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MULTIVARIABLE SPECTRAL THEORY OF ALGEBRAS OF 
ANALYTIC FUNCTIONS 

BY GENARO ALMENDRA* AND ANTONI WAWRZYNC'.lYKT 

1. Introduction 

The present paper is devoted to the study of cospectra of ideals J of algebras 
.sd(f!) of holomo:rphic functions with restricted growth defined in an open set 
0 c en. We consider also the joint spectra of k-tuples of elements of the 
quotient algebra .sd(n) / J. 

The principal innovation is the addition of "points at infinity" to the 
classicalcospectrumZ(J) = {z E O I J(z) = 0, f E J}. Theobtainedextended 
cospectrum is briefly speaking the· set of common zeroes of the functions 
f E J extended continuously to the Stone-Cech conipactification {30 of 0. 
The extended cospectrum is then a subset of {30 although we consider later 
also the cospectra in other compactifications of 0. 

The appearence of {30 in the spectral analysis of algebras of continuous 
functions on O is not surprising. In the case of the algebra ~(O) of all 
continuous functions on O the theorem ofGelfand-Kolmogoroffidentifies the 
space {30 with the set of the maximal ideals of the algebra. To the point z E (30 
there correspond under this identification the ideal 

Mz = {J E C(n)I Z E Z(J)}. 

In the above formula Z(f) denotes the set of zeros of the function f and the 
closure is taken in the compact space (30. 

In case of the algebras of functions with :restricted growth the :relation 
between the points of {30 and maximal ideals must be modified. Briefly 
speaking we treat the cospectrum of an ideal of the form f .91([!) as the obstacle 
to the inve:rtibility off. Even if the function 1/ f makes sense in some 
subset of O the invertibility depends upon the behaviour of this function at 
infinity which is restricted by the growth condictions defining the algebra 
.sd(n). A point z E (30 is cospectral (z E ((J)) if for every neighbourhood 
0 of z there exists an element f E J such that 1/ f does not behave in 0 
as elements of .sd(n) should do. In the same way we define the cospectrum 
((J, C) of J in an arbitrary compactification C of 0. First of all we succeed 
in proving that nontrivial ideal J have nonempty cospectrum for an arbitrary 
compactification C. 
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It results that ((J) = ((J, (JU) determines ((J, C) for an arbitrary compac­
tification C. If Pc: (30--+ C is the natural projection which leaves invariant 
the points of n then 

((J, C) = Pc((J). 

If we associate to a point z E (3!1 the ideal 

Mz = {f E d(n)I Z E ((Jd(fi))} 

we can obtain all maximal ideals of d(fi) as Mz for appropiate z E (3!1. 
The continuous multiplicative functionals of the algebra d(fi) correspond 

however to the points of n and are of the form f--+ f(z) with z E !1. 
Our interest in the algebras of the form d(n) / J is motivated by the role 

played by this type of algehxas in the spectral analysis of translation invariant 
function spaces on IRn. In particular if V c C00 (1Rn) is a linear translation 
invariant closed subspace the annihilator 

v_L = {TE C 00 (1Rn)'I T(J) = 0, f E V} 

is isomorphic by means of the Fourier transform to an ideal J of the algebra 

dp(<Cn) = {f E d(<Cn)! !f(z)! :S Aexp(B(log(l + l!zl!) + l!Imzl!))}, 

while the dual space V' is isomorphic to the quotient algebra dp(<Cn)j J. 
This being the case an exponential function ez: ]Rn 3 x --+ exp( (z \x)) belongs 

to V if and only if z E Z(J). Using the traditional terminology: the spectral 
analysis holds in V if Z(J) = ((J) n en is nonvoid. It is well known however 
that the latter set can be empty. 

Now, it can be seen that the set ((J) n en is equal to the joint spectrum of 
then-tuple Z = ([z1], ... , [zn]) E (d(<Cn)/ J)n. In section 3 we introduce the 
notion of the extended joint spectrum and we prove that the latter is equal just 
to ((J) in case ofthe n-tuple Z. It means that both the study of the generalized 
cospectrum ((J) as well as of the extended joint spectrum can be treated as a 
subsequent step in the development of the spectral analysis and synthesis. 

The mentioned extended joint spectrum of a k-tuple ?:F = ([Ji], ... , [fk]) E 
(d(fi) / J)n is defined as a closed subset of an arbitrary compactification K of 
(Ck and is denoted by a(::!r-, J, K). Our definition assures that in (Ck\ a(?:F, J, K) 
there exists a generalized resolvent that is a k-tuple of functions Rj(z, µ) such 
that 

(1) 
k 

L Rj(z, µ)(zj - µj) - 1 E J, 
j=l 

forµ E (Ck\ a(?:F, J, K). Moreover, for every .X E K \ a(?:F, J, K) there exists a 
neighbourhood O of .X such that the set {R/•,µ)I µ E On <Ck} is bounded in 
.sd.(!1). 
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It results that the joint spectrum in the Stone-Cech compactifi.cation {3Ck 
determines joint spectra in other compactifi.cations: 

In what follows we write just a('lf, J) in place of a('lf, J, {3Ck). 
The joint spectrum is never empty for proper ideals J because we prove 

that 
i(((J)) C a('lf, J) 

and 
PKi(((J)) C a('lf, J, K). 

