoF(IN) — 6o (N) given by [flg — [f o F]p :
Moreover, if F is locally (near p) a leaf- preservmg diffeomorphism, then Fy  is
an isomorphism.

Proof. To see that F;  is well defined, let [f]; € 67% (V). We prove that
[f o Fl, € €% (M); that 1s X(foF)=0forevery X € <€°°(TJPM) defined on
a nelghbourﬁood of p.
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But [f]l, € €7%(IV) is equivalent to the condition Yf = 0, for every
Y € 2 (T %) deﬁned on a neighbourhood V of ¢ in M. This last condition
is equivalent to the fact that f|y is constant along the leaves. Thus it follows
that (f o F)| p-1(y) is constant along leaves, which is equivalent to the fact that
X(f o F) =0 for every X € 6€>°(T'%F ;) defined on F~1(V).

If F'is a local foliation preserving diffeomorphism, then (Fy, )"1 = (F~ 1); s
therefore F  is an isomorphism.

if we conSIder the mapping €.°% (M ) — R, [fl, — f(p), we cbtain the
isomorphisms R = 2% (M) /Ay, g (M) ~ - Bow(N) /[ Mq,g(N). Therefore by [2],
Corollary 3.5, Ch. IV for every finite generated ‘6 5(M)-module A, the
quotient A/M, (M)A is a finite dimensional vector space over R.

We now state the following version of the generalized Malgrange Prepa-
ration theorem for the local rings of germs of basic functions on a foliated
manifold.

LEMMA 3. Let (M,%p) and (N,Fy) be smooth foliated manifolds, let
F e P (M,N),pe M, g = F(p) and let Abe a finitely generated 62°% (M)
module Then A is a finitely generated module over Com(N) (via Fy ) iff
AJMqa(N)A is a finite dimensional R-vector space.

Proof.  Since this is a local result, with a proper choice of F-adapted foliate
coordinate systems in p and ¢ we may assume that M = R?, N =R"*,p=0¢

R™, g =0 € R", % isdefined by z* =a*,Va=1,..., 1,1 = codim %, Fyn
isdefined by y* =b*,d =1,...,1', ' = codim %y, and F' is locally given
by F(z) = (FY(),..., F*(z)) with F® (z) = F* (z!,...,2!), fora’ =1, ..., I

Then locally 65 g(IR{’”) and 65%(R™) may be 1dent1ﬁed w1th @ (RY) and ‘60" (Rl )
respectively, and F; deﬁnes the mapping Fo,o- BR(RY) — @5 (RY) associated
to F:R! — RV given by

F@t,. . 2 = (P&, .., 2h, . FU &t 5h).

Since for every [flo € 63%(R™) the germ [f o F'ly depends only of F, it
follows that A is a finitely generated module over €§%(R"), via ﬁd,o: iff A
is a finitely generated module over Gy(R'), via Foo Now, based on the
generalized Malgrange Preparation theorem ([2], Th. 8.6, Ch IV), this last
fact is equivalent to the fact that A/Mo(RY)A is a finite-dimensional R-vector
space, which in turn is equivalent to the fact that A/, g(R”)A is a finite
dimensional R-vector space, and the lemma is proved.

Now we define inductively the sequence of ideals .i* 0.5 (M) in 6> (M) by
letting JI/L1 (M) be My g(M) and, for k > 2, letting A/U“ (M) be the ideal
generated by germs of the form [f- gl, where [f], € M, gr(M) l9lp € Jl/t (M)

Applying the same ideas from [2] used in the proof of the theorem 3.10,
ChIV, we obtain:
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LEMMA 4. Let A be a finitely generated Cor(M)-module, F' € €5 (M, N)
g = F(p) and let Iy, ..., Iy be the elements ofA Then {e;}, i = 1 k,
generates A as a 62 (N ) module iff {n(e;)}i=1.x generates A/M;f’g,—l(M )A as

a %gf’g,,(N )-module, where A A/M;fj,l(ﬂf)A is the obvious projection.

Our first objective is to show that the concept of €*°-F-infinitesimal stabi-
lity for a foliation-preserving mapping F is, locally, a condition of finite order;
i.e., if the equations which express this type of stability can be so].ved locally
to some finite order, they can be solved for smooth data.

In the following considerations we denote by A, the set of the germs at
p € M of all sections from a set A of smooth sections of a foliated bundle over
the foliated manifold (M, Fs).

