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FORD POLYGONS FOR fo(N) 

BY ANTONIO LAsCURAIN ORIVE 

1. Introduction 

The set of matrices in the classical modular group SL(2, Z) which are of the 
form (:N ~), k E Z - {O}, define the Hecke congruence subgroup of level N. 
These finite index subgroups, denoted by fo(N), N E N, play an important 
role in number theory. The description of fundamental domains for subgroups 
of the modular group might turn out to be a useful geometric tool in number 
theoretical problems; it may also give some insight in the study of the structure 
of the rings ZN. Fundamental regions for these groups have been investigated 
in the simplest cases, that is, when N is a prime number (see [3] or [9]). 
A more general study was done recently by Kulkarni [4], who constructed 
fundamental domains for f 0(N); these polygons have the least number of 
sides; however they are not Ford domains. 

In this paper we study the Ford fundamental polygon for fo(N), which 
we will denote by RN. First, parabolic and elliptic vertices are discussed: it 
is shown that their cardinality, location, and distribution in cycles are closely 
related to the prime factorization of N (Theorems 1 'and 2, Corollaries 1 and 2, 
Propositions 1, 2 and 3). Another result describes the shape of these polygons: 
RN looks basically like the union of p copies of RN, where N denotes the 
square free part of N and p = N / N (Theorem 3). Further information on 
these polygons can be found in [5]. 

· 2. Preliminaries 

We denote by I'o(N) the group of transformations defined by fo(N). Accor
dingly, if a matrix g belongs to r 0(N), g will be the corresponding transforma
tion. 

This group acts on 
JHI2 = {z EC I Im z > O}, 

as hyperbolic isometries. The transformation z 1-+ z + 1 generates the 
subgroup of translations; a fundamental domain for this subgroup is the set 

A transformation g E I'o(N) which is not a translation acts as a euclidean 
isometry on exactly one circle in the complex plane. This circle is called the 
isometric circle ofg (or g); we will denote it by I(g) (or I(g)). 

Analytically, if the matrix g = (tN bt) E r 0(N), the isometric circle of g is 
given by the equation · 

{z EC I jg'(z)I = l}. 

1 
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This is the euclidean circle {z EC I lkNz+tl = l}, which has radius 1/kN and 
center -t / kN. Hence, the radii ofisometric circles of transformations of r O (N) 
are always numbers of the form 1/kN, k E N. Moreover, the determinant 
condition implies that the centers of these circles are precisely the rational 
points t/kN, where t E Z - {0}, k E N, and tis relatively prime to kN. 

A fundamental property of isometric circles states that the transformation 
g sends the unbounded component of C - I(g), the one containing oo, onto 
the bounded component of C - I(g- 1 ). In particular, g(I(g)) = I(g- 1 ). These 
results follow from the chain rule; we write ext I(g) and int I(g) to denote 
such components. 

The isometric circle of a transformation g E r 0(N) is orthogonal to the real 
axis, and therefore contains a geodesic in JHI2 that is also called the isometric 
circle of g (or g). In order to avoid a cumbersome notation, the symbols I(g) 
and I(g) will also denote the geodesic determined by the euclidean circle. 

The Ford fundamental domain RN for fo(N) defined on the infinite strip 
R00 is the hyperbolic polygon 

RN = Roo n n extJ(g), 
g 

where g runs over all transformations in f 0 (N) which are not translations. 
Since r 0(N) is finitely generated, RN is a locally finite convex fundamental 

polygon for r o(N), bounded by two vertical lines and a finite number of arcs. 
Cf. [1], chapter 9 and 10, or [2]. This polygon is also symmetric with respect 
to the line 

{ z E lHI2 I Rez = ½} · 
This follows because the matrix (k*N _:t) E r o(N) if and only if the matrix 

(k; -(kN*_J E fo(N). 
A side of RN that is contained in a circle of radius 1/kN, k E N, will be 

called a k-side. Therefore, the sides of RN are either k-sides or vertical lines. 
The signature of f 0(N) is well known: First, if a number N has prime 

decomposition 2rp~ 1 ••• p';;;:, where r = 0, 1 and Pi = 1 mod 4 for all j E 

{1, ... , m }, then the number of conjugacy classes of elliptic subgroups of order 
two inf o(N) is 2m. However, if N has a different prime decomposition, f o(N) 
has no elliptic elements of order two. In both cases the number of such classes 
is denoted by v2(N), or simply v2 • 

