Boletin de la Sociedad Matematica Mexicana Vol. 38 1993

STABILITY OF MAPPINGS BETWEEN FOLIATED MANIFOLDS BY LILIANA MAXIM-RAILEANU

The problem of stability of mappings between manifolds equipped with geometric structures of the same type was first posed by V. Poenaru in [6]. Namely, the stability of equivariant maps between compact G-manifolds is studied, *G* being a compact Lie group.

The definition of a concept of stability for the mappings between foliated manifolds is given by L. A. Favaro in [1]. Namely, given smooth regular foliations \mathcal{F}_M , \mathcal{F}_N on the manifolds M, N respectively, a mapping $F \in$ $C^{\infty}(M, N)$ is called *stable in tangential sense* if there is a neighbourhood $V_F \subset \mathscr{C}^{\infty}(M, N)$ of *F* such that for each $G \in V_F$ satisfying the condition $G(x)$ and $F(x)$ belong to the same leaf of \mathcal{F}_N for each $x \in M$, there are the diffeomorphisms $H \in \text{Diff}^{\infty}(M)$, $K \in \text{Diff}^{\infty}(N)$ taking each leaf of \mathcal{F}_M , respectively \mathcal{F}_N , onto itself such that $G = K \circ F \circ H$.

Favaro gives a proper concept of infinitesimal stability and proves the implication: infinitesimal stability implies stability (both in the tangential sense).

Later, in the paper [4], S. Izumiya shows that foliation preserving mappings $F \in \mathscr{C}_{\mathscr{F}}^{\infty}(M, N)$ are the natural objects for which Favaro's notation of stability in the tangential sense is defined and for a such mapping *F* the equivalence: F stable \Longleftrightarrow F infinitesimally stable is proved.

Denoting by $\mathscr{C}^{\infty}(M, N, F) = \{ G \in \mathscr{C}^{\infty}(M, N), F(x) \text{ and } G(x) \text{ belong to the } \}$ same leaf of \mathcal{F}_N for each $x \in M$, S. Izumiya observes in the same paper that Favaro's stability concept for $F \in \mathscr{C}^{\infty}(M, N)$ is a stability in the space $C_{\mathscr{C}}(M, N, F)$. If $F \in C_{\mathscr{F}}(\mathscr{C}(M, N), \text{ then } C_{\mathscr{C}}(M, N, F) \subseteq C_{\mathscr{F}}(\mathscr{C}(M, N)).$ In this case, denoting by $f: M|_{\mathcal{F}_M} \to N|_{\mathcal{F}_N}$ the mapping between the spaces of leaves defined by F, it is obvious that each mapping $G \in \mathscr{C}^{\infty}(M, N, F)$ induces the *same* mapping *f* between the spaces of leaves.

Thus the Favaro-Izumiya stability concept is the stability of (F, f) in the category of commutative diagrams of the following type:

Now we propose a more general concept of stability for a mapping $F \in$ $C_{\mathscr{F}}^{\infty}(M, N)$, namely the stability in $C_{\mathscr{F}}^{\infty}(M, N)$.

DEFINITION 1. Let (M,\mathscr{F}_M) , (N,\mathscr{F}_N) be \mathscr{C}^{∞} -foliated manifolds and let $F \in \mathscr{C}_{\mathscr{F}}^{\infty}(M,N)$. We say that *F* is $\mathscr{C}^{\infty}\mathscr{F}\text{-stable}$ if there is a neighbourhood $V_F \subseteq \mathfrak{C}^\infty_{\mathfrak{F}}(M, N)$ of F in the \mathfrak{C}^∞ -fine topology such that for every $G \in V_F$ there is a \mathscr{C}^{∞} -diffeomorphism $H \in \text{Diff}^{\infty}(M) \cap \mathscr{C}_{\mathscr{F}}^{\infty}(M, M) = \text{Diff}^{\infty}_{\mathscr{F}}(M)$ and

10 LILIANA MAXIM-RAfLEANU

a \mathscr{C}^{∞} -diffeomorphism $K \in \text{Ditt}^{\infty}(N) \cap \mathscr{C}^{\infty}_{\mathscr{F}}(N,N) = \text{Ditt}^{\infty}_{\mathscr{F}}(N)$ such that $G=K\circ F\circ H$.

REMARKS

- 1. If, for a mapping $F \in \mathcal{C}_{\mathcal{F}}^{\infty}(M, N)$ denoted by a capital letter, we denote by the corresponding small letter the associated mapping between the spaces of leaves, the condition from the previous definition implies that for every $G \in V_F$ we have $g = k \circ f \circ h$.
- 2. If we require in Definition 1 that $h = id_{M|g_M}$; i.e. *H* takes each leaf of \mathcal{F}_M onto itself, we obtain the application of Favaro 's ($\mathcal{F}_M, \mathcal{F}_N$)-stability ([1]) for a foliation preserving mapping F .
- 3. Denoting by Φ the following natural action of the group $\text{Diff}^{\infty}_{\mathscr{F}}(M) \times$ $\mathrm{Diff}_{\mathscr{F}}^{\infty}(M)$ on the space $\mathscr{C}_{\mathscr{F}}^{\infty}(M,N)$:

$$
\Phi: \text{Diff}^{\infty}_{\mathscr{F}}(M) \times \text{Diff}^{\infty}_{\mathscr{F}}(N) \times \mathscr{C}^{\infty}_{\mathscr{F}}(M,N) \to \mathscr{C}^{\infty}_{\mathscr{F}}(M,N), ((H,K),F) \mapsto K \circ F \circ H,
$$

we obtain that $F \in \mathscr{C}^\infty_\#(M, N)$ is a \mathscr{C}^∞ -*F*-stable mapping iff the orbit of F under the action Φ is an open subset of $\mathscr{C}^{\infty}_*(M, N)$.

4. If \mathcal{F}_M and \mathcal{F}_N are simple foliations, the previous concept of stability leads to an adequate concept of stability in the category of fibre bundle morphisms.

In order to give a corresponding infinitesimal concept of stability, let $T\mathcal{F}_M$ be the involutive subbundle of vectors tangent to the foliation \mathcal{F}_M on M and let Q_M be the normal bundle, the quotient defined by the short exact bundle sequence:

(1) OM---+ T'!FM---+ TM~QM---+ OM.

We denote by $\mathscr{C}_{\mathscr{F}}^{\infty}(TM)$ the following set of all \mathscr{C}^{∞} infinitesimal automorphisms of \mathcal{F}_M :

$$
\mathcal{C}^{\infty}_{\mathcal{F}}(TM) = \{ Y \in \mathcal{C}^{\infty}(TM), \Pi_M([X, Y]) = 0 \text{ for each } X \in \mathcal{C}^{\infty}(T\mathcal{F}_M) \}.
$$

Let $\mathscr{C}_{\mathscr{F}}(F^*TN) = {\widetilde{X} \in \mathscr{C}^{\infty}(F^*TN, \Pi_N \circ \widetilde{X} \text{ is locally constant along the}}$ leaves of \mathcal{F}_M .

DEFINITION 2. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be \mathcal{C}^{∞} -foliated manifolds and let $F \in \mathscr{C}^\infty_{\mathscr{F}}(M,N)$. We say that *F* is \mathscr{C}^∞ -*F*-infinitesimally stable if

$$
tF(\mathcal{C}^{\infty}_{\mathcal{F}}(TM)) + \omega F(\mathcal{C}^{\infty}_{\mathcal{F}}(TN)) = \mathcal{C}^{\infty}_{\mathcal{F}}(F^*TN)
$$

where the mappings

$$
tF: \mathcal{C}^{\infty}_{\mathcal{F}}(TM) \to \mathcal{C}^{\infty}_{\mathcal{F}}(F^*TN),
$$

$$
\omega F: \mathcal{C}^{\infty}_{\mathcal{F}}(TN) \to \mathcal{C}^{\infty}_{\mathcal{F}}(F^*TN),
$$

are given by $tF(\xi) = TF \circ \xi$, $\omega F(\eta) = \eta \circ F$.