In the formula above i denotes the unique continuous extension to {30, of the 
mapping 0, 3 z--+ <J1, ... , !k) E {3Ck. 

In the case when K is equal to the real or complex projective space P 2k CIR) 
or pk(C) we have the equality 

In both cases the spectrum a('lf, J, K) have the spectral mapping property 
what means the following: · 

For every yolynomial mapping (/}: <e,k --+ cm which extends to a continuous 
application(/}: pk(C) --+ pm(C) we have 

A k m C/}a('lf, J, P C) = a((!} o 'lf, J, P C). 

The !lllalogous formula for the real projective space is also valid. 
In the last section we prove that all multiplicative functionals on .sap(O,) are 

the evaluations off E .sap(,{},) at a fixed z E 0. 
The present paper presents the results of an investigation not finished yet. 

The interest of the authors concentrates at this moment at those properties 
of ideals which can be expressed in terms of their cospectrum ((J). It can be 
seen for example that the slowly decreasing n-tuple 'lf (see [1] for the definition 
and fundamental properties) whose cospectrum consists uniquely of "points at 
infinity" generates .sap(O). It explains the fact that proper ideals generated by 
slowly decreasing tuples have always nontrivial the classical cospectrum. The 
slowly decreasing tuples were created as those which generate closed ideals. 
This property is also related with the appearence of the points at infinity in 
((J[iji). 

It is easy to see that the ideal J .sap(O) is not closed if and only if J is a 
topological divisor of zero in .sap(O), exactly as in the case of commutative 
Banach algebras without divisors of zero. More generally, an ideal J consists 
of joint topological divisors of zero if and only if J<Jli is not closed for every 
k-tuple of elements of J. 
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If the spectral analysis is valid in sd.p(ll) then every ideal J whose spectrum 
consists of points at infinity is dense in sd.p(fi). It consists of joint topological 
divisors of zero, just like for example the maximal ideals corresponding to the 
points of the Shilov boundary in the Banach algebras case. Ifwe are interested 
in the development of concepts like the Shilov boundary or of the peak points 
of the spectrum for sd.p(fi) we must study profoundly the behaviour of the 
elements of sd.p(ll) on (3!1. In some particular cases described in [8] (specially 
for n = <C) it is possible to formulate determinate results. In the case of 
the unit disc D c <C the structure of ideals can he also described in terms of 
the classical and extended spectrum. These results involving the topology of 
the Stone-Cech compactification /3!1 will be published in separate paper. The 
present one is devoted almost exclusivelly to the properties of the extended 
spectrum which follows by Hormander's theorem 2.1. 

The authors are very indebted to Professor K. Jarosz and to Professor W. 
Zelazko for interesting conversations and important suggestions. 

2. Preliminaries 

In what follows n will denote an open subset of <Cn and p a function on n 
which is positive plurisubharmonic and satisfies the following conditions 

1. log(l + llzl!)/p(z) is bounded on n. 
2. there exist A, B, C, D > 0 such that for all z E n the condition 

llz - wll < exp(-Cp(z) - D) implies w En andp(w)::; Ap(z) + B. 

In case of n = <Cn the above conditions are satisfied for p(z) = lzlr, r > 0 
as well as for the function p(z) = log(l + llzll) + lllm zll which was already 
introduced in the previous section. If n is a domain of holomorphy we obtain 
a function satisfying 1 and 2 putting p(z) = -log(d(z, am), where an is the 
boundary of n and d denotes the Euclidean distance in <Cn. 

This type of pairs (!1,p) wasintroduced by Hormander in [6] with the 
purpose to study the finitely generated ideals of the algebra of functions which 
are holomorphic in n and have its growth determinated by p. 

We denote by 'i&(ll) the space of all continuous functions on n and by .sd,(fi) 
the space of functions holomorphic in n. For r > 0 let 'i&; denote the set of 
continuous functions which satisfy 

and 'i&p(fi) = Ur>O 'i&;. 

llfllr = sup IJ(z)I exp(-rp(z)) < oo 
n 

We also introduce sd.; = sd.(fi) n 'i&;(m and sd.p(ll) = Ur>O sd.;. In the spaces 
sd.p(fi) and 'i&p(fi) we define the inductive limit topologies of the normed spaces 
(sd.;, II · llr) and ('i&;, II · llr) respectively. 

The spaces sd.p(fi) and 'i&p(fi) are topological algebras which constitute the 
principal subject of our research. 
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As proved in [6] the conditions 1 and 2 assure that 

i. The space of all polynomials belongs to dp(il). 
ii. If f E dp(il) then a~. f E dp(il) for any 1 ::S j ::S n. 

3 

The following theorem of Hormander (and its extension given later) is the 
fundamental argument used to develope the notion of the cospectrum and 
joint spectrum in algebras dp(il). 

THEOREM (2.1) [61 Suppose that the function p > 0 on n c en is plurisub­
harmonic and satisfies the conditions 1 and 2. Then the ideal generated by the 
functions Ji, ... , fk E dp(il) is the whole dp(il) if and only if there exist c1, 
C2 > 0 such that 

(2) 
k 

L lh I ~ c1 exp(-c2p). 
j=l 

The proof of the above theorem uses the celebrated results of Hormander 
about the solution of the equation 8h = g in spaces of differential forms with 
measurable coefficients which behave at infinity as elements of~p(il). 