Similarly, if a number N has prime decomposition gr p~1 ••• p';;;:' where 
r = 0, 1 and Pi = 1 mod 3 for all j E {1, ... , m }, then the number of conjugacy 
classes of subgroups of order three in r 0(N) is 2m. However, if N has a different 
prime decomposition, r 0 (N) does not have elements of order three. In both 
cases the number of such classes is denoted by v3 (N), or simply v3 . Cf. [7] 
or [8]. 
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The action off o(N) on the Riemann sphere defines an equivalence relation 
on the set of parabolic fixed points. An equivalence class is called a cusp; the 
number of such classes is given by 

I:¢( (d, :) ), 
<'IN, 
d>O 

where ( d, : ) denotes the greatest common divisor of d and N / d, and ¢, the 

Euler function. ¢(n) is the number of elements in {1, 2, 3, ... , n} which are 
relatively prime ton. The number of cusps of fo(N) (*) is denoted by v00 (N), 
or simply v00 • 

Finally, the genus of the Riemann surface lfll2 /I'o(N) is given by 

l + !!:_ _ V2 _ V3 _ Voo 

12 4 3 2 ' 

whereµ denotes the index off 0(N) in SL(2,7l): 

µ = NI1(1 + p-1). 

PIN 

Cf. [7] or [8]. Another proofofthe formula for cusps(*) appears in section 3. 

3. Parabolic vertices 

The equivalence classes of parabolic vertices of RN defined by the action of 
f 0(N) are called parabolic cycles; observe that the number of parabolic cycles 
is precisely v00 • The location and cardinality of parabolic vertices of RN is 
determined by the prime decomposition of N. It turns out that the number of 
these vertices is given in terms of the Euler function (Theorem 1). Moreover, 
the parabolic cycles are naturally related to the divisors of N, in the sense that 
the coordinates and the cardinality of a cycle depend on a fixed divisor d of N 
(Theorem 2 and Corollary 1). The methods of Theorem 2 also lead to a proof 
of the formula for cusps off 0(N)(*), which is based only on the geometry of 
isometric circles and elementary number theory. 

LEMMA (1). If a is a parabolic vertex of RN which is not the point at oo, 
then a is of the form t/N, where t E {O, 1, ... , N}. 

Proof. Suppose that the parabolic vertex a is not of the form stated, so 
a = t/kN where (t, k) = 1, k > l. Take s, m such that mt - sk - 1. If 
(s, N) = 1, then there is a matrix g = c:N ~s) E f o(N), and since 

I s I 1 1 
mN - a = mkN < mN' 
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we have a E int I(g), contradicting the fact that a is a vertex. If (s, N) > 1, 

the matrix f = (m;N _:8 ,) E fo(N), where m' = m +(;,~)ands'= s + (;:)' 

and since m't- s'k = 1, we have that a E I(f), which is again a contradiction. 
• 

Before studying parabolic vertices we make some useful remarks concer
ning isometric circles of transfomations in r 0 (N). 

1. A rational point of the form t / N, t E Z, is not the center of an isometric 
circle of radius smaller than 1/N. This follows because if the isometric 
circle defined by a matrix g = (~N :) E fo(N) has center t/N, then 
t = -s/k and therefore kls; but since k ands are relatively prime, we 
have that k = 1. 

2. A rational point of the form t/kN, t E Z, k E N lies in the euclidean 
closure of the exterior of any circle with center s / kN, s E Z, s =/. t, and 
radius 1/kN. 

3. Rational points of the form t/N lie in the euclidean closure of the exterior 
of any isometric circle of radius smaller than 1/ N. This is a consequence 
of remarks 1 and 2. 

4. The isometric circles of radius smaller than 1/N are contained in the 
region {z E qim z '.S 1/2N}. 

5. An isometric circle of radius 1/N which intersects R 00 is visible; that is, it 
contains a side of RN. In particular, since the matrix g = (:V-_;) belongs 
to fo(N), I-sides always exist. This is clear from remark 4. 