Our main result is the following:

THEOREM 1. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be foliated manifolds with M *compact and* $F \in \mathscr{C}_{\mathscr{F}}^{\infty}(M,N)$ *. Then* $F \mathscr{C}^{\infty}$ *-F-stable implies F is a* \mathscr{C}^{∞} *-Finfinitesimally stable mapping.*

Proof. We will use the same terminology and notation of [2] and [5].

The proof uses several lemmas.

First we give a generalized Malgrange Preparation theorem for the local ring of germs of basic functions on a foliated manifold.

Let (M, \mathcal{F}_M) be a smooth, connected, *n*-dimensional foliated manifold where \mathcal{F}_M is a smooth *l*-codimensional foliation on M. A smooth real-valued function f on M is called basic (foliated) related to \mathcal{F}_M (or, shortly, \mathcal{F}_M -basic) if $Xf = 0$ for all $X \in \mathcal{C}^{\infty}(T\mathcal{F}_M)$. We denote by $\mathcal{C}^{\infty}_{\mathcal{F}}(M)$ the ring of these functions. For an arbitrary point $p \in M$ and $f \in \mathfrak{C}_{n,\mathfrak{F}}^{\infty}(M)$, let $[f]_p$ denote the germ of f at p , that is the equivalence class of f in the germ equivalence relation on $\mathfrak{C}_{\mathfrak{F}}^{\infty}(M)$ in *p*. Let $\mathfrak{C}_{p,\mathfrak{F}}^{\infty}(M)$ denote the set of all germs of smooth, \mathcal{F}_M -basic, real-valued functions defined on a neighbourhood of *p*.

LEMMA 1. $\mathscr{C}_{n}^{\infty}(M)$ is structured as a local ring by the usual addition and *multiplication of functions.*

Proof. Let $M_{p,\mathcal{F}}(M) = \{[f]_p \in \mathcal{C}^{\infty}_{p,\mathcal{F}}(M), f(p) = 0\}$. It is easy to see that $M_{p,\mathcal{F}}(M)$ is an ideal of $\mathcal{C}^{\infty}_{p,\mathcal{F}}(M)$. Let *M* be another ideal in $\mathcal{C}^{\infty}_{p,\mathcal{F}}(M)$, and let *M* \supset $M_{p,\mathcal{F}}(M)$ and $[f]_p \in \mathcal{M} - M_{p,\mathcal{F}}(M)$. Then $\left[\frac{1}{f}\right]_p$ is defined and $\left[\frac{1}{f}\right]_p \in \mathcal{C}^{\infty}_{p,\mathcal{F}}(M)$ because for every $X \in \mathscr{C}^{\infty}(T\mathscr{F}_M)$ we have locally $X(\frac{1}{f}) = -\frac{1}{f^2}X(f) = 0$. Therefore $[\frac{1}{f}]_p \cdot [f]_p = [1]_p \in \mathcal{M}$ so that $\mathcal{M} = \mathcal{C}^{\infty}_{p,\mathcal{F}}(M)$. Thus $\mathcal{M}_{p,\mathcal{F}}(M)$ is the unique maximal ideal of $\mathfrak{C}^{\infty}_{n,\mathfrak{F}}(M)$.

LEMMA 2. Let $F \in \mathcal{C}_{\mathcal{F}}^{\infty}(M, N), p \in M, q = F(p)$. Then F induces *a ring homomorphism* $F_{p,q}^*$: $C_{q,\mathcal{F}}^{\infty}(N) \to C_{p,\mathcal{F}}^{\infty}(N)$ given by $[f]_q \mapsto [f \circ F]_p$.
Moreover, if F is locally (near p) a leaf-preserving diffeomorphism, then $F_{p,q}^*$ is *an isomorphism.*

Proof. To see that $F_{p,q}^*$ is well defined, let $[f]_q \in \mathcal{C}_{p,q}^{\infty}(\mathbb{N})$. We prove that $[f \circ F]_p \in \mathcal{C}_{p,q}^{\infty}(\mathcal{M})$; that is, $X(f \circ F) = 0$ for every $X \in \mathcal{C}^{\infty}(T \mathcal{F}_{\mathcal{M}})$ defined on a neighbourhood of p.

But $[f]_q \in \mathcal{C}^{\infty}_{q,\mathcal{F}}(N)$ is equivalent to the condition $Yf = 0$, for every $Y \in \mathscr{C}^{\infty}(T \mathscr{F}_M)$ defined on a neighbourhood *V* of q in *M*. This last condition is equivalent to the fact that $f|_V$ is constant along the leaves. Thus it follows that $(f \circ F)|_{F^{-1}(V)}$ is constant along leaves, which is equivalent to the fact that $X(f \circ F) = 0$ for every $X \in \mathscr{C}^{\infty}(T \mathscr{F}_M)$ defined on $F^{-1}(V)$.

If F is a local foliation preserving diffeomorphism, then $(F_{n,q}^*)^{-1} = (F^{-1})_{q,p}^*$ therefore $F_{p,q}^*$ is an isomorphism.

If we consider the mapping $\mathfrak{C}^{\infty}_{p,\mathfrak{F}}(M) \to \mathbb{R}$, $[f]_p \mapsto f(p)$, we obtain the isomorphisms $\mathbb{R}~\simeq~\mathcal{C}^{\infty}_{p,\mathcal{F}}(M)/M_{p,\mathcal{F}}(M)~\simeq~\mathcal{C}^{\infty}_{q,\mathcal{F}}(N)/M_{q,\mathcal{F}}(N)$. Therefore by [2], Corollary 3.5, Ch. IV, for every finite generated $\mathfrak{C}^{\infty}_{p,\mathfrak{F}}(M)$ -module A, the quotient $A/M_{p,\mathcal{F}}(M)A$ is a finite dimensional vector space over R.

We now state the following version of the generalized Malgrange Preparation theorem for the local rings of germs of basic functions on a foliated manifold.

LEMMA 3. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, let $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M,N), p \in M, q = F(p)$ and let A be a finitely generated $\mathscr{C}^{\infty}_{n,\mathscr{F}}(M)$ module. Then A is a finitely generated module over $\mathfrak{C}^{\infty}_{\alpha,\mathscr{F}}(N)$ (via $\widetilde{F}_{p,q}^*$) iff $A/M_{q,\mathcal{F}}(N)A$ is a finite dimensional R-vector space.

Proof. Since this is a local result, with a proper choice of F-adapted foliate coordinate systems in p and q we may assume that $M = \mathbb{R}^n$, $N = \mathbb{R}^n$, $p = 0 \in$ \mathbb{R}^m , $q = 0 \in \mathbb{R}^n$, \mathcal{F}_M is defined by $x^{\alpha} = a^{\alpha}$, $\forall \alpha = 1, \ldots, l$, $l = \text{codim } \mathcal{F}_M$, \mathcal{F}_N is defined by $y^{\alpha'} = b^{\alpha'}$, $\alpha' = 1, \ldots, l'$, $l' = \text{codim } \mathcal{F}_N$, and F is locally given by $F(x) = (F^{1}(x),..., F^{n}(x))$ with $F^{\alpha'}(x) = F^{\alpha'}(x^{1},..., x^{l})$, for $\alpha' = 1, ..., l'$. Then locally $\mathscr{C}^\infty_{0,\mathscr{F}}(\mathbb{R}^m)$ and $\mathscr{C}^\infty_{0,\mathscr{F}}(\mathbb{R}^n)$ may be identified with $\mathscr{C}^\infty_0(\mathbb{R}^l)$ and $\mathscr{C}^\infty_0(\mathbb{R}^l')$ respectively, and $F_{p,q}^*$ defines the mapping $\widetilde{F}_{0,0}^*:\mathscr{C}_0^{\infty}(\mathbb{R}^l')\to\mathscr{C}_0^{\infty}(\mathbb{R}^l)$ associated to \widetilde{F} : $\mathbb{R}^l \to \mathbb{R}^{l'}$ given by

$$
\widetilde{F}(x^1, \ldots, x^l) = (F^1(x^1, \ldots, x^l), \ldots, F^{l'}(x^1, \ldots, x^l)).
$$