In case of the algebra ~p(il) the above theorem is trivially valid and its 
proof is just the first step in the Hormander' s proof. Given the functions 
Ji, ... , fk E ~p(il) which satisfy the condition(2) we can construct 

Thanks to the condition (2) and the relation :z=;=l If; I ::S k112(E;=l If; 12)112 

we see that hi E ~p(il). The direct calculation gives :z=;=l hi!; = 1, hence for 

arbitrary¢ E ~p(il) we have¢= :z=;=l J;(hicp). The ideal generated by the 
functions Ui} is just ~p(fi). We shall need however a strengthened version of 
Theorem 2.1 providing several informations about the coefficients hi E .stl.p(n) 
which permit to generate the function 1 from ';ff. 

For given ';ff= (Ji, ... , fk) let us denote 

llo';!fllr = ttlla~if;II · 
i=l 3=1 r 

In [13] the following result is proved: 
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THEOREM (2.2) For every k E N and s :?: 0 there exist t, r :?: 0 and a 
polynomial Wk,s with positive coefficients such that for every g E st1; and every 
k-tuple ~ E stlp(D,)k which satisfies the condition (2) and ll8~llr :s; oo there 
exist hJ E Sil~ obeying 

and 

k 

Lh1fj = 9 
j=l 

3. The cospectrum 

In what follows we present a number of definitions and results parallely 
for the algebras 'iiip(D.) and stlp(D.). In order to simplify the exposition we 
understand by Sil anyone of these algebras. Let ( C, j) be a compactification of 
n, that is to say C is a compact completely regular space and j: D. ---+ C is a 
continuous injection with dense image. 

Definition (3.1) For a given ideal J E Sil and a compactification C of D. we 
denote 

p(J, C) = { z E Cl::lfJ E J, K > 0 and a neighbourhood O of z in C 
k 

such that L lfi(w)I :?: exp(-Kp(w)) for all w E On D. }. 
j=l 

The points belonging to p(J, C) are called regular points for J in C. The 
complement of p(J, C) is called the extended cospectrum of Jin Candis denoted 
by ((J, C). We denote by Z(J) the classical cospectrum of J that is the set of 
common zeros of the elements of Jin D.. 

It is easily seen that Z(J) = ((J, C) n n, independently of the particular 
compactification of n. 

THEOREM (3.1) The set ((J, C) is empty if and only if J = Sil. 

Proof. Suppose that p(J, C) = C. For every z E C there exist O(z), K > 0 
and JJ E J such that 

kz 

L IJJ(w)I:?: exp(-Kp(w)), w E O(z) n n. 
j=l 

By the compactness of C we can choose a finite subcovering {O(zi)h=1, ... ,r 
from the covering {O(z)}zEC· Let {JJ' }, ... , {ft} and K1, ... , Kr be the 
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corresponding elements of J and corresponding positive constants. Taking 
c = max(K1, ... , Kr) we obtain 

r kz 

LL lft(z)I 2:: exp(-cp(z)), z En. 
i=l j=l 

By Theorem 2.1 (or its version for Cf6p(!})) the functions /;1, ... , !Jr generate 
d, that is J = S!l. The converse is obvious. II 

In contrast to ((J, C) the classical cospectrum can be empty as shows the 
example found by Gurevich [5]. 

The family Comp O of all compactifi.cations of n has its natural order defined 
as follows: 

provided that there exists a continuous surjection P: C1 - C2 such that 
j 2 = P o j 1. The maximal element of Comp O with respect to the order >-is 
the Stone-Cech compactifi.cation /30 which is unique up to homeomorphism. 

We denote: ((J) = ((J, /3!}) and p(J) = p(J, /3!}). 
The Stone-Cech compactifi.cation can be defined equivalently up to a homeo­

morphism as the compact space containing O and such that any continuous 
map cp: 0 - K valued in a compact space K can be uniquely extended to a 
continuous map <fa: /30 - K. This property of /30 permits us to describe the 
cospectrum of J as the zero set of a family of functions associated to J. 

THEOREM (3.4) Let J be an ideal of .54.. Then 

((J) = {z E /301 (f exp(cp)r(z) = 0 for all c > 0, f E J}. 

Proof. If J is a proper ideal and z E ((J) then by the very definition of the 
cospectrum for arbitrary f > 0, c > 0 and every neighbourhood O of z there 
exists w E O such that 

lf(w)I exp(cp(w)) ::; f. 

By the continuity of the extension we obtain the assertion. The converse is 
obvious. 11 

The description of the cospectrum obtained above implies in particular the 
following: 

THEOREM (3.2) Let I, J be proper ideals of S!lp and let 9 be the ideal 
generated by I and J. Then 

((9) = ((I) n ((J). 
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Proof Assume that z E ((I) n ((J). For every f E:} there exist g EI, h E J 
and <p, 'lj; E dv such that f = <pg + 'lj;h. There exist also constants a, b, c, d > 0 
for which l<fJI :S a exp(bp) and l'l/;I :S c exp(dp). For an arbitrary 'Y > 0 we obtain 

If exp(1p)I :S algl exp((b + "f)p) + clhl exp((d + ,')p). 

Both terms of the last sum are continuous functions which by Theorem 3.2 
extend to functions vanishing at z. Applying the same theorem we obtain 
z E ((:}). We have proved that 

((I) n ((J) C ((:}). 