THEOREM (1). RN has N - cf>(N) + 2 parabolic vertices, where cf> denotes 
the Euler function. These vertices are rational points of the form t/N, where 
t E {O, 1, ... , N}, and (t, N) > 1, together with the point at infinity. 

Proof It follows from Lemma 1 that a parabolic vertex is a point of the 
form t/N, t E {O, 1, ... ,N}, or the point at infinity. We claim that among 
these rational points only those for which (t, N) > 1 are parabolic vertices. 

First, if (t,N) = 1, the matrix(; _:t) E fo(N), and therefore t/N is not 
visible. 

However, if (t, N) > 1, we may find k E N such that the matrix 

( k~ -(kt+ 1)) E fo(N), 

for instance, k = N/(t, N). Among these matrices let g deri'6te the one defined 
by the smallest k, that is, the one with largest isometric circle. Observe that 
t/ N E I(g). Similarly we may take the smallest integer m for which the matrix 

f = ( m*N -(m;- l)) E fo(N). 
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We also have t/N E J(f). 
Now, since (t, N) > 1, the remarks 1, 2 and 3 imply that t/N lies in the 

euclidean closure of the exterior of any isometric circle of a transformation in 
f 0(N). Hence, I(g) and J(f) contain visible sides of RN that end at the point 
t/N, which is therefore a parabolic vertex. This follows because the other 
isometric circles which contain the point t/N are tangent to either I(g) or J(f) 
in their interior. 

Consequently, there are N - 1- </>(N) parabolic vertices of the form t/N, 
t E {1, 2, ... , N - 1 }, (t, N) > 1. The remarks 3 and 5 also show that O and 
1 are parabolic vertices. Finally, Lemma 1 implies that there are no other 
vertices apart from the point at infinity. II 

The parabolic cycles of RN are determined by the divisors of Nin the 
following way. 

THEOREM (2). Two parabolic vertices tif N, t2/N of RN are r 0(N) equiva
lent if and only if 

(ti, N) = (t2, N), 

and 
tifd = t2/d mod(d,N/d), 

where d = (ti, N), i = 1, 2. 

Proof. Suppose first that ti/N and t2/N are two f 0(N) equivalent parabolic 
vertices, t 1 < t2, and let g E r o(N) be such that g(ti/ N) = t2/ N. The properties 
of isometric circles imply that ti/N E I(g). This follows because if ti/N E 
ExtJ(g). then t2/N E Int(g- 1) and t2/N would not be visible; for the same 
reason tif N is not in the interior of I(g). 

Hence, since g preserves orientation and g(I(g)) = I(g- 1 ), the matrix g can 
be expressed as 

or 

( kt2-l * ) 
kN -(kt1 + 1) . 

This situation is described in Figure 1 for g hyperbolic. 
In the first case, since det g = 1, we have that 

this is equivalent to 

(1) 

and so (t1, N) = (t2, N). 
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To prove the second part we may write (1) as follows, 

t2 _ti= nN + kd (ti) (t2) 
d d d d d ' 

where d = (ti, N), i = 1, 2, and n is an integer. 
Thus 

A similar argument holds in the second case. 
Viceversa, given ti, t2 E Z, ti < t2, such that (ti, N) = (t2, N) and 

t2 ti . (N ) d = d modw, where d = (ti,N), i = 1, 2, and d'd = w, we prove that 

tif N, t2/N are f o(N) equivalent. 

Since ( ~' :) = 1, i = 1, 2, we have that 

Therefore we may write 

(2) q,mEZ, 

and reverse the steps above by putting t; -d = wu, u EN, and inserting (2) 

in this last expression. 
Ifq > 0, putting k = uq we get a matrix 

( kt2 + 1 um ) r (N) 
kN -(kti - 1) E o ' 

whose corresponding transformation sends tifN to t2/N. 
If q < 0 and k = -uq, we get 

( kt2 - 1 -um ) ( ) 
kN -(kti + 1) Ero N . Ill 

We remark that the sufficiency part of Theorem 2 does ribt assume that ti/ N 
and t2/ N are parabolic vertices, hence the statement is more general. In 
particular, any two rational points tif N and t2/N such that (ti, N) = 1, i = 1, 
2 are fo(N) equivalent. 

Theorem 2 also leads us to a new proof of the formula ( *) for the number of 
cusps offo(N), which is somewhat more geometric that those in [7] and [8]. 