Since for every $[f]_0 \in \mathcal{C}_{0,\mathcal{F}}^{\infty}(\mathbb{R}^m)$ the germ $[f \circ F]_0$ depends only of \widetilde{F} , it follows that A is a finitely generated module over $\mathcal{C}_{0,\mathcal{F}}^{\infty}(\mathbb{R}^n)$, via $\widetilde{F}_{0,0}^*$, iff A is a finitely generated module over $C_0(\mathbb{R}^{l'})$, via $\widetilde{F}_{0,0}^*$. Now, based on the generalized Malgrange Preparation theorem ([2], Th. 3.6, Ch IV), this last fact is equivalent to the fact that $A/M_0(\mathbb{R}^l')A$ is a finite-dimensional \mathbb{R} -vector space, which in turn is equivalent to the fact that $A/M_{0,\mathcal{F}}(\mathbb{R}^n)A$ is a finite dimensional \mathbb{R} -vector space, and the lemma is proved.

Now we define inductively the sequence of ideals $M_{p,g}(M)$ in $\mathcal{C}_{p,g}(M)$ by letting $M_{p,\mathcal{F}}^1(M)$ be $M_{p,\mathcal{F}}(M)$ and, for $k \geq 2$, letting $M_{p,\mathcal{F}}^k(M)$ be the ideal generated by germs of the form $[f \cdot g]_p$ where $[f]_p \in M_{p,\mathcal{F}}(M)$, $|g|_p \in M_{p,\mathcal{F}}^{k-1}(M)$.

Applying the same ideas from [2] used in the proof of the theorem 3.10, ChIV, we obtain:

LEMMA 4. *Let A be a finitely generated* $\mathscr{C}^\infty_{p,\mathscr{F}}(M)$ *-module,* $F\in\mathscr{C}^\infty_{\mathscr{F}}(M,N),$ $q = F(p)$ and let l_1, \ldots, l_k be the elements of A. Then $\{e_i\}, i = 1, \ldots, k,$ generates A as a $\mathfrak{t}_{q,\mathfrak{F}}^{\infty}(N)$ -module iff $\{\eta(e_i)\}_{i=1,...,k}$ generates A/M $_{p,\mathfrak{F}}^{\infty}(M)$ A as $a \, \mathcal{C}^{\infty}_{\alpha,\mathcal{F}}(N)$ -module, where $\eta: A \to A/M_{n,\mathcal{F}}^{k+1}(M)A$ is the obvious projection.

Our first objective is to show that the concept of \mathscr{C}^{∞} - \mathscr{F} -infinitesimal stability for a foliation-preserving mapping *F* is, locally, a condition of finite order; i.e., if the equations which express this type of stability can be solved locally to some finite order, they can be solved for smooth data.

In the following considerations we denote by A_n the set of the germs at $p \in M$ of all sections from a set A of smooth sections of a foliated bundle over the foliated manifold (M, \mathcal{F}_M) .

REMARK. Based on the considerations from [7], "any locally free $\mathcal{C}_{\mathcal{F}}^{\infty}(M)$ module of finite rank is the sheaf of germs of foliated sections of a \mathcal{F}_M -foliated vector bundle over M". Thus $\mathcal{C}_{\mathcal{F}}^{\infty}(TM)$, $\mathcal{C}_{\mathcal{F}}^{\infty}(TN)$, and $\mathcal{C}_{\mathcal{F}}^{\infty}(F^*TN)$, are such sheafs.

DEFINITION 3. Let $p \in M$, $F \in \mathcal{C}_{\mathcal{F}}^{\infty}(M, N)$ and $q = F(p)$. The germ $[F]_p$ is called *F*-infinitesimally stable if for every germ $[\tau]_p \in (\mathcal{C}^{\infty}_q(F^*TN))_p$ there exists germs of vector fields $[\xi]_p \in (\mathscr{C}^{\infty}_p(TM))_p$ and $[\eta]_q \in (\mathscr{C}^{\infty}_p(TM))_q$ such that

 $[\tau]_p = [(TF) \circ \xi]_p + [\eta \circ F]_p$ $(*)$

The mapping f is called *F*-locally infinitesimally stable at p if the germ $[F]_p$ is \mathcal{F} -infinitesimally stable.

We choose now the following foliated charts: (U, ϕ) , $\phi(U) = U_1 \times U_2 \subseteq$ $\mathbb{R}^{m-l} \times \mathbb{R}^l,$ $\phi(p) = (x,y),$ on $(M, \mathcal{F}_M),$ based at $p,$ and $(V, \psi),$ $\psi(V) = V_1 \times V_2 \subset$ $\mathbb{R}^{n-l} \times \mathbb{R}^l$, $\psi(q) = (x', y')$, on (N, \mathcal{F}_N) , based at q, which are F-adapted, i.e. $F(U) \subseteq V, l = \operatorname{codim} \mathcal{F}_M, l' = \operatorname{codim} \mathcal{F}_N$. We have $(F_{\phi,\psi}(x,y) = (\psi \circ F \circ$ $(\phi^{-1})(x,y) = (F_1(x,y), F_2(y)), \forall (x,y) \in U_1 \times U_2$, where $F_1 \in \mathscr{C}^{\infty}(U_1 \times U_2, V_1), F_2 \in$ $\mathscr{C}^{\infty}(U_2, V_2).$

We will compute the equation $(*)$ in these coordinates. To do this, for the fixed Riemannian metrics g_M, g_N on M and N, let σ_M , σ_N be splittings of the exact sequences of the type (1) over the foliated manifolds (M, \mathcal{F}_M) and (N, \mathcal{F}_N) . Via these splittings, we have

$$
\mathcal{C}^{\infty}(TM) = \mathcal{C}^{\infty}(T\mathcal{F}_M) \oplus \mathcal{C}^{\infty}(Q_M),
$$

$$
\mathcal{C}^{\infty}(TN) = \mathcal{C}^{\infty}(T\mathcal{F}_N) \oplus \mathcal{C}^{\infty}(Q_N),
$$

$$
\mathcal{C}^{\infty}(F^*TN) = \mathcal{C}^{\infty}(F^*T\mathcal{F}_N) \oplus \mathcal{C}^{\infty}(F^*Q_N)
$$

so that we obtain:

$$
\mathcal{C}_{\mathcal{X}}^{\infty}(F^*TN) = \mathcal{C}^{\infty}(F^*T\mathcal{F}_N) \oplus \mathcal{C}_{\mathcal{X}}^{\infty}(F^*Q_N),
$$

14 LILIANA MAXIM-RĂILEANU

$$
\mathcal{C}^{\infty}_{\mathcal{F}}(TM) = \mathcal{C}^{\infty}(T\mathcal{F}_M) \oplus \mathcal{C}^{\infty}_{\mathcal{F}}(Q_M),
$$

$$
\mathcal{C}^{\infty}_{\mathcal{F}}(TN) = \mathcal{C}^{\infty}(T\mathcal{F}_N) \oplus \mathcal{C}^{\infty}_{\mathcal{F}}(Q_N).
$$

It is obvious that, locally,

$$
\mathscr{C}^{\infty}(T\mathscr{F}_M), \mathscr{C}^{\infty}(F^*T\mathscr{F}_M)
$$

are finite generated modules over $\mathscr{C}^{\infty}(M)$, $\mathscr{C}^{\infty}(T\mathscr{F}_N)$ is a finitely generated module over $C^{\infty}(N)$, while $C^{\infty}_{\#}(Q_M)$, $C^{\infty}_{\#}(F^*Q_N)$ are finitely generated modules over $\mathscr{C}_{\mathscr{F}}^{\infty}(M)$ and $\mathscr{C}_{\mathscr{F}}^{\infty}(Q_N)$ is a finitely generated module over $\mathscr{C}_{\mathscr{F}}^{\infty}(N)$.