Since J c :} and I c :} the opposite relation is also valid. • 

In case of the algebra ~p(fl) the description of the cospectrum can be 
simplified because for f E J the function f exp(cp) belongs to J. We obtain: 

((J) = {z E ,601 j(z) = 0, f E J}. 

It follows immediately from this observation that the cospectrum of J c dp(fl) 
is equal to the cospectrum of the ideal of~p(fl) generated by J. In particular 
if we consider the cospectrum of an ideal J'!Je generated by several elements 
Ji, ... , fk E dp(fl) it does not matter in which of two algebras we generate 
the ideal. By this reason we have decided to simplify the notation of ((J) the 
cospectrum avoiding to anote the algebra in question. 

It is important to observe that the cospectrum ((J) of J determines com­
pletely the cospectra of J in other compactifications as shows the following 

THEOREM (3.3) Let C be an arbitrary compactification of O and let P: ,60 -+ 

C be the projection which leaves invariant the points of 0. Then for every ideal 
Jed 

P(((J)) = ((J, C). 

Proof We prove the relation P(((J)) c ((J, C) by showing that P(z) E 
p(J, C) implies z E p(J). In fact, if O(P(z)), Ji E J, c > 0 are such that 

k 

I: lfi(w)I ~ exp(-cp(w)) 
j=l 

for w E (iJ n 0, then OU, = p- 1(0(P(z))) is the neighbourhood of z such 
that the same inequality is valid for the points of OU, n 0. It means that 
p- 1(p(J, C)) c p(J), or equivalently P(((J)) c ((J, C). 

In order to prove the opposite inclusion, we assume that z E ((J, C) but 
p- 1(z) c p(J). This will lead to a contradiction. 
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Suppose that for every x E p- 1(z) there exist I; E J and e, c > 0 such 
that <E1=1 lf;(y)I exp(cp(y))t > e in some neighbourhood of x. Since p- 1(z) 
is compact we can find an N-tuple Ji, ... , !NE J and e > 0, c > 0 such that 

N 

<I: lfil exp(cp)r(x) > f 

i=l 

for all X E p- 1(z). 
On the other hand if z E ((J, C) we know that in each neighbourhood OU. of 

z in C there exists Zott E OU. n O such that 

N 

L lfi(Zott)I exp(cp(Zott)) ::; e/2. 
i=l 

By the compactness of /30 the net (Zott) has an accumulation point x 
which must belong to p- 1(z) by the definition of the net. It implies that 
(E~1 lfil exp(cp)t(x) ::; e/2. This is the contradiction. • 

The description of the maximal ideals plays the fundamental role in the 
spectral theory of topological algebras. If J is a maximal ideal of stl (not 
neccessarily closed) and z E ((J) then by the very definition of the cospectrum 
J C Jz = {f E stlvl(f exp(Cp)t(z) = 0 for all C > O}. 

The set Jz is a proper ideal of stl hence by the maximality of J both ideals 
coincide. It follows that all maximal ideals of stl are of the form Jz for 
z E {30. The question arise if ((J 1J = { z} and if the ideal Jz is maximal 
for each point z E {30. It is true for the algebra ~p(O) because continuous 
bounded functions separate points of {30. This being the case we obtain the 
identification between the space /30 and the space .M.(~p) of all maximal ideals 
of ~p(O). For the algebra stlv(O) this is not the case. One construct distinct 
points z, w E {30 \ n which can not be separated by elements of stlp(O), 
hence Jz = Jw.The construction was suggested by the reviewer.et us take 
two sequences (zj) and (wj) whose elements form discrete disjoint sets and 
such that Uzi - will exp(cp(zj)) tends to zero for all c > 0. It follows that 
lf(zi) - f(wi)I exp(cp(zi))-+ 0 for all c > 0. The closures of the sets {zj} and 
{ Wj} in /30 are disjoint. Let 4> be an ultrafilter of subsets of { Zj} which defines 
an element z E /30 \ 0 which belongs to the closure of {zj}. Substituting in 
each subset from 4> the element Zj by wi we obtain an ultrafilter which defines 
w E /30 belonging to the closure of {wj}. Hence z-:/= w. On the other hand 
the elements of stlv(O) do not separate z from w. 

It is an open problem if for general stlp(O) every point z E /30 gives us Jz 
which is maximal. At least in some particular cases it seems to be true. 

The construction was suggested by the reviewer.L 
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4. The quotient algebra s!i/ J 

Let us consider an ideal J c sli and the quotient algebra s!i/ J. The 
invertibility of an element [J] E s!i/ J can be expressed in terms of the 
corresponding cospectra. 

THEOREM ( 4.1) Let f E sli. The following conditions are equivalent: 

a. The class [J] is invertible in sli / J. 
b. ((Jf) n (CJ)= 0. 
c. ::le > 0 such that (f exp(cp)T does not vanish on ((J). 

Proof The class [J] is invertible if there exist g E sli and h E J such that 
f g - 1 = h. Equivalently, the ideal generated by f and J is equal to sli. Its 
cospectrum is empty and by Theorem 3.3 it is equal to ((Jf) n((J). This proves 
a) • b). 