REMARK. Based on the considerations from [7], “any locally free €3°(11)-
module of finite rank is the sheaf of germs of foliated sections of a % ,-foliated
vector bundle over M”. Thus €3(T'M), 63 (I'N), and €3’ (F*T'N), are such
sheafs.

DEFINITION 3. Let p € M, F € € (M,N) and ¢ = F(p). The germ [F],
is called F-infinitesimally stable if for every germ [7], € (8 (F*TN)), there
exists germs of vector fields [£], € (€ (TM)), and [n], € (€5 (T'N)), such
that

(*) [T]p =[TF)o g]p + [77 o F]p

The mapping f is called F-locally infinitesimally stable at p if the germ [F],
is $-infinitesimally stable.

We choose now the following foliated charts: (U, ¢), ¢(U) = Uy x Uz C
R™ ! x RY, ¢(p) = (z,y), on (M, Fyy), based at p, and (V, ), v(V) = Vi x V5 C
R < RY ) 9(q) = («/,9"), on (N, Fy), based at ¢, which are F-adapted, i.e.
FU) € V,l = codimFp, I’ = codimFy. We have (Fyy(z,y) = (o Fo
¢z, y) = (Fi(z,y), Fo(y),V(z,y) € UyxUs, where Fy € (U xUs, V4), F €
€ (Us, V2).

We will compute the equation (x) in these coordinates. To do this, for the
fixed Riemannian metrics gy, gy on M and N, let oy, on be splittings of
the exact sequences of the type (1) over the foliated manifolds (M, Fps) and
(N, F ). Via these splittings, we have

CT(TM) =C>(TFp) & 67 Qum),
€P(TN) =6 (TFn) &6 (Qn),
GO(F*"TN) =€ (F*"TFN) ®EC(FQn)

so that we obtain:

€F (F*T'N) =67 (F"TFn) ® 65 (F*Qn),
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[y
s

CP(TM) =62 (TF1r) & 6T (Qn),
P (TN) = C°(TFx) & 6T (Qn).

It is obvious that, locally,
G (TFp), 6 (F*TF )

are finite generated modules over € (M), €*°(T'%y) is a finitely generated
module over 6°°(IV), while €5 (Qar), 65 (F*Q n) are finitely generated modu-
les over €% (M) and 65 (Q ) is a finitely generated module over €3 (N).

Let (Xa)a=(m—l+1),..4,m’a (Ya’)a’z(n—l’+1),.4.,n be the sets of tangent vector
fields on U and V respectively, such that

17} o
<£X> i (£Y> ot e,

a=(m—I+1),..., m a’=(n—-U+1,...n

generate locally the modules €°°(T'M) and €°°(T'N) respectively. For 7 ¢
GX(F*T'N), £ € €(TM), n € €(TN) we have, locally, via the previous
de;compositions: T = (11,7), £ = (£,8), 1 = (171,772) where 11(z,y) =

4 (2, 9) 527, m(z,y) = T WYa, L(,9) = &, Y2, Lalz,y) = WX,
m',y) = 7' (@, y)ﬁm”'" ne(z',y') = 1% ()Y. Then the equation (x)
becomes:

(L) [Tl](ac,y) =[TF o 5](30,1/) +Imo F](x,y)
()
(2 [TZ]y [TF2 © gZ:Iy + [nZ o FZ]y

We obtain the following result:

LEMMA 5.  The foliation preserving mapping F is F-locally-infinitesimally
stable at p iff the equation (x) can be solved to order max(l',n —1') =n'.

Proof. First, we observe that [F], is %-inﬁnitesimaﬂy stable iff
{li}y=1. . nyv» generates the €2°(N)-module via Fjy ., M7 = (€ (F*TFn))p/
A; and {l Yo = r+1),..n Senerates the ‘(%q (N)-module Mp (€F(F*QN)p/
Ag where A; = {[(TF}) o ﬁ]p,f € (CGOO(TM))];)} Ag = {[(TFZ) o alp, &2 €
(B Q@u)p} lir = prilF* (520, lor = pra(F* (Vo)) with pry: (€% (F*TF 5))p—

- MY pro: (@R (F*Qn))p — Mp the natural projections.