Let $(X_{\alpha})_{\alpha=(m-l+1),...,m'}$, $(Y_{\alpha})_{\alpha'=(n-l'+1),...,n}$ be the sets of tangent vector fields on U and V respectively, such that

$$
\left(\frac{\partial}{\partial x^i}, X_\alpha\right)_{\alpha=(m-l+1),\dots,m} , \left(\frac{\partial}{\partial x'^i}, Y_{\alpha'}\right)_{\substack{i'=1,\dots,n-l',\\ \alpha'=(n-l'+1),\dots,n}},
$$

generate locally the modules $\mathscr{C}^{\infty}(TM)$ and $\mathscr{C}^{\infty}(TN)$ respectively. For $\tau \in$ $\mathscr{C}_{\mathscr{F}}(F^*TN), \xi \in \mathscr{C}_{\mathscr{F}}(TM), \eta \in \mathscr{C}_{\mathscr{F}}(TN)$ we have, locally, via the previous decompositions: $\tau = (\tau_1, \tau_2), \xi = (\xi_1, \xi_2), \eta = (\eta_1, \eta_2)$ where $\tau_1(x, y) =$ $\tau_1^{i'}(x,y) {\partial \over \partial x'^{i'}} , \ \tau_2(x,y) \ = \ \tau^{\alpha}(y) Y_{\alpha'}, \ \xi_1(x,y) \ = \ \xi^{i}(x,y) {\partial \over \partial x^i} , \ \xi_2(x,y) \ = \ \xi^{\alpha}(y) X_{\alpha},$ $\eta_1(x', y') = \eta^{i'}(x', y') \frac{\partial}{\partial x'^{i'}}$, $\eta_2(x', y') = \eta^{\alpha'}(y')Y_{\alpha'}$. Then the equation (*) becomes:

(1) $[T_1]_{(x,y)} = [TF_1 \circ \xi]_{(x,y)} + [\eta_1 \circ F]_{(x,y)}$

 $(**)$

(2)
$$
[\tau_2]_y = [TF_2 \circ \xi_2]_y + [\eta_2 \circ F_2]_y
$$

We obtain the following result:

LEMMA 5. *The foliation preserving mapping F is F-locally-infinitesimally stable at p iff the equation* (*) *can be solved to order* $\max(l', n - l') = n'$.

Proof. First, we observe that $[F]_p$ is \mathcal{F} -infinitesimally stable iff ${l_i'}_{i'=1,...,n-l'}$, generates the $\mathcal{C}_q^{\infty}(N)$ -module via $F_{p,q}^*$, $M_1^p = (\mathcal{C}_q^{\infty}(F^*T\mathcal{F}_N))_p$ / A_1 and $\{l_{\alpha'}\}_{\alpha'=(n-l'+1),...,n}$ generates the $\mathfrak{C}^\infty_{q,\mathscr{F}}(N)$ -module $M_2^{\prime}=(\mathfrak{C}^\infty_\mathscr{F}(F^*Q_N)_p/$ A_2 where $A_1 = \{(TF_1) \circ \xi\vert_p, \xi \in (\mathcal{C}^{\infty}_{\mathscr{F}}(TM))_p\}, A_2 = \{(TF_2) \circ \xi_2\vert_p, \xi_2 \in$ $(\mathscr{C}^{\infty}_{\mathscr{F}}(Q_M))_p, \{_{i'} = pr_1(F^*(\frac{\partial}{\partial x^{i'}})), l_{\alpha'} = pr_2(F^*(Y_{\alpha'})) \text{ with } pr_1: (\mathscr{C}^{\infty}(F^*T^*\mathscr{F}_N))_p \rightarrow$ $M_1^p, pr_2: (\mathcal{C}^{\infty}_{\mathcal{F}}(F^*Q_N))_p \to M_2^p$ the natural projections.

Applying Theorem 3.10, Ch. IV of [2] and Lemma (4) we obtain that the germ $|F|_p$ is F-infinitesimally stable iff the module $M_1^p/\mathcal{M}_p^{n-l'+1}(M)M_1^p$ is generated over $\mathcal{C}_{q}^{\infty}(N)$ by the projections of l_1, \ldots, l_{n-q} , and the module $M_2^p/M_{p,\mathcal{F}}^{l+1}(M)M_2^p$ is generated over $\mathcal{C}^{\infty}_{q,\mathcal{F}}(N)$ by the projections of $l_{n-q'-1}, \ldots,$ Z_n . This last statement is equivalent to solving the equation $(**)(1)$ to order $(n - l')$ and $(**)(2)$ to order *l'*. Thus the Lemma is proved.

In the following considerations, for a locally free $\mathcal{C}_{\mathcal{F}}^{\infty}(M)$ -module of finite rank A, that is, a sheaf of germs of foliatesections of a $\widetilde{\mathcal{F}}_M$ -foliatevector bundle over M, we denote by $J_S^k(A)$ the following set of k-jets at $p: J_S^k(A) = \{j_p^k \sigma, \sigma \in$ $A, p \in S$. Let $J_{\{p\}}^k(A) = J_p^k(A)$. By using such notation we obtain the following lemma which is just a restatement of the previous lemma.

LEMMA 6. *The mapping* $F \in \mathcal{C}_{\infty}^{\infty}(M, N)$ is *F*-locally infinitesimally stable *at* p if{

$$
J_p^{n'}(\mathcal{C}^\infty_{\mathcal{F}}(F^*TN)) = (TF)_p(J_p^{n'}(\mathcal{C}^\infty_{\mathcal{F}}(TM)) + F_{p,q}^*(J_q^{n'}(\mathcal{C}^\infty_{\mathcal{F}}(TN))
$$

where by $(TF)_p$ and $F^*_{p,q}$ we denote the obvious mappings into $J_p^{n'}$ ($\mathscr{C}^\infty_{\mathscr{F}}(F^*TN)$) *induced by the action of tF and wF on vector fields.*

In order to obtain a global form of $\mathcal F$ -infinitesimal stability we give, firstly, the following two results.

LEMMA 7. *For a fixed point* $q \in N$ *and a finite subset* $S = \{p_1, \ldots, p_k\}$ *of* $F^{-1}(q)$, the mapping $F \in \mathscr{C}^\infty_{\mathscr{F}}(M,N)$ is simultaneously locally infinitesimally *stable at* p_1, \ldots, p_k *iff*

(2) $J_S^{n'}(\mathcal{C}_{\mathcal{F}}^{\infty}(F^*TN)) = (TF)(J_S^{n'}(\mathcal{C}_{\mathcal{F}}^{\infty}(TM)) + F^*(J_q^{n'}\mathcal{C}_{\mathcal{F}}^{\infty}(TN)).$

Proof. For S consisting of a single point this result is just that from Lemma 6. As in the single point case, the proof for general S with more than one point uses Lemma 1.4 from [2], Ch. V and Lemma 4.

LEMMA 8. *The mapping* $F \in \mathcal{C}_{\mathcal{F}}^{\infty}(M, N)$ is $\mathcal{F}\text{-}infinitesimally stable iff (+)$ *for every* $q \in N$ *and if for every finite subset S of* $F^{-1}(q)$ *with no more than* $n'' + 1$ *points we have the relation (2) where n'' is denots the dimension of the fibre of the foliated vector bundle over N, the sheaf of sections of which is the* $C_{\mathscr{F}}^{\infty}(N)$ -module $C_{\mathscr{F}}^{\infty}(TN)$.