Now, suppose that c) is not valid, that is Ve > 0 the function (f exp(cp)T 
vanishes somewhere in ((J). Denote by Ac the (compact) set of zeroes in 
((J) of the function (f exp(cp)T. Obviously c < d implies Ad C Ac. By the 
compactness of ((J) the set nc>O Ac c ((Jf) n ((J) is nonvoid. We proved that 
b) • c). 

Finally assume that the condition c) is satisfied and consider the ideal j 
generated by f and J, whose cospectrum is ((Jf) n ((J) according to Theorem 
3.3. If j is nontrivial and z E ((j) then in particular for every c > 0 the 
extension of the function f exp(cp) vanishes at z. This contradicts c) and the 
invertibility of [J] is proved. • 

Let us compare the situation with the classical model of the Banach algebra 
of((;s(X) of continuous functions on a compact set X. If J is a closed ideal in 
C(;s(X) and ((J) is the set of common zeroes of the elements of J then the 
invertibility of [J] in C(;s (X) / J is equivalent to the condition that f does not 
vanish on ((J) or equivalently that ((Jf) n ((J) = 0. In this case the spectrum 
of [J] in the quotient algebra coincides with the set of values off on ((J). The 
set ((J) plays also the role of the spectrum of the quotient algebra if the latter 
concept is defined as the set of multiplicative functionals on C(;s(X). 

Now we pass to define the extended spectrum of elements of the algebra 
sli. To avoid repetitions of arguments we define at once the extended joint 
spectrum of a k-tuple of elements in an arbitrary compactification K of (Ck. 

Definition (4.1) Denote by~ a k-tuple (Ji, ... , fk) of ~lements of sli. Let 
.>.EK. We say that.>. is regular for~ relative to J ifthere exist c > 0, d > 0 
and a neighbourhood O(.>.) of>. in K such that for allµ E O(.>.) n (Ck and z E ((J) 

k 

(4) (~)h - µii exp(cp)r(z) ~ d. 
j=l 
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The set of regular points for '!ft in K is denoted by {!('?Ji, J, K). It is open in 
K. Its complement is called the joint spectrum of '!ft in K with respect to J 
and is denoted o-(:ffe, J, K). We denote by a(:ffe, J) (:resp. e(:ffe, J)) the spectrum 
(resp. the set of regular points) of :!Ji in the Stone-Cech compactification (3Ck. 

Let us observe that the sets {!('?Ji, J, K) and o-(:ffe, J, K) depend in fact only on 
classes ['!ft] = ([Ji], ... , [fd) hence we deal with an extension of the concept of 
the joint spectrum of a k-tuple of elements of sl1 / J. First of all we shall prove 
that for all finite points µ'sin some neighbourhood of each regular element 
,\ E K there exists a generalized resolvent R(µ) and the set of all R(µ) µE"IL is 
bounded. 

THEOREM ( 4.2) Let ,\ E [!('!ft, J, K) and let O C K be a neighbourhood of 
,\ in which the inequality (4) is valid for some c, d > 0. Denote OJ.I,= 0 n C"'. 
There exist functions R1(·, µ) E :A,µ E OJ.I, such that 

k 

(5) }:)Ji - µ1)Rj(·, µ) - 1 E J 
j=i 

for all µ E OJ.I,, There exist r > 0, b > 0 such that IIR1(-, µ)llr ~ b for allµ E oU. 

Proof. If z (/. ((J) then there exists 9z E J and Cz > 0 such that 

for all w in some neighbourhood of z in fl. 
By the supposition that ,\ is regular for '!ft we obtain that 

k 

L lfi(w) - µjj exp(cp(w)) 2'. d 
j=l 

for appropriate c > 0, d > 0 and for all w E fl in some neighbourhood of ((J). 
By the compactness of (30 we can choose a finite number of functions 

g1, ... , 9m E J su~h that for some c, d > 0 and for all (w, µ) E fl x au 
k m 

(6) .L lfi(w) - µii+ L jgi(w)I ~ exp(-cp(w)). 
j=l i=l 

By Theorem 2.1 (or its version for ~p(f!)) the functions 

{/j - µj, 9ihs,js,k, ls,is,m 

generate the space .stl. In particular there exist functions R1 E sl1 such that 

k k+m 

(7) LR/w;µ)(fj(w)-µ, 1) + L Rj(w,µ)gj-k(w) = 1. 
j=l j=k+l 
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Since the second sum is an element of J we obtain the formula (5). The second 
part of the assertion follows by Theorem 2.2 in case of the algebra .sap(O) and 
directly by the definition of the resolvents defined in section 2 when the algebra 
~p(O) is considered. • 

By the usual application of a partition of unity we can construct easily a 
global resolvent of the class 0 00 (0). Nevertheless the nonuniqueness of the 
resolvent makes difficult the study of its global properties. 

The equation (7) permits us to formulate the condition of regularity of a 
point in a slightly stronger form. 

COROLLARY ( 4.1) Let K be ~ compactification of Ck. A point >. E K is 
regular for '?-Ji relative to J if and only if there exist a neighbourhood O(>.), d > 0, 
c > 0 and a neighbourhood 'V of ((J) such that (4) is valid for all z E °V and 
for all µ E O(>.) n Ck. 