Applying Theorem 3.10, Ch. IV of [2] and Lemma (4) we obtain that
the germ |F|, is %-infinitesimally stable iff the module M7 /Mg"’“(M YMF
is generated over C6"‘°(N ) by the projections of [y, ..., I,_4, and the module
Mp/./W (M) M] is generated over 67% () by the projections of I,_g'—1, ...,

Thls last statement is equivalent to solving the equation (xx)(1) to order
(n —1") and (*x)(2) to order I’. Thus the Lemma is proved.
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In the following considerations, for a locally free 63° (M)-module of finite
rank A, that is, a sheaf of germs of foliatesections of a &, -foliatevector bundle
over M, we denote by J§(A) the following set of k-jets at p: JE(A) = {jk0,0 €
Ap € S}. Let pr}(A) = JF(A). By using such notation we obtain the
following lemma which is just a restatement of the previous lemma.

LEMMA 6. The mapping F € 83°(M, N) is F-locally infinitesimally stable
at piff

I (@F (F*TN)) = (TF),(J2 (8L (TM)) + Fy (JI (6L (TN))

where by (TF), and Fy we denote the obvious mappings into J;'(‘@?; (F*TN))
induced by the action of tF and wF on vector fields.

In order to obtain a global form of F-infinitesimal stability we give, firstly,
the following two results.

LemMA 7. For a fixed point q € N and a finite subset S = {p1,...,pr} of
F~1(q), the mapping F € 63 (M, N) is simultaneously locally infinitesimally
stable at p1, ..., pr iff

@) JE (@2 (F*TN)) = (TF)(JZ (6 (TM)) + F*(J2 65 (T'N)).

Proof. For S consisting of a single point this result is just that from
Lemma 6. As in the single point case, the proof for general S with more
than one point uses Lemma 1.4 from [2], Ch. V and Lemma 4.

LEMMA 8. The mapping F € €3 (M, N) is F-infinitesimally stable iff (+)
for every q € N and if for every finite subset S of F~1(q) with no more than
n'" + 1 points we have the relation (2) where n' is denots the dimension of the
fibre of the foliated vector bundle over N, the sheaf of sections of which is the
@3> (N)-module 63 (TN).

Proof. By using the previous results it is straightforward that if F is %-
infinitesimally stable, then F satisfies the condition (+). We assume that F'
satisfies (+). Let Tpg (M), respectively Tj’r (N), be the R-linear subspaces of
T,M, respectively of T, N, defined by

TI (M) = {X(p), X € 6x(TM)} (TZ(N) = {Y(9),Y € 6 (TN)}).
Let 3%(F) = {p € M, dim(T, F)(TF (M) < ding(p)(N) = n"}. If F satisfies

(+), then for each g € N, the set (Cly 2% (F)) N F~(g) = 27(F) has no more
than n points.
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Indeed, since F satisfies (+), as in [2], §1, Ch. V, it results that for every
finite set S = {p1,...,pr} C F~'(g) the subspaces H; = (Tp, F)(TZ (M),
i =1, ..., k are in general position as subspaces of qu (N). It is easy to see
that 3% (F) N F~1(¢) has no more than n” points. Now suppose that for some
g € N there are py, ..., p,+1 the distinet points in Cl,C¥(F)) N F~(g).
For each i € {1,...,n” + 1} let (p;;);>1 be a sequence of points of %7 (F)
converging to p; and let H; = {z € T)(N), z = lim;_.oo (T}, F)(usj), uij €
(Tp,, F)_l(Tg(pij)(N NN Tgfj (M))}. We have that H; is a vector subspace of
Tq@(N) and dim H;, < n''‘because dim(Tpij F)(T;‘j:j (M) n Tg(pij)(N) <n" (pij €
3% (F)). Then codim H; > 1in Tf(N) and nilcodim H; > n' + 1. Therefore

i=1
{H;}i=1,... (n+1 are not in general position in T,? (N). This means that there
exist {w;}i=1, (ar+1) C Tq@ (V) such that the equations w; = h; + z have no
solution for h; € H; and z € T(? (N). But this is in contradiction with the
hypothesis (+).

Now let 7 € ®P(F*TN). From (2), applied with § = 27 (F), and the
fact that the projections J*(€P(T'M)) — JE(@P(TM)), JHEGPTN)) —
JE(B(T'N)) are onto, it follows that there exist £, € 63°(I'M), n, € 65 (T'N)
such that (tF)(¢) + (WF)(ny)|ly, = 7l|v, for a suitable open neighbourhood
Uy of 2F(F) in M. Since M is compact, it results that F(Cly %% (F)\Up)
is closed in N. Let V; be its complement in N. Since ZJ(F) c U, it
follows that ¢ € V. Let {ps}acsr be a €>°-basic partition of unity which is
subordinate to {V,}4en. The existence of such a partition subordinate to
a locally finite covering by open (saturated) subsets of a foliated manifold

is proved by R. Wolak in [8]. Let {1 = ) (pa © F)éga), 1 = 2 Pallga)s
a€cl a€cl

where for o € I we denote by ¢(a) a point q(a) € N such that suppp. C
Vi) Writing by U = ﬂ[(Uq(a) U F~Y(N — supppa)) we have that U is
(1S

open and (tF)(ps o F)éy) + WF)panga) — (pa o F)7 is identically 0 on
Ugtay U F71(IN — supp p,) so that we obtain:

[GEYED + (WFY)]|lo = Tlu.

Since ClyZ%(F) C U, it follows that 7 — (tF)(£1) — (wEF)(n1) vanishes on a
neighbourhood of Cly 2% (F). Moreover, since T, F: T;J' (M) — Tﬁp)(N ) is onto
for all p ¢ Cly 3% (F) it follows that there exists & € 63°(T'M) such that
T — (tF(&) — WWEF) (1) :v(tF)(fg). Hence { = & + & € € (T'M),n =m €
€y (T'N) and 7 = (tF)(€ + (wWF)(n) and the Lemma is proved.

We shall use now the notation from [4]. Let J*(M, N) = {j¥ f, f € €5(U, N)
where U is some open neighbourhood of p}, let L*(m) be the Lie group
consisting of k-jets of origin preserving diffeomorphisms (R™,0) — (R™,0),
LEm,l) = {jk% € LFmm),y: R™ x RL0) — R™! x RL0), ¢(z,y) =
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(Y1(z,y), Yoz, ), V(z,y) € R™~t x R}, By Prop. 2.12 from [4] it is known
that the mapping source-target (a, 8): JE(M, N) — M x N defines a structure
of a subbundle of the bundle (o, 8): J5(M, N) — M x N with structure group
L*¥(m,m — 1) x L*¥(n,n — I')(J*@R™,R™) N JER™,R™) ~ R™ x R™ x J*(m,n —
") x JE(,1).

The natural action of L*(m,m — 1) x L*(n,n — 1) on J*(m,n —1') x J*(,1")
is given by

(F@)(0), GFL)0)) - (GFF)(0) = j5(¥ o F o &Y.

Let UL be a good coordinate system of J*(M, N) with respect to %y in the
sense of [4], and let U§,  be the associated good coordinate system of Jg (M, N)
with respect to %, x Fy,

Uk = {J5U;, Vi) N JEWM, N), TE(U;, V;) € ug Y

This system induces canonically the foliated structure #*(M, N) on T&(M, N)
by the local submersions:

pi: JE(U;, Vi) N JE(M, N) — RY
pi=przoV;ollo Py, v,

where
Dy, v, JEU, V) N IEM, N) = Uy x Vi x J¥(m,n — 1) x J*(1,1)

is the coordinate system on JE(M,N) induced by the foliated coordinate
systems (U;, @;) and (V;, V) on (M, Fj,) and (N, F ) respectively and II: U; x
Vi x JE(m,n —1) x J*(1,1I") — V;, pro:R™ — R! are the canonical projections.

DEFINITION 4. We call O C J*(M, N) a pseudo-orbit in the weak sense with
respect to UE  if O = %) 0;(c?, 2%) for some ¢; € RY, 28 € J*(m,n—1") x J*(,1")

where 0;(c;, 2%) = U; x W7 (e x R*V) x [LF(m, m—1) x L*(n,n—1)1- 2%, (V;, ;)
beeing a foliated coordinate system on (V, Fy).

REMARK. Here [L*(m, m—1) x L*¥(n,n—1")]- z* denotes the orbit of 2* by the
above action in J*(m,n — ') x J&(1,1"). If in the previous definition instead of
this orbit we take the orbit (LE,_,(m) x Lk _,,(n))(2*) with Lk, ,(m) = {j5¥¥ €

LE(n,m — 1), ¥a(y) = 0}, we obtain the concept of pseudo-orbit in JE(M, N)
given by Izumiya in [4] (Def.3.1).

We obtain the following result:
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LEMMA 8. Any pseudo-orbit O.in the weak sense with respect to %%p isa
local submanifolds correction in F*(M, N) with respect to UL, p (in Izumiya’s
sense). Moreover, if 0' is a pseudo-orbit in the weak sense with respect to Ougp
and z € 0 N0’ then we have T,0 = T,0".