FORD POLYGONS FOR f o(N) 7 

The proof goes like this: To each proper divisor d of N we associate all 
parabolic vertices in RN oftheformt/N, where(t,N) = d, t E {2, 3, ... ,N-2}. 
Therefore, it follows from Theorem 2 that if two parabolic vertices define the 
same cusp, then they are associated to the same divisor. Observe that the set of 
all parabolic vertices associated with a divisor dis in one to one correspondence 
with the subset of numbers in { 1, 2, ... , N / d} which are coprime with N / d, 
and so there are ¢(N / d) of these vertices. It is clear that any of these 
vertices t / N associated to a divisor d is uniquely determined by a number 
m E {1,2, ... ,N/d}, where t = dm. 

Now, it is convenient to decompose N/d as nq, where q denotes the biggest 

factor of N / d which is coprime with ( ~, d) ; so n = N / qd, and all the primes 

which are divisors·of n are also divisors of ( ~, d). With this notation the 

numbers {l, 2, ... , N / d} may be enumerated as follows: 

1, 
n + 1, 

2, 
n+2, 

... ,w, 

... ,n+w, 

(q - l)n + 1, (q - l)n + 2, ... , (q - l)n + w, 

where w = ( ~, d). 

w+ 1, ... , n 
... ,2n 

.... ,qn, 

Since <fa(Njd) = ¢(n)¢(q), there are exactly ¢(n) columns, each containing 
<fa(q) numbers that represent parabolic vertices associated with the divisor d. 
Moreover, since any two numbers in the same column are congruent mod n 
and therefore mod w, Theorem 2 implies that the parabolic vertices associated 
with the numbers in a fixed column define the same cusp. This Theorem 
also shows that among the first w columns, ¢( w) of them represent parabolic 
vertices in ¢(w) different cusps; furthermore, it says that the other columns 
do not define new cusps. Hence, the formula for cusps ( *) follows. The cusps 
defined by the cycles {oo} and {O, l} are, of course, those associated to the 
divisors 1 and N. 

We may also count the number of parabolic vertices in each cycle; since 
¢(n) = '!!:..cp(w), each cycle has '!!:..¢(q) parabolic vertices. This leads to our next 

w w 
result. 

COROLLARY (1) The length of a parabolic cycle in RN defined by a divisor 

d as described above, is ¢~~~~>, where w = ( d, ~)-

As an example we show the parabolic vertices for N = 18 (see figure 2): 
For d = 2, we have N / d = 9, w = 1, one cusp with parabolic vertices at 

t/18, t = 2, 4, 8, 10, 14, 16. 
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Ford= 3, we have Njd = 6, w = 3, two cusps with vertices at 3/18 and 
15/18. 

Ford= 6, we have Njd = 3, w = 3, two cusps with vertices at 6/18 and 
12/18. 

Ford= 9, we have Njd = 2, w = 1, one cusp with vertex at 9/18. 
We finish this section by remarking that the proof of the formula for the 

number of cusps ( *) given in [7] is not complete. The last part of the argument 
is false; for instance, it fails for the particular case N = 35 and d = 5. 

4. Elliptic vertices 

Since r o(N) is a subgroup of the modular group of transformations 
PSL(2, Z), all elliptic elements are of order two or three. As we mentioned in 
the preliminaries, the number of elliptic classes of order two is well known; it 
is a power of 2 if -1 is a quadratic residue of N and it is zero otherwise. Simi
larly there are classes of order three if and only if -3 is a quadratic residue of 
N (see [7] or [8]). 

In this section we count the number of elliptic vertices of RN and describe 
their locations. We first show the coordinates of elliptic vertices of order two; 
it turns out that their imaginary part is 1/N, and therefore they are above all 
the isometric circles. In particular, the corresponding cycles have length one. 
The cardinality is obtained by establishing a bijection between these vertices 
and the solutions in ZN to the equation t2 = -1. 

PROPOSITION (1). The elliptic vertices of order two in RN are precisely the 

points ~ + ~, where 1 < t < N, and t2 = -1 mod N. In particular, each 

corresponding cycle has length one. 