Proof. Assume that >. satisfies all conditions determined in Definition 
(4.1). Let c > 0, a > 0 be such that the functions R/w,µ) in (7) satisfy 
IRi(·, µ)I ~ a exp(cp) for all finiteµ E O(>.). Next define 

k+m l 
'V = {z E ,BOl(aexp(cp) L l9i-klr(z) < 2}. 

j=k+l 

The set "Vis a neighbourhood of ((J). Thanks to (7) we obtain for every finite 
µ E O(>.) and for z E "V: 

k . 

1 ~ a(L lh- µii exp(cp)r(z) + ½· 
j=l 

Choosing d < 2~ we obtain the desired result. • 

Exactly as in the case of the cospectrum the knowledge of the spectrum 
a('?-Ji, J) permits us to obtain a('?-Ji, J, K) for an arbitrary compactification K 
by simple projection. Let us denote by PK: [3Ck - K the natural projection 
which leaves invariant the points of Ck. 

PROPOSITION (4.1) PK(a('?-li, J)) = a('?-Ji, J, K). 

Proof. Suppose that >. E K is regular for '?-Ji relative to J. Let O(>.) 
be a neighbourhood of>. such that (4) is satisfied. Then Pj/(0(>.)) is the 
neighbourhood of an PK 1(>.) for which (4) is also satisfied. It means that all 
elements of PK 1(>.) are regular and consequently PK(a('?-Ji, J)) c a('?-Ji, J, K). 
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Now assume that A E o-(<ffe, J, K). For all d, c > 0 and for each neighbourhood 
0 of A there exist µ 0 E O n Ck and z 0 E o-(J) such that 

k 

(L Iii - µf I exp(cp)r<z0 ) < d. 
j=l 

By the compactness of {3CK the generalized sequence {µ0 } has an accumula­
tion point, say µ E {3Ck. It follows by the construction that PKµ = A. 

The point µ is singular because at least for a subsequence µu which 
converges to µ we have 

k 

(L Iii - µf I exp(cp)t(zu) < d. 
j=l 

• 

Any k-tuple <ffe = <J1, ... , fk) of elements of .511 can be treated as a continuous 
mapping 

!}, 3 Z -t <J1 (z), ... , fk(z)) E Ck C {3Ck. 

There exists a unique continuous extension of this map on the domain {30 
which is denoted in the sequel by ~- The following result determines the 
relation between ~(((J)) and o-(<ffe, J). ' 

THEOREM (4.3) 

(8) ~(((J)) C o-(<ffe, J). 

Proof. Let A= ~(w) where w E ((J). Suppose that A is regular for <ffe with 
respect to J that is 

(9) 
k 

L Iii - µj I exp(cpt(z) ~ d 
j=l 

for all z E ((J), µ E 0(.A) n (Ck. 

By Corollary 4.1 the above inequality remains valid for µ E 0(.A) n Ck and 
z E 'V where "Vis a neighbourhood of ((J). Let us choose an arbitrary finite 
point z from "V n ~- 1(0(.A)). Take µ0 = <ffe(z). Obviously µ0 E 0(.A) but the left 
hand side of (9) vanishes at z. This is a contradiction. • 

By applying to both sides of (8) the projection PK for an arbitrary compac­
tification K of Ck we obtain immediately 

CORO LARY ( 4.2) 

(10) 
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5. Towards the spectral mapping theorem 

The question if the inclusion (8) is in fact an equality remains open. In the 
general case we can only prove that a(<JF, J) \ ~(((J)) c (3ek \ ek that is to say 
inside ek both sets coincide. 

THEOREM (5.1) 

Proof. In virtue of Theorem 4.3 it remains to prove that a(<JF, J) n ek c 
~(((J)). If A E a(<JF, J) n ek then for arbitrary c > 0 and natural n we can find 
µ<n> E B(A, ¼) and Zn E ((J) such that 

The factor exp(cp) is no less than 1 in the whole compactified domain which 
implies 

The sequences {~(zn)} and {µ<nl} are equivalent hence both of them tend to A. 
Since the cospectrum ((J) is compact the sequence Czn) has an accumulation 

point in some z E ((J). It means that ~(z) = A. • 

The above result means that if there exists A E a(<JF, J) \ ~(((J)) then for 
the finite elements of some neighbourhood of A the generalized resolvents do 
exist but they form an unbounded subset in sll. 

In the very special case of n = en and <JF = idcn we have equality in (8). 
Let us denote by Z then tuple for which the i-th function is just J;(z) = Zi• 

The corresponding mapping Z is the identity in 13en. 

THEOREM (5.2) Let fi = en. Then 

(11) a(Z, J) = ((J). 

Proof. The relation ((J) c a(Z, J) follows by Theorem (4.3). It remains to 
prove that a(Z, J) c ((J). Suppose that A E a(Z, J). According to Corollary 
(4.1) for arbitrary c, E > 0 and for every neighbourhood O of A and V of a(J) 
there exists z E V n en and µ E O n en such that 

(12) 
n 

L lzi - µii exp(cp(z)) < E. 