Proof. It is clear that each 0;(c',z%) is a submanifold of J*(U;, Vi) N
JE(M, N). Let 0;(c%,z%) N 0,(c7, 27) be non-empty. Since any LF(m,n —1) x
L*(n,n — I")-orbit in J*(m,n — I') x J*(,1') is mapped on a L*(m,m — ). x
L¥*(n,n — ')-orbit by the action of L*(m, m — [) x LF(n,n — I’) and, by defini-
tion, 0;(ct, 2*) € JE(U;, V;)NJ&(M, N)N L for some L € F*(M, N), there results
that the second condition from the definition of local submanifolds correction
(Definition 2.7 from [4]) is satisfied. The last part of the Lemma is obvious.

By this result, the notion of which J* I as a section of Jg’i (M, N)is transverse
to a pseudo-orbit (in the weak sense) with respect to a good coordinate system
is not dependent on the choice of good coordinate systems. Thus we say that
7% F is transverse to a pseudo-orbit O in the weak sense if j* F is transverse to
0 with respect to a good coordinate system.

We obtain the following characterization for this notion:

LEMMA 10. Let F € € (M, N), let O C JE(M, N) be a pseudo-orbit in the
weak sense and let p € M such that (j*F)(p) € 0. Then j% is transverse to
0 at p iff CF)((@L(TM))p) + WF)(@F (TN) pp) + MEG MG (F*TN)), =
(5 (F*TN))y

Proof. The proof is the same as in the usual case (cf. [5,V], §2). Namely,
there is the following natural identification of R-vector spaces,

TL(TE (M, N)) = (€2 (F*TN)), [ MEH (@2 (F*TN)),

where z = j]’;F € J;;(M, N) (ef. [5,V], §2).
In terms of this identification we have:

T(JE(M, N)) = (€5 (F*TN))p /My 5 (M)(€5 (F*TN)),

Now, by using the same arguments of Mather’s paper ([5,V], §2) we obtain
the following formula for the tangent space at z of the fiber 0, over p of local
pseudo-orbit in the weak sense 0(z € 0):

TL(0,) = [Py s (MDEFTM),) + WP EFTN) si)
+ MEFMDEE (FTNY),] [ M () (65 (P T, ]

We now give the following version of the transversality theorem in the
tangential sense. '
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LEMMA 11. Let (M, %) and (N,%Fy) be smooth foliated manifolds, let |
Ouéj,-’p be a good coordinate system of JE(M, N) with respect to Fur x Fn and
let A = 'gl_ A; be a local submanifold correction in JE(M,N) with respect

to U . Then the set Tag = {F € €P(M,N), j*Fhgp A} is dense in
®L (M, N) where, as in [4], j*fhg, A if j*f is transverse to A; relative to
(F*(M, N), J*(U;, V;) N JE(M, N)), for all i € I (for the last notion see Def. 2.1
of [4]).

Proof. We shall use the following result the proof of which follows, in the
main, that of Lemma 2.2 from [4].

Transversality lemma in the tangential sense

Let B be a smooth manifold, let (M, %), (N, Fy) be foliated manifolds,
let U be an open set of M, A a submanifold of U, and j: B — €°°(M,N) a
mapping. We denote by ®: B x M — N the mapping given by ®(b, p) = j(b)(p).
If ® is a smooth mapping and if @ hg,, 1) 4, then the set {b € B ](b) gy 0) A}
is dense in B.

For each i € I, let {AJ }jen be an open covering of A; such that for every
(1,7) € I x N we have:

a) the closure of Az in J*¥(U;,V;) is contained in A;;
b) Al is compact.
We consider the sets: B _
Ty =1{f €6, N), fhAon A},
TAJI,@ =T, N€F M, N),
Ty 5 = Ta NCFOLN).
Since Ty g = ﬂI T, 7 and 63 (M, N) is a Baire space, it is enough to show
i€ it
that forevery (z,j) e I x N, T Al isopenand T i g is dense in €5°(M, N). The

first result is proved by S. Izunnya in [4]. For the second, let (U;, ®;), (V;,V;),
(V) = Vi x Vi < R*™ x R be foliated coordinate systems so that

(0, A)(A]) C U; x Vj and p € €PR™,[0,1]), p|, € €=R",[0,1]), o) €
@ (R™ [0, 1]) such that:

o= { 1 on a neighbourhood of ®; o a(:i’g)
0 off ®,(U;)

{ 1 on a neighbourhood of prg o ¥; o ﬁ(;@)

U

=0 offvy

o = { 1 on aneighbourhood of prlb oW¥; 0 ﬁ(;g)
2710 off V.
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The existence of a function p is assured by Lemma 3 of [8]. Let B, (resp. By)
be the space of basic polynomlal mappings, R™ — RY (resp. of polynomial
mappings of R™ — R~V of degree at most k.