Proof. By using the previous results it is straightforward that if *F* is \mathcal{F} infinitesimally stable, then F satisfies the condition $(+)$. We assume that F satisfies (+). Let $T_o^{\sigma}(M)$, respectively $T_o^{\sigma}(N)$, be the R-linear subspaces of T_pM , respectively of T_qN , defined by

$$
T_p^{\mathcal{F}}(M) = \{X(p), X \in \mathcal{C}_p^{\infty}(TM)\} \ (T_q^{\mathcal{F}}(N) = \{Y(q), Y \in \mathcal{C}_p^{\infty}(TN)\})
$$

Let $\Sigma^{\mathcal{F}}(F) = \{p \in M, \dim(T_pF)(T_p^{\mathcal{F}}(M)) < \dim T_{F(p)}^{\mathcal{F}}(N) = n''\}.$ If *F* satisfies (+), then for each $q \in N$, the set $(Cl_M\Sigma^{\mathcal{F}}(F)) \cap F^{-1}(q) = \Sigma^{\mathcal{F}}_q(F)$ has no more than *n"* points.

$$
15\,
$$

Indeed, since F satisfies $(+)$, as in $[2]$, §1, Ch. V, it results that for every finite set $S = \{p_1, \ldots, p_k\} \subset F^{-1}(q)$ the subspaces $H_i = (T_{p_i}F)(T_{p_i}^{\mathcal{F}}(M)),$ $i = 1, \ldots, k$ are in general position as subspaces of $T_a^{\mathcal{F}}(N)$. It is easy to see that $\Sigma^{\mathcal{F}}(F) \cap F^{-1}(q)$ has no more than *n*^{*n*} points. Now suppose that for some $q \in N$ there are $p_1, \ldots, p_{n'+1}$ the distinct points in $Cl_M(\Sigma^{\mathcal{F}}(F)) \cap F^{-1}(q)$. For each $i \in \{1, ..., n'' + 1\}$ let $(p_{ij})_{j\geq 1}$ be a sequence of points of $\Sigma^{\mathcal{F}}(F)$ converging to p_i and let $H_i = \{z \in T_q^{\sigma}(N), z = \lim_{j \to \infty} (T_{p_{ij}} F)(u_{ij}), u_{ij} \in$ $(T_{pi_1}F)^{-1}(T_{F(p_{i})}(N)) \cap T_{pi_1}^{\sigma}(M)$. We have that H_i is a vector subspace of $T_q^{\mathscr{F}}(N)$ and dim $H_i < n''$ because $\dim(T_{p_{ij}}F)(T_{p_{ij}}^{\mathscr{F}}(M)) \cap T_{F(p_{ij})}^{\mathscr{F}}(N) < n''$ ($p_{ij} \in$ $\sum_{i=1}^{n} \mathbb{E}^{\mathcal{F}}(F)$. Then codim $H_i \geq 1$ in $T_q^{\mathcal{F}}(N)$ and $\sum_{i=1}^{n+1} \text{codim } H_i \geq n'' + 1$. Therefore ${H_i}_{i=1,\ldots,(n''+1)}$ are not in general position in $T_q^{\mathcal{F}}(N)$. This means that there exist $\{w_i\}_{i=1,\ldots (n''+1)} \subset T_q^{\mathcal{F}}(N)$ such that the equations $w_i = h_i + z$ have no solution for $h_i \in H_i$ and $z \in T_a^{\mathcal{F}}(N)$. But this is in contradiction with the hypothesis $(+)$.

Now let $\tau \in \mathscr{C}^\infty_{\mathscr{F}}(F^*TN)$. From (2), applied with $S = \sum_{\sigma}^{\mathscr{F}}(F)$, and the fact that the projections $J^k(\mathscr{C}^{\infty}_{\mathscr{F}}(TM)) \to J^k(\mathscr{C}^{\infty}_{\mathscr{F}}(TM)), J^k(\mathscr{C}^{\infty}_{\mathscr{F}}(TN)) \to$ $J_{S}^{k}(\mathscr{C}^{\infty}_{\mathscr{F}}(TN))$ are onto, it follows that there exist $\xi_{q} \in \mathscr{C}^{\infty}_{\mathscr{F}}(TM), \eta_{q} \in \mathscr{C}^{\infty}_{\mathscr{F}}(TN)$ such that $(tF)(\xi_q) + (\omega F)(\eta_q)|_{U_q} = \tau|_{U_q}$ for a suitable open neighbourhood U_q of $\Sigma_q^{\mathcal{F}}(F)$ in M. Since M is compact, it results that $F(Cl_M\Sigma^{\mathcal{F}}(F)\backslash U_q)$ is closed in N. Let V_q be its complement in N. Since $\Sigma_q^{\sigma}(F) \subset U_q$ it follows that $q \in V_q$. Let $\{\rho_\alpha\}_{\alpha \in I}$ be a \mathscr{C}^∞ -basic partition of unity which is subordinate to ${V_q}_{q \in N}$. The existence of such a partition subordinate to a locally finite covering by open (saturated) subsets of a foliated manifold is proved by R. Wolak in [8]. Let $\xi_1 = \sum_{\alpha \in I} (\rho_\alpha \circ F) \xi_{q(\alpha)}, \eta_1 = \sum_{\alpha \in I} \rho_\alpha \eta_{q(\alpha)},$ where for $\alpha \in I$ we denote by $q(\alpha)$ a point $q(\alpha) \in N$ such that supp $\rho_{\alpha} \subset I$ $V_{q(\alpha)}$. Writing by $U = \bigcap_{\alpha \in I} (U_{q(\alpha)} \cup F^{-1}(N - \text{supp}\,\rho_\alpha))$ we have that U is open and $(tF)(\rho_{\alpha} \circ F)\xi_{q(\alpha)} + (\omega F)(\rho_{\alpha}\eta_{q(\alpha)}) - (\rho_{\alpha} \circ F)\tau$ is identically 0 on $U_{q(\alpha)} \cup F^{-1}(N - \text{supp }\rho_{\alpha})$ so that we obtain:

$$
[(tF)(\xi_1) + (\omega F)(\eta_1)]|_U = \tau|_U.
$$

Since $Cl_M \Sigma^{\mathcal{F}}(F) \subseteq U$, it follows that $\tau - (tF)(\xi_1) - (\omega F)(\eta_1)$ vanishes on a neighbourhood of $Cl_M \Sigma^{\mathcal{F}}(F)$. Moreover, since $T_pF: T_p^{\mathcal{F}}(M) \to T_{f(p)}^{\mathcal{F}}(N)$ is onto for all $p \notin Cl_M\Sigma^{\mathcal{F}}(F)$ it follows that there exists $\xi_2 \in \mathcal{C}^{\infty}(\widetilde{TM})$ such that $\tau - (tF(\xi_1) - (\omega F)(\eta_1) = (tF)(\xi_2)$. Hence $\xi = \xi_1 + \xi_2 \in {\mathscr{C}}_{\mathscr{F}}(TM), \eta = \eta_1 \in$ $\mathscr{C}_{\mathscr{F}}^{\infty}(TN)$ and $\tau = (tF)(\xi + (\omega F)(\eta))$ and the Lemma is proved.

We shall use now the notation from [4]. Let $J^k(M, N) = \{j_p^k f, f \in \mathcal{C}^\infty_{\mathcal{F}}(U, N)$ where U is some open neighbourhood of p , let $L^k(m)$ be the Lie group consisting of k-jets of origin preserving diffeomorphisms $(\mathbb{R}^m, 0) \to (\mathbb{R}^m, 0)$, $L^k(m, l) = \{j_0^k \psi \in L^k(m), \psi: (\mathbb{R}^{m-l} \times \mathbb{R}^l, 0) \rightarrow (\mathbb{R}^{m-l} \times \mathbb{R}^l, 0), \psi(x, y) =$

 $(\psi_1(x, y), \psi_2(x, y)), \forall (x, y) \in \mathbb{R}^{m-l} \times \mathbb{R}^l$. By Prop. 2.12 from [4] it is known that the mapping source-target $(\alpha, \beta): J^k_{\mathfrak{m}}(M, N) \to M \times N$ defines a structure of a subbundle of the bundle $(\alpha, \beta): J^k(M, N) \to M \times N$ with structure group $L^k(m, m-l) \times L^k(n, n-l')(J^k(\mathbb{R}^m, \mathbb{R}^n) \cap J^k_{\#}(\mathbb{R}^m, \mathbb{R}^n) \simeq \mathbb{R}^m \times \mathbb{R}^n \times J^k(m, n-l)$ $l' \times J^k(l, l')$.