Proof We may assume that N = 2rp~1 •• • p";;;,', where r = 0, 1, and 
Pj = 1 mod 4, for all j E {1, ... ,m}. Now, given t E {1,2, ... , N - 1} such 
that t2 = -1 mod N, one gets a matrix 

whose corresponding transformation is elliptic of order two, with fixed point 

~ + ~. These points are visible since their imaginary parts are greater 

than or equal to all other points contained in the isometric circles of fo(N). 
Furthermore, as the angle sum of a cycle of elliptic vertices of order two is 
1r (see [1], Theorem 9.3.5), these points belong to cycles 'of length one. This 
is a consequence of remark 4 in section 3, because a vertex of order two is 
contained in exactly one isometric circle of fo(N). 

The result now follows since Euler's criterion and the theory of quadratic 
residues show that the number of solutions in ZN to the equation t2 = -1 is 
2m. Cf. [6], Theorems 5.1 and 5.2. • 
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A simple calculation shows that if a pair of matrices of the form (k 1Nt * ) 
-t ' 

(k2t *_5 ), k1, k2 E Z - {O} are conjugate in ro(N), then t = s mod N. This 
fact in conjunction with Proposition 1 lead us to describe the location and 
distribution in equivalence classes of the elliptic fixed points of order two 
defined on IHI2 by the action of f 0(N). We recall that given a transformation 
g E PS L(2, JR.) of order two, the fixed point of g is the highest point of the 
isometric circle J(g); that is, it has greater imaginary part than other points 
in J(g). Thus, for the case of r 0(N) these points have coordinates of the form 

s i 
kN + kN' s E Z,k EN. 

PROPOSITION (2). Let a E IHI2 be the elliptic fixed point of a transformation 
- . . - . t i 

g E r 0(N) of order two. Then a is r 0(N) equwalent to the vertex N + N E RN 

if and only ift = s mod N, where a = k~ + k~. 

- .. t i -
Proof. Let f denote the transformation fixing N + N. Then f and g are 

defined by matrices in ro(N) of the form f = (,.; ~t) and g = (k;,, b~8 ), 

k EN. Now, if the matrix h = (n~ ~..) E roOV) d_efi.nes the transformation 

h for which h ( ! + ! ) = k~ + k~, then g = hjh- 1• In terms of matrices 

this means that either g = hfh- 1 or -g = hJh- 1; however, we claim that the 
second possibility does not happen. To prove the claim we use the relation 
-ua - (3nN = I to calculate 

hfh- 1 - ( * * ) 
- N(-2ntu + u2 - n2bN) N(integer) - t · 

This expression shows that 

1 
Ima=± 2 2 . 

N(2ntu + u - n bN) 

On the other hand, 

{-( t i)} 1 Ima=Im h N + N = t . 
NlnN(- + _:_) - ul2 

N N 
1 

N[(nt - u)2 + n2] • 

Finally, another calculation shows that: 

-2ntu + u2 - n2bN = (nt - u) 2 + n2 ; 
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hence the claim and therefore the Proposition follow. 

The calculation in the proof of Proposition 2 shows that if the radius of the 
isometric circle of a transformation of order two is given by 1/kN, then k is 
the square of an integer, or the sum of two squares. Thus, elliptic fixed points 
of order two appear only at certain "heights". 

COROLLARY (2). The imaginary parts of the elliptic fixed points of order 
two defined on lHI2 by the action off o(N) are always numbers of the form l/kN, 
where k is the square of a number or the sum of two squares. 

Hence the distribution of these fixed points is closely related to the nume
rical structure of N; the same happens for elliptic fixed points of order three. 

We first prove that the elliptic cycles of order three in RN have also length 
one, this is done by establishing a one to one correspondence between the 
vertices and the square roots of -3 modulo N. First we need an easy fact: 

LEMMA (2) Given Nan odd number, then one has that in ZN the square 
roots of -3 are in one to one correspondence with the solutions of the equation 
t(t + 1) = -1. 

Proof. As Nlt 2 + t + 1 if and only if 

Nl4t 2 + 4t + 4 = (2t + 1)2 + 3, 

the association t f---+ 2t + 1, t E {1, 2, ... , N - 1} is the required bijection. To 
check surjectivity, if u2 = -3 mod N and u is even, write u + N = 2t + 1 to 
solve for t. II 

PROPOSITION (3). The elliptic vertices of order three in RN are the points 
2t + 1 v'3. 
~ + 2N z, where t(t + 1) = -1 mod N, 1 < t < N. Consequently, the 

corresponding cycles have length one. 