j=l 

. c.:, ..... -.r. 
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Our aim is to prove that for every f E J and d > 0, the extension (J exp(dp)t 
vanishes at>.. In virtue of Corollary (2.5) in [1] there exist functions Qi E 
.sll(C2n) such that 

n 

f(z) - f(µ) = L Qj(z, µ)(zi - µi) 
i=l 

and for some constants C, D depending only upon f the inequality 

IQ/z, µ)I ::; C exp(D(p(z) + p(µ)) 

is valid on c2n. Recall that the function p has the property that for appropriate 
A, B > 0 the relation llz - µ11 ::; 1 implies that p(µ) ::; Ap(z) + B. Choose the 
neighbourhood Vin such a way that If exp(d(Ap + B))I~ < E in V. We obtain 

n 

lf(z) - f_~µ)I exp(dp(µ))::; exp(dp(µ)) L IQ/z, µ)llzi - µii 
i=l 

n 

::; C exp((D + d)p(µ) + Dp(i)) L lzi - µii 
i=l 

n 

::; C exp((D + d)B) exp(((D + d)A + D)p(z)) L lzi - µii• 
j=l 

Since the constants A, B; C, D depend only on the functions f and p we can 
suppose that the constant c was chosen from the beginning as ((D + d)A + D) 
and in place of E in (12) the value 1:/C exp((D + d)B) has been used. In this 
way we obtain 

lf(z) - f(µ)I exp(dp(µ)) ::; €. 

Taking into account that lf(z)I exp(dp(µ)) ::; lf(z)I exp(d(Ap(z) + B)) ::; Ewe 
obtain If(µ) exp(dp(µ))I ::; 21: for severalµ E On en. Since the neighbourhood 
0 is arbitrary we conclude: (f exp(dp)r(>.) = 0. • 

Now applying Theorem 3.4 and Proposition 4.1 we obtain 

COROLARY (5.1) For an arbitrary compactification K of en 
a(Z, J,K) = ((J,K). 

Coming back to the question of the equality in place of the inequality. in 
(10) let us observe that for the compactification of Alexandroff Ka of Ck we 
have in fact 

PKa j(((J)) = a(?:f, J, Ka). 

This equation asserts simply that Theorem 5.1 is valid and both sides can be 
unbounded only at the same time. 

Let us observe also the following 
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PROPOSITION (5.1) Assume that for certain compactificatfon K we have the 
equality 

PK'fF(((J)) = a(~, J, K). 

and that K >--C. Then 

Pc'!F(((J)) = a(~, J, C). 

Proof. It suffices to apply the projection PKc:K -,. C to both sides of the 
first equation. Ill 

We can also obtain the equality in (10) by imposing several topological 
condition on the compactification K of Ck. 

THEOREM (5.3) Let K be a compactification of Ck such that for all.\, v E K 
there exist neighbourhoods O of.\ and U of v such that 

inf IIµ - wll > 0. 
µEOnrC• ,wEUnrC• 

Then 
PK'!F(((J)) = a(~, J, K). 

Proof. In virtue of Corollary 4.2 it remains to prove that u(~, J, K) c 
PK'!F(((J)). We know that for finite points the inclusion is valid, hence suppose 
that.\ E u(~, J, K) \ (Ck and that.\ (/: PK'IF(((J)). 

According to our supposition for every w E PK'!F(((J)) there exist neig­
hbourhoods Ow of.\ and Uw ofw as well as a constant Ew such that 11µ-wll > Ew 
for allµ E Own (Ck and w E Uw n (Ck. Since the set A= PK'!F(((J)) is compact 
we can choose a finite subcovering from the covering {Uw}wEA obtaining in 
this way neighbourhoods 

U = LJ Uw, and O = n Ow, 

such that IIµ -wll > E = min1<i<m{EwJ for all finiteµ E O and w EU. 

However by the singularity~f.\there existsµ' E OnCk and z E (PK'!F)- 1 (U) 
such that 

k 

CI; lf1 - µJltcz) < c 
j=l 

By continuity the same is valid for some z' E (PK'!F)- 1(U) n en. This is a 
contradiction, hence>. E PK'IF(((J)). 1111 

In particular it is easy to see that the projective spaces P 2k(JR), pk((C) which 
are compactifications of(Ck satisfy the assumptions of the above theorem. We 
obtain 
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COROLARY (5.2) For an arbitrary '!f E .9tk and for K = P 2k(JR) or K = 
pk(C) we have 

PK1F(((J)) = O"('!f, J, K). 

Let us now observe that the spectrum <T('!f, J) has other properties which 
are characteristic for various types of joint spectra considered in the theory of 
commutative and noncommutative Banach algebras. 

The space (3Ck can be considered in a natural way as a closed subset of the 
k-th Cartesian product (JC x ... x (3<C. As the natural injection we consider the 
continuous extension of the mapping: ck '----+ n:=l /JC. using this convention 
we can assert the following: 

PROPOSITION (5.2) 
k 

O"('!f, J) C II O"( {Ji}, J). 
i=l 

Proof. We assert only that if a point ,\ E (3tk projected in Il:=l a( {Ji}, J) on 
them-th variable gives us Am which is regular for fm relative to J, then,\ is 
regular for '!f. This is obvious by the definition of e('!f, J). Ill 

Let rg,Cm) = (Pi, ... , Pm) be a tuple of polynomials of k complex variables. 
Denote by ~Cm) the continuous extension to (3Ck of the mapping (z1, ... , zk) --t 

(Pi(z), ... , Pm(z)) E /3Cm. 

THEOREM (5.4) For every k-tuple '!f and for every rg,Cm) 

~(m)(a('!f, J)) C O"(cg,(m) o '!f, J). 