The natural action of $L^k(m, m - l) \times L^k(n, n - l')$ on $J^k(m, n - l') \times J^k(l, l')$ is given by

$$
((j^k\Phi))(0), (j^k\Psi)(0)) \cdot (j^kF)(0) = j_o^k(\Psi \circ F \circ \Phi^{-1}).
$$

Let \mathcal{U}_{∞}^{k} be a good coordinate system of $J^{k}(M, N)$ with respect to \mathcal{F}_{N} in the sense of [4], and let $\mathfrak{N}_{\mathcal{F},p}^k$ be the associated good coordinate system of $J^k_{\mathcal{F}}(M,N)$ with respect to $\mathcal{F}_M \times \mathcal{F}_N$,

 $\mathcal{H}_{\mathscr{F}_n}^k = \{J^k(U_i, V_i) \cap J_{\mathscr{F}}^k(M, N), J^k(U_i, V_i) \in \mathscr{H}_{\mathscr{F}}^k\}.$

This system induces canonically the foliated structure $\mathcal{F}^k(M, N)$ on $\mathcal{T}_{\infty}^k(M, N)$ by the local submersions:

$$
p_i: J^k(U_i, V_I) \cap J^k_{\mathcal{F}}(M, N) \to \mathbb{R}^{l'}
$$

$$
p_i = pr_2 \circ \Psi_i \circ \Pi \circ \Phi_{U_i, V_i}
$$

where

 $\Phi_{U_1 \times V} : J^k(U_i, V_i) \cap J^k_{\mathfrak{m}}(M, N) \to U_i \times V_i \times J^k(m, n - l') \times J^k(l, l')$

is the coordinate system on $J^k_{\#}(M, N)$ induced by the foliated coordinate systems (U_i, Φ_i) and (V_i, Ψ_i) on (M, \mathcal{F}_M) and (N, \mathcal{F}_N) respectively and $\Pi: U_i \times$ $V_i \times J^k(m,n-l') \times J^k(l,l') \to V_i,\ pr_2\!:\!\mathbb{R}^n \to \mathbb{R}^l'$ are the canonical projections.

DEFINITION 4. We call $0 \subset J^k(M, N)$ a *pseudo-orbit* in the weak sense with $\text{respect to } \mathbb{U}_{\mathcal{F},p}^{\kappa} \text{ if } \mathbb{G}=\bigcup\limits_{i=1} \mathbb{G}_i(c^i,z^i) \text{ for some } c_i \in \mathbb{R}^l$, $z^i \in J^k(m,n-l') \times J^k(l,l')$ where $\mathbb{O}_i(c_i, z^i) = U_i \times \Psi_i^{-1}(c^i \times \mathbb{R}^{n-l'}) \times [L^k(m, m-l) \times L^k(n, n-l')] \cdot z^i, (V_i, \psi_i)$ beeing a foliated coordinate system on (N, \mathcal{F}_N) .

REMARK. Here $[L^k(m, m-l) \times L^k(n, n-l')] \cdot z^i$ denotes the orbit of z^i by the above action in $J^k(m, n-l') \times J^k(l, l')$. If in the previous definition instead of this orbit we take the orbit $(L_{m-l}^k(m) \times L_{n-l'}^k(n))(z^i)$ with $L_{m-l}^k(m) = \{j_o^k\Psi \in$ $L^k(n, m-l)$, $\Psi_2(y) = 0$, we obtain the concept of pseudo-orbit in $J^k_{\mathcal{F}}(M, N)$ given by Izumiya in $[4]$ (Def.3.1).

We obtain the following result:

18 LILIANA MAXIM-RAJLEANU

LEMMA 9. Any pseudo-orbit \mathbb{O} *in the weak sense with respect to* $\mathbb{U}^k_{\mathcal{F},p}$ *is a local submanifolds correction in* $\mathcal{F}^k(M, N)$ *with respect to* $\mathcal{U}^k_{\mathcal{F}}$, p *(in Izumiya's sense). Moreover, if* \mathbb{O}' *is a pseudo-orbit in the weak sense with respect to* $\mathbb{U}_{\mathscr{F},p}^k$ *and* $z \in \mathbb{O} \cap \mathbb{O}'$ *then we have* $T_z \mathbb{O} = T_z \mathbb{O}'$.

Proof. It is clear that each $\mathbb{O}_i(c^i, z^i)$ is a submanifold of $J^k(U_i, V_i) \cap$ $J^k_{\mathfrak{m}}(M,N)$. Let $\mathbb{O}_i(c^i,z^i) \cap \mathbb{O}_i(c^j,z^j)$ be non-empty. Since any $L^k(m,n-l) \times$ $L^k(n, n - l')$ -orbit in $J^k(m, n - l') \times J^k(l, l')$ is mapped on a $L^k(m, m - l) \times$ $L^k(n, n - l')$ -orbit by the action of $L^k(m, m - l) \times L^k(n, n - l')$ and, by definition, $\mathbb{O}_i(c^i, z^i) \subset J^k(U_i, V_i) \cap J^k_{\mathfrak{m}}(M, N) \cap L$ for some $L \in \mathcal{F}^k(M, N)$, there results that the second condition from the definition of local submanifolds correction (Definition 2.7 from $[4]$) is satisfied. The last part of the Lemma is obvious.

By this result, the notion of which $J^k F$ as a section of $J^k_{\mathscr{F}}(M, N)$ is transverse to a pseudo-orbit (in the weaksense) with respect to a good coordinate system is not dependent on the choice of good coordinate systems. Thus we say that $i^k F$ is transverse to a pseudo-orbit \mathbb{C} in the weak sense if $j^k F$ is transverse to 0 with respect to a good coordinate system.

We obtain the following characterization for this notion:

LEMMA 10. Let $F \in \mathcal{C}_{\mathcal{F}}^{\infty}(M, N)$, let $\mathcal{O} \subset J_{\mathcal{F}}^k(M, N)$ be a pseudo-orbit in the *weak sense and let* $p \in M$ *such that* $(j^k F)(p) \in \mathbb{C}$. Then j^k_F is transverse to \mathbb{G} at p iff $(tF)((\mathbb{G}_{\mathcal{F}}^{\infty}(TM))_p) + (\omega F)((\mathbb{G}_{\mathcal{F}}^{\infty}(TN)_{F(p)}) + \mathcal{M}_{p,\mathcal{F}}^{k+1}(M)(\mathbb{G}_{\mathcal{F}}^{\infty}(F^*TN))_p =$ $(\mathscr{C}^{\infty}_{\mathscr{F}}(F^*TN))_p$

Proof. The proof is the same as in the usual case (cf. [5,V], §2). Namely, there is the following natural identification of \mathbb{R} -vector spaces,

$$
T_z(J_n^k(M,N)) = (\mathcal{C}^{\infty}(F^*TN))_n/M_n^{k+1}(\mathcal{C}^{\infty}(F^*TN))_n
$$

where $z = j_p^k F \in J_p^k(M, N)$ (cf. [5,V], §2).