Proof. We may assume that N = 3rp~1 ••• pr,;;;, r = 0, l andpj = 1 mod 3 for 
all j E { 1, ... , m}, otherwise there are no elliptic fixed points of order three. 
As we mentioned in the preliminaries, for N with such a prime decomposition, 
the number of elliptic classes of order three of r O (N) is 2rn. 

Now, given t such that t(t + 1) = -1 mod N, 0 < t < N, the matrix g = 

C,;1 _:) defines a transformation oforder three in r 0 (N) fixing 2~~ 1 + {! i. 
In fact, this point is the intersection of the isometric cfrcles of g and g- 1. 

Moreover, it is visible because the other isometric circles of radius 1/N are 
contained in the set 
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and the isometric circles of smaller radius are below the line Im z = _!_ (see 
. 2N 

remarks 2 and 4 in section 3). 
Furthermore, as the external angle at such a point is 21r /3, the correspon

ding cycle has length one. The Proposition now follows from Lemma 2 and 
the fact that the number of square roots of -3 is 2m. Cf. [6], Theorems 3.21, 
4.13, 5.1, 5.3 and 5.7. • 

Similar calculations to those of Proposition 2 establish the distribution in 
equivalence classes of the fixed points of order three. It turns out that two 
matrices (k!-;f _:t) and (k:~1 _:8 ), k1, k2, E N are conjugate in fo(N), if and 
only if t = s mod N. In particular, two elliptic fixed points of order three, 

where k1, k2 EN are f o(N) equivalent if and only if 

S=tmodN. 

We end this section by remarking that all the vertices of RN which are not of 
order two are contained in the region · 

and therefore the accidental vertices have smaller or equal imaginary parts 
than those of order three. 

In Figure 3 we show Ria, where elliptic vertices of both orders appear, 

5 i 8 i 1 ( 7) v'3 ( i ) 1 (19) namely, 13 + 13, 3 + 13 of order two, and 2 13 + 2 13 , 2 13 + 

v'3 ( i ) 2 13 of order three. 

5. Reduction to square free numbers 

Here the elliptic fixed points of order two in {)RN will not be considered 
as vertices, hence the two sides ending at such points will be thought of as 
just one side which is paired with itself. We introduce some notation: if A is 
a subset of the complex plane, A will denote the euclidean closure in C; as in 
the introduction, the square free part of a given number N will be denoted by 
N and the quotient N / N by p. 

We will show that RN can be obtained as the union of p translations of the 
polygon obtained by contracting RN by a factor of J/ p. Our next Theorem 
describes this fact in a precise way. 

Ci, 
.BJ.BL l·tY,1 · · 

!)£ ;il . 
. ·. ·-,.:·_J· ~---..:... 
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THEOREM (3). Let Tm denote the translation by m, m E N, and M 1; P 

,.,,,,,;nnn by l/ p, then 

p-1 

RN= U M1;pT'm(RN). 
m=O 

We show that the visible isometric circles of f 0(N) can be obtained 
from those offo(N) by translation followed by co'ntraction. 

To do so, let g be a pairing of RN which is not a translation; g is defined by 
a matrix g = (/N b t) . Hence g pairs the sides of RN contained in the circles of 
radius 1/kN centered at -t/kN and a/kN (if a= -t, g pairs such a side with 

We claim that by translating these two (or one) circles, I(g) and J(g- 1), n 
units to the right, n = 0, 1, ... , p - l, and then contracting them by a factor of 
1/ p, one gets 2p circles (or p), which are isometric circles of transformations 
inf 0(N), and their corresponding inverses. 