Proof. For simplicity we write just <!I' in place of rg,Cm). Given finite points 
z E n and µ E ck let us write 

r 

Pi('!f) - P;(µ) = L Qia(µ~(/1 - µ1Y'-l • • • (fk - µk)ak, 

lal=l 

where a = (a1, ... , ak) is a multiindex, Qia are polynomials of k variables and 
r is the maximum of the orders of the polynomials Pi. Assume that .A. E (3Ck 
belongs to the spectrum of '!f relative to J. Given c, f we can find in each 
neighbourhood of .A. and a finite point µ such that in every neighbouhood of 
((J) there exists z which satisfies 

k 

L lf/z) - µii exp(cp(z))::; min{1:/M, 1/2}, 
j=l 
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where M = :E:,1 Lial=l IQio(µ)I, We obtain 

m 

L IPi~(z)) - PiCµ)I exp(cp(z)) 
i=l 

m r 

:s:; <I: L ]Qio(µ)llfi(z) - µ1J°'1 • • - lfk(z)- µkl°'")exp(cp(z)) 
i=l la]=l 

k 

:s; ML exp(cp(z))ifiz) - µii :s:; 1:. 

i=l 

This proves that ij'>(>.) E a((!} o ~, J). • 

Using the terminology of the spectral theory of topological algebras the 
above result is the one-way spectral mapping theorem for a(~, J). 

If we consider the projective space as the compactification of (Ck we can 
obtain a version of the complete spectral mapping theorem . 

Assume that ~: Pk(C) ---+ pm(C) is a continuous application which maps 
pk(C) \ <Ck into pm(C) \ cm and such that its restriction to (Ck is of the form 
(!} = (p1, ... , Pm), where Pi are polynomials of k complex variables. As a unique 
continuous extension of a mapping of polynomial type ~ satisfies the relation 

(13) ~ 0 Ppk(C) = .Ppm(C) 0 ij'>_ 

THEOREM (5.5) Let~ E .stJ.k. Then 

Proof. We calculate applying Corollary 5.2 and (13): 

" k " ..., 
(!}(a(~, J, P (C))) = c;}(Pp1ccc>~(((J))) 

= .Ppm(c:)(ij'> o @;(((J))) = a((!} o ~, J, pm(C)). • 

If we use the real projective space P2i(JR) as the compactification of Ci we 
obtain in the same way the formula 

(14) A 2k 2m 
(!}(a(~, J, P (JR))) = a((!} o ~. J, P (~)), 

valid for every 
~: p2k(JR)---+ p2m(JR) 

which is of complex polynomial type on Ck (canonically imbedded in P 2k(JR)) 
and which sends the points at infinity into points at infinity: 
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6. Multiplicative functionals on .stlp(f},) 

The functional of the evaluation at a given point z E n 

Xz : stlp(n) 3 f---+ f(z) E (C 

is a continuous multiplicative functional on stlp(n). It is natural to ask if the 
functionals of the form Xz for z E n are the unique continuous multiplicative 
functionals on stlp(n). The answer is positive and in [4] we can find this result. 
It is deduced however from the same fact which is the subject of our Theorem 
2.3 and it seems that its proof in [ 4] is not complete. In this section we prove 
a stronger result and the proof is simpler. In particular it does not make use 
of the functional calculus of Waelbroeck. 

It results that all multiplicative functionals on s'lp(n) are given by the 
evaluation at a fixed point z E n. In particular it means that all multiplicative 
functionals are continuous and the maximal ideals Mz for z jl n are of 
codimension > 1. 

THEOREM (6.1) Every nonzero multiplicative functional on stlp(n) is of the 
form Xz for some z E il. 

Proof Let x: stlp(n) ---+ e be a nontrivial multiplicative functional. Its 
kernel Jx = {f E stlp(n)ix(f) = O} is an ideal of codimension 1. Its extended 
cospectrum is nontrivial and forµ E ((Jx) we have for every f E Jx: 

lim f(w) = 0 
03w---+µ 

by Theorem 3.2. 
Since f - x(f) E Jx for an arbitrary f E stlp(n) we obtain 

(15) lim f(w) = x(f) 
03w---+µ 

for all f E s'lp(n). In particular taking fiw) = wi we observe that x(fi) = 

limn 3 w--+µ Wj, It implies in particular that z = (x(f1), ... , x(fn)) belongs to .n 
(closure in en!). If z En then the functional xis equal to Xz by (15) and we 
are done. 

Suppose that z E n \ n. We need the following result which in the 
Waelbroeck's terminology says that n is a spectral set for Z: 

PROPOSITION ( 6.1) [ 4), [ 13] There exists t > 0 such that for every >. E en\ n 
there exist r/.X) E s'l1 which satisfy 

(16) 
n 

L)wi - >.1 )rj(>.) = 1 
j=l 
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for all w E fl. The set of all functions { r i (>,.)} is bounded in .stl.!. 
Putting Aj = x(/j) in (16) and applying x to both sides we obtain a 

contradiction. Ill 

The following corollaries are obvious. 

CoROLARY (6.1) All multiplicative functionals on .sd.p(fi) are continuous. 
All maximal ideals of .stl.p(fl,) of codimension 1 are of the form .M,z where z En. 

CoROLARY (6.2) For every µ E (30 \ n there exists f E .sd.p(fi) such that 
limn:iw-+µ lf(w)I = oo. 
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