In terms of this identification we have:

$$
T_z(J^k_{\mathcal{F}}(M,N)) = (\mathcal{C}^\infty_{\mathcal{F}}(F^*TN))_p / \mathcal{M}^{k+1}_{p,\mathcal{F}}(M) (\mathcal{C}^\infty_{\mathcal{F}}(F^*TN))_p
$$

Now, by using the same arguments of Mather's paper $([5, V], \S 2)$ we obtain the following formula for the tangent space at *z* of the fiber \mathbb{O}_p over *p* of local pseudo-orbit in the weak sense $\mathbb{O}(z \in \mathbb{O})$:

$$
T_z(\mathbb{O}_p) = \left[(tF)(\mathcal{M}_{p,\mathcal{F}}(M)(\mathcal{C}^{\infty}_{\mathcal{F}}(TM))_p) + (\omega F)(\mathcal{C}^{\infty}_{\mathcal{F}}(TN)_{f(p)}) \right]
$$

$$
+ \mathcal{M}_{p,\mathcal{F}}^{k+1}(M)(\mathcal{C}^{\infty}_{\mathcal{F}}(F^*TN))_p \right] / \left[\mathcal{M}_{p,\mathcal{F}}^{k+1}(M)(\mathcal{C}^{\infty}_{\mathcal{F}}(F^*TN))_p \right]
$$

We now give the following version of the transversality theorem in the tangential sense.

LEMMA 11. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, let $\mathfrak{M}_{\mathscr{F},p}^k$ be a good coordinate system of $J^k_{\mathscr{F}}(M,N)$ with respect to $\mathscr{F}_M \times \mathscr{F}_N$ and let $A = \bigcup_{i \in I} A_i$ be a local submanifold correction in $J^k_{\mathcal{F}}(M, N)$ with respect *to* $\mathfrak{N}_{\mathfrak{F},p}^k$. Then the set $T_{A,\mathfrak{F}} = \{ F \in \overline{\mathcal{C}_{\mathfrak{F}}^{\infty}(M,N)}, \ j^k F \bar{\mathfrak{h}}_{\mathfrak{F},p} A \}$ is dense in $\overline{\mathcal{C}_{\mathcal{F}}^{\infty}(M,N)}$ *where, as in [4],* $j^k f \overline{\mathcal{A}}_{\mathcal{F},p} A$ *if* $j^k f$ *is transverse to A_i relative to* $(\tilde{\mathcal{F}}^k(M, N), J^k(U_i, V_i) \cap J^k_{\mathcal{F}}(M, N))$, for all $i \in I$ (for the last notion see Def. 2.1) *of [4]).*

Proof. We shall use the following result the proof of which follows, in the main, that of Lemma 2.2 from [4].

Transversality lemma in the tangential sense

Let B be a smooth manifold, let (M, \mathcal{F}_M) , (N, \mathcal{F}_N) be foliated manifolds, let U be an open set of M, A a submanifold of U, and $j: B \to \mathscr{C}^{\infty}(M, N)$ a mapping. We denote by $\Phi: B \times M \to N$ the mapping given by $\Phi(b, p) = j(b)(p)$. If Φ is a smooth mapping and if $\Phi \bar{h}_{(\mathcal{F}_N,U)}$ A, then the set $\{b \in B, j(b) \bar{h}_{(\mathcal{F}_N,U)}$ A} is dense in B.

For each $i \in I$, let $\{A_i^j\}_{i\in \mathbb{N}}$ be an open covering of A_i such that for every $(i, j) \in I \times \mathbb{N}$ we have:

- a) the closure of A_i^j in $J^k(U_i, V_i)$ is contained in A_i ;
- b) $\overline{A_i^j}$ is compact.

We consider the sets:

 $T_{A_i^j} = \{f \in \mathscr{C}^\infty(M, N), f \bar{\mathfrak{m}} A \text{ on } \overline{A_i^j}\}$ $T_{A^j, \mathcal{F}} = T_{A^j} \cap \mathcal{C}^{\infty}_{\mathcal{F}}(M,N),$ $T_{A_i^j, \overline{\mathcal{F}}}= T_{A_i^j} \cap \overline{\mathfrak{C}^\infty_{\mathcal{F}}(M,N)}.$

Since $T_{A,\mathcal{F}} = \bigcap_{i \in I} T_{A_i^j, \overline{\mathcal{F}}}$ and $\overline{\mathcal{C}_{\mathcal{F}}^{\infty}(M, N)}$ is a Baire space, it is enough to show that for every $(i, j) \in I \times \mathbb{N}$, $T_{A_i^j}$ is open and $T_{A_i^j, \mathcal{F}}$ is dense in $\mathcal{C}^\infty_{\mathcal{F}}(M, N)$. The first result is proved by S.Izumiya in [4]. For the second, let (U_i, Φ_i) , (V_i, Ψ_i) , $\Psi_i(V_i) = V_1^i \times V_2^i \subset \mathbb{R}^{n-l'} \times \mathbb{R}^{l'}$ be foliated coordinate systems so that $(\alpha, \beta)(\overline{A_i^j}) \subset U_i \times V_j \text{ and } \rho \in \mathscr{C}_{\mathscr{F}}^{\infty}(\mathbb{R}^m, [0, 1]), \rho'_1 \in \mathscr{C}^{\infty}(\mathbb{R}^{l'}, [0, 1]), \rho'_2 \in$ $\mathscr{C}^{\infty}(\mathbb{R}^{n-l'}, [0, 1])$ such that:

> $\varphi = \left\{ \begin{matrix} 1 & \text{on a neighbourhood of $\Phi_i\circ\alpha(\overline{A_i^j})$} \ 0 & \text{off $\Phi_i(U_i)$} \end{matrix} \right.$ $\rho_1' = \begin{cases} 1 & \text{on a neighbourhood of } pr_2 \circ \Psi_i \circ \beta(\overline{A_i^j}) \ 0 & \text{off } V_1' \end{cases}$ $\rho'_2 = \begin{cases} 1 & \text{on a neighbourhood of } pr_1 \circ \Psi_i \circ \beta(\overline{A_i^j}) \ 0 & \text{off } V_2^i. \end{cases}$

The existence of a function ρ is assured by Lemma 3 of [8]. Let B_2 (resp. B_1) be the space of basic polynomial mappings, $\mathbb{R}^m \to \mathbb{R}^{l'}$ (resp. of polynomial mappings of $\mathbb{R}^m \to \mathbb{R}^{n-l'}$ of degree at most k.

Now we shall use the transversality lemma to show that $T_{A^j \mathcal{F}}$ is dense in $C_{\mathscr{F}}(M,N)$, for every $(i,j) \in I \times \mathbb{N}$. Let $F \in C_{\mathscr{F}}(M,N)$ and for $(b_1,b_2) \in B_1 \times B_2$, let $G_{(b_1, b_2)}: M \to N$ given by

$$
G_{(b_1,b_2)}(p) = \begin{cases} F(p) & \text{if } p \in U_i \text{ or } F(p) \notin V_i \\ \Psi_i^{-1}(\rho(\Phi_i(p))\rho'_1(F_1(p))b_1(\Phi_i(p)) + \\ F_1(p), \rho(\Phi_i(p)) \times \rho'_2(F_2(p))b_2(\Phi_i(p)) + F_2(p)) & \text{otherwise.} \end{cases}
$$

where $(\Psi_i \circ F)(p) = (F_1(p), F_2(p)), \forall p \in F^{-1}(V_i)$.