Now we shall use the transversality lemma to show that T i is dense in

By (M, N), forevery (i,7) € IxN. Let F' € €3°(M, N) and for (bl,bg) € By X Ba,
iet Gby by): M — N given by

F(p) ifpeUorFp) ¢V;
Gy, b (@) = { U7 (p(®;i ()}, (F1(p))by (@ (p) +
Fi(p), p(@;(p)) x po(Fa(p)ba(P;(p)) + Fo(p)) otherwise.

where (¥; o F)(p) = (Fi(p), Fa(p)),Vp € F~1(V;).
The choice of p, p}, py guarantees that G, ;,) is a smooth foliation preser-
ving mappings from M to N and G = F. Let

®: By x By x M — JE(M, N), ®(by,bs,p) = 5(b1, bs)(p).

By the same techniques as in the proof of the ordinary jet transversality theo-
rem we may prove that there are neighbourhoods B{, B}, of the origin in By,
B respectively and a neighbourhood A7 of A7 in A; such that, denoting by
D = ®@|prrx B; x B; We have @ ek, ), JE, Ny Ai on A; 7. We apply the transver-
sality lemma and we obtain that {(by, bo) € B{x B}, 7*G(p, 4,) g (ar, NyTEa, Ny A
on A7} is dense in B1 X Bj. Then we can find a sequence {b,} C B; X By
such that lim, ..o by = (0,0) € B] x By and j*G,,) hgrar ), JEu,N) Ai on
A;j . But Gy, = F and, by construction, G, = F off U;. Thus it follows
that lim,_,o Gs, = F in € (M, N) and TA/;,g is dense in €3 (M, N). This
completes the proof.

By using the techniques from [5] and [4] it is easy to generalize the above
result to a multijet version. With the usual multijet notations we obtain the
following:

LeMMA 12. Let (M, F ) and (N, % ) be smooth foliated manifolds, let S
be a finite subset of M, let S%Lgr,m be a good coordinate system of sJ5(M, N) with
respect to Far x Fy and let A be a local submanifold correction in g JL(M, N)
with respect to S%Q,p. Then T;f’g ={F € €2(M,N),s j*F tgp, A} is dense in
65 (M, N).

Analogously we obtain the multijet versions for Lemmas 9 and 10.

LEMMA 13, Let (M, %) and (N, %yN) be smooth foliated manifolds, M
compact, F € €(M,N),k € Nk > n',s > n’ + 1*. If F is a €*°-F-stable
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mapping, then for every subset S of M having S or fewer points, and such that
F(S) is a single point, we have:

(13) EF) (€5 (TM))s) + (W) (BF (TN))p(s)) + MEGHD) (@ (F*TN))s
' = (g (F*TN))s

Proof By Lemma 9 (the multijet version), O is a local submanifold co-
rrection in %F*(M, N) with respect to a good coordinate system S%é}’p and,
by Lemma 12, we have that Tgq = {G € 62 (M,N),5j*G tg,, 0} is dense
in €3°(M, N). Since F is a €*°-F-stable mapping there is a neighbourhood
Vr C %5 (M, N) such that for every G € Vr there are diffeomorphisms
H e Diffg (M), K e Diffg' (N) such that G = K o F o H. Thus Vp is a
neighbourhood of F in 63 (M, N) and Vr N Tgg # 0. Let G € Vr N Tgg, so
57"G g, 0. By Lemma 9 (the multijet version) it follows that K "1oOo H~1 =
LiJK 1 0 0; o H™! is a pseudo-orbit in the weak sense with respect to the

good coordinate system K~' og AUE o H'. Since 5j*Gdg,0, we have
5j*F tg(K~1 000 H™1. By using Lemma 10 (multijet version) it follows that

for any element z = (z1,...,z,) € M® with gj*F(z) € K~1000 H~1 we have
(3).

Since by Lemma 8, the last condition is equivalent to the fact that F'is a
@>°-F-infinitesimally stable mapping, we obtain the proof of the implication:

Fis a €°°-%F-stable mapping = F is a 6°°-F-infinitesimally stable mapping.
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