To prove the claim let T and Mp denote the matrices (~ D, (~ d) 
:respectively. Observe that a transformation sending one of the transformed 
circles into another can be defined by a matrix of the form 

for suitable n, m E { 0, 1, ... , p - 1}. These matrices may not belong to f o (N), 
however calculation yields 

m _ ( a + mkN [ -an + b - m(nkN - t)]p- 1 ) . 
9n - kpN -kNn + t ' 

hence they belong to such a group provided the upper right entry is an integer. 
We deduce that given an integer n E {O, 1, ... , p - l }, there is exactly one 
rn E {O, 1, ... , p - 1}, for which g~ E f 0 (N). This follows because for a fixed 
n, the set 

{-an+ b - m(nkN - t)}, 

E {O, 1, ... , p - 1} forms a complete set of representatives for Zp, since t 
and N are relatively prime. 

The claim now follows because the isometric circles of the matrices g~, 
and their inverses, are precisely the circles M;; 1Tn(1(g)), M;; 1T"(I(g- 1), 

nE{O,l, ... ,p-1}. 
We remark that the claim is also true even if I(g) and I(g- 1) do not contain 

sides of RN; however these geodesics must be subsets of R 00 • 

Viceversa, if a matrix f = (k~ \) E r 0(N) defines a pairing of sides of 
RN, f pairs the isometric circles I(J) and J(J- 1) of radius l/kN and centers 
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at -t/kN and a/kN. We divide the unit interval [0,1] into p subintervals of 
length 1/ p, so there are unique numbers n and m, 0 ::; n, m < p such that 

n -t n + 1 
-<-<--
p kN p ' 

(1) 

and 

m a m+l 
-<-<-·--. 
p kN p 

(2) 

This happens. since the remarks 1, 2, 3 and 5 in section 3 imply that an 
isometric circle of fo(N) is either contained in R00 or in C - R00 • 

. Now, the location of the centers of I(J) and J(f- 1) suggests that a transfor
mation in r 0(N) derived from f might be defined by the matrix 

hf= r-mMµJM;;Irn. 

Indeed calculation shows that 

h _ (a - mkN integer) E f (N) 
f - kN t + nkN o ' 

and (1) and (2) imply that the isometric circles of h~ and hj 1 are contained in 
the strip R00 • Furthermore, these circles may be obtained by expanding I(f) 
and J(f- 1) by a factor of p and then translating them back to R 00 by -n and 
by -m repectively. 

Hence this is the reverse process to the claim, and thus there must be 
another p-1 transformations in r 0(N) together with their inverses, associated 

- --1 - -
to the transformations hf and hf in fo(N). 

Finally, an isometric circle I(g) of r 0(N) is visible if and only if the corres
ponding isometric circles I(g':: ), n = 0, 1, ... , p - 1 of r 0(N) are visible. This 
follows because a family of isometric circles of f 0(N) covering I(g) will induce 
a family of isometric circles off 0(N) covering I(g'::), n = 0, 1, ... ,p- 1, and 
viceversa. • 

As an example of Theorem 3 we illustrate the cases N = 6 (Figure 4) and 
N = 18 (Figure 2). 

The following facts are direct consequences of this Theorem: 
i) If RN has s sides, then RN has p(s - 2) + 2 sides. 
ii) If RN has s k-sides, then RN hasps k-sides. 
iii) If R-1v has s finite vertices, then RN has ps finite vertices. 
iv) If RN has s parabolic vertices, then RN has p(s - 2) + 2 parabolic vertices. 
The same repetition happens for a specific type of vertex; namely, for each 

vertex in RN which is the intersection of m isometric circles ofradii 
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there are p vertices of such type in RN. 
Theorem 3 also implies that if r O (N) is torsion free, the open Riemann 

surface IHI2 /f o (N) is a p-sheeted covering space of the corresponding surface 
IHI2 /f o(N). However, this is not true for the compactified surfaces; for instance, 
the surface defined by N = 22 has four cusps whereas the one defined by 
N = 44 has six cusps; this must occur because of the special role of the point 
at oo. In the torsion cases the situation is more complicated; for example, 
f 0 (10) has elliptic elements whereas f 0 (20) has not. 

I would like to thank Troels Jfl)rgensen for suggesting to me the methods 
in the proof of Theorem 3. A different proof appears in [5]. 

All the results in this paper have their counterparts in the group 

Cf. [5]. This group and r 0 (N) are, of course, conjugate in SL(2, Z). 

ANTONIO LAsCURAIN 0RIVE 
DEPARTAMENTO DE MATEMA.TICAS 
FACULTAD DE CIENCIAS, UNAM 
MEXICO 
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