The choice of ρ , ρ'_1 , ρ'_2 guarantees that $G_{(b_1,b_2)}$ is a smooth foliation preserving mappings from M to N and $G_{(0,0)} = F$. Let

$$
j: B_1 \times B_2 \to \mathcal{C}^{\infty}(M, J^k_{\mathcal{F}}(M, N)), j(b_1, b_2) = j^k G_{(b_1, b_2)}
$$

$$
\Phi: B_1 \times B_2 \times M \to J^k_{\mathcal{F}}(M, N), \ \Phi(b_1, b_2, p) = j(b_1, b_2)(p).
$$

By the same techniques as in the proof of the ordinary jet transversality theorem we may prove that there are neighbourhoods B'_1 , B'_2 of the origin in B_1 , B_2 respectively and a neighbourhood $A_i^{'j}$ of A_i^j in A_i such that, denoting by $\widetilde{\Phi} = \Phi|_{M \times B'_1 \times B'_2}$ we have $\widetilde{\Phi} \overline{\mathbb{A}}_{\mathscr{F}^k(M,N),J^k(M,N)} A_i$ on $A_i'^j$. We apply the transversality lemma and we obtain that $\{(b_1, b_2) \in B'_1 \times B'_2, j^k G_{(b_1, b_2)} \overline{\mathbb{I}}_{\mathcal{F}^k(M,N)J^k_{\sigma}(M,N)} A_i\}$ on $A_i'^j$ is dense in $B_1' \times B_2'$. Then we can find a sequence $\{b_n\} \subset B_1 \times B_2$ such that $\lim_{n\to\infty} b_n = (0, 0) \in B'_1 \times B'_2$ and $j^k G_{(b_n)}$ $\bar{h}_{\mathscr{F}^k(M,N),J^k_{\mathscr{F}}(M,N)} A_i$ on A_i^{j} . But $G_{(0,0)} = F$ and, by construction, $G_b = F$ off U_i . Thus it follows that $\lim_{n\to\infty} G_{b_n} = F$ in $\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)$ and $T_{A'^{j},\mathscr{F}}$ is dense in $\mathscr{C}^{\infty}_{\mathscr{F}}(M,N)$. This completes the proof.

By using the techniques from $[5]$ and $[4]$ it is easy to generalize the above result to a multijet version. With the usual multijet notations we obtain the following:

LEMMA 12. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, let S *be a finite subset of M, let* $s \mathcal{U}^k_{\mathcal{F},p}$ *be a good coordinate system of* $s J^l_{\mathcal{F}}(M, N)$ with *respect to* $\mathcal{F}_M \times \mathcal{F}_N$ and let A be a local submanifold correction in $sJ^l_{\mathcal{F}}(M,N)$ *with respect to* $S^{0}\mathcal{L}_{\mathcal{F}_{p}}^{k}$ *. Then* $T_{A,\mathcal{F}}^{S} = \{F \in \overline{\mathcal{C}_{\mathcal{F}}^{\infty}(M,N)},$ $S^{k}F$ $\overline{\mathcal{F}}_{\mathcal{F},p}$ *A} is dense in* $\overline{\mathscr{C}_{\varpi}^{\infty}(M,N)}$.

Analogously we obtain the multijet versions for Lemmas 9 and 10.

LEMMA 13. Let (M, \mathcal{F}_M) and (N, \mathcal{F}_N) be smooth foliated manifolds, M *compact,* $F \in \mathscr{C}^{\infty}_{\mathscr{F}}(M,N), k \in \mathbb{N}, k \geq n', s \geq n'' + 1^k$. If F is a \mathscr{C}^{∞} -F-stable *mapping, then for every subset S of M having S or fewer points, and such that F(S) is a single point, we have:*

(13)
$$
(tF)((\mathcal{C}^{\infty}_{\mathcal{F}}(TM))_{S}) + (\omega F)((\mathcal{C}^{\infty}_{\mathcal{F}}(TN))_{F(S)}) + M^{k+1}_{p,\mathcal{F}}(M)(\mathcal{C}^{\infty}_{\mathcal{F}}(F^{*}TN))_{S}
$$

$$
= (\mathcal{C}^{\infty}_{\mathcal{F}}(F^{*}TN))_{S}
$$

Proof. By Lemma 9 (the multijet version), 0 is a local submanifold correction in $\mathcal{F}^k(M, N)$ with respect to a good coordinate system $s \mathcal{U}_{\mathcal{F}_n}^k$ and, by Lemma 12, we have that $T_{0,\mathcal{F}}^S = \{ G \in \overline{\mathcal{C}_{\mathcal{F}}^{\infty}(M,N)}, s j^k G \overline{\mathcal{A}}_{\mathcal{F},p} \mathbb{O} \}$ is dense in $\overline{\mathscr{C}_{\alpha}^{\infty}(M,N)}$. Since F is a \mathscr{C}^{∞} -*F*-stable mapping there is a neighbourhood $V_F \subset \mathfrak{C}_{\mathfrak{F}}^{\infty}(M,N)$ such that for every $G \in V_F$ there are diffeomorphisms $H \in \text{Diff}_{\mathcal{F}}^{\infty}(M), K \in \text{Diff}_{\mathcal{F}}^{\infty}(N)$ such that $G = K \circ F \circ H$. Thus V_F is a neighbourhood of F in $\mathfrak{C}^\infty_{\mathfrak{F}}(M,N)$ and $V_F \cap T^S_{0,\mathfrak{F}} \neq \emptyset$. Let $G \in V_F \cap T^S_{0,\mathfrak{F}},$ so $s^kG \bar{h}_{F,p}$ ©. By Lemma 9 (the multijet version) it follows that $K^{-1} \circ \mathbb{O} \circ H^{-1} =$ $\bigcup K^{-1} \circ \mathbb{G}_i \circ H^{-1}$ is a pseudo-orbit in the weak sense with respect to the good coordinate system $K^{-1} \circ_S \theta \mathcal{U}_{\mathscr{F},p}^k \circ H^{-1}$. Since $\overline{S}j^k G \overline{\mathcal{U}}_{\mathscr{F},p} \mathbb{G}$, we have s^j ^k $F \bar{h}_{\mathcal{F}}(K^{-1} \circ \mathbb{O} \circ H^{-1})$. By using Lemma 10 (multijet version) it follows that for any element $x = (x_1, \ldots, x_s) \in M^{(s)}$ with $s_j{}^k F(x) \in K^{-1} \circ \mathbb{O} \circ H^{-1}$ we have (3).

Since by Lemma 8, the last condition is equivalent to the fact that *F* is a \mathscr{C}^{∞} - \mathscr{F} -infinitesimally stable mapping, we obtain the proof of the implication:

F is a \mathscr{C}^{∞} - \mathscr{F} -stable mapping \Longrightarrow *F* is a \mathscr{C}^{∞} - \mathscr{F} -infinitesimally stable mapping.

SEMINARUL MATEMATIC "ALMYLLER" IAȘI-ROMĂNIA

REFERENCES

- [1] L.A. FAVARO *Differentiable mappings between foliated manifolds,* Bol. Soc. Bras. Mat. 8 (1977), 39-46.
- [2] M. G0LUBITSKI. and V. GUILLEMIN *Stable mappings and their singularities,* Graduate Texts in Math. 14, Springer Verlag, 1973.
- [3] M. HIRSCH: *Differential Topology,* Graduate Texts in Math., 33, Springer Verlag, 1976.
- [4] S. IZUMITA. *Smooth mappings between foliated manifolds,* Bol. Soc. Bras. Mat. 13 (1982), 3-17. [5] J. MATHER. *Stability of C-mappings*
	- 5.I *The division theorem,* Ann. of Math., 87, 1968, 89-104.
	- 5.II *Infinitesimal stability implies stability,* Ann. of Math., 89, 1969, 254-291.
	- 5.III *Finitely determined map germs,* Publ. Math. I.H.E.S., 35, 1968, 127-156
	- 5.IV *Classification of stable germs by IR-algebras,* Publ. Math. I.H.E.S., 37, 1969, 223-248
	- 5.V *Transversality,* Advances in Math., 4, 1970, 301-336
	- 5.VI *The nice dimensions,* Liverpool Singularities Symposium I, Springer Lecture Notes in Math., 192, 1970, 207-253
- [6] V. PoENARU *Stability of equivariant smooth maps,* Bull. Amer. Math. Soc., 81, 1975.
- [7] I. VAISMAN *Varietes riemanniennes feuilletees,* Czechosl. Math. Journal, 21, 1971, 46-75.
- [8] R. A. Wolak. *Maximal subalgebras in the algebra of foliated vector fields of a Riemannian foliation,* Comment. Math. Helv., 64, 1989, 536-541.