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CONDITIONS FOR AVERAGE OPTIMALITY IN MARKOV 
CONTROL PROCESSES ON BOREL SPACES* 

BY R. M0NTES-DE-OCA, J.A. MINJAREZ SOSA AND 0. HERNANDEZ-LERMA 

1. Introduction 

The analysis of average cost (AC), discrete-time Markov control processes 
(MCPs), which can be traced back to the late 1950s, has been mainly con
centrated on MCPs for which (i) the state space is a denumerable set, and/or 
(ii) the control constraint sets are compact, and/or (iii) the one-stage cost 
function is bounded. However, there are important cases -e.g., the "linear 
regulator (or LQ) problem", to name the most conspicuous- in which none 
of the conditions (i), (ii), (iii) is satisfied. This is precisely the class of MCPs 
we are concerned with in this paper, namely, MCPs with Borel state space, 
and possibly noncompact control sets and unbounded costs. Our main objec
tive is to make a "comparative analysis" of (i.e. to give counterexamples or 
establish implications, whenever they exist, between) conditions that ensure 
the existence of AC-optimal control policies. 

Such an analysis was began in [18], where two of the authors compared 
three conditions, called (Cl), (C2) and (C3) (see §3 below), previously studied 
in [23], [12,22] and [7,10,20) respectively. In this paper we present new 
relationships between (Cl)-(C3) and consider two additional conditions, (C4) 
(from [16]) and (C5) (from [11]; see also [8,13,14,24]), with which we cover-to 
the best of our knowledge- all the currently known AC-optimality conditions 
for MCPs on Borel spaces, with unbounded one-stage costs. Related studies 
appear in [1, Section 6]; see also [5] for denumerable state MCPs. 

The paper is organized as follows: In Section 2 we introduce general defi .. 
nitions and other preliminaries on MCPs. Section 3 contains the conditions 
(Cl)-(C5), which are then compared in Sections 4 and 5. 

2. Markov control processes 

NOTATION. Given a Borel space X (i.e., a Borel subset of a complete and 
separable metric space) its Borel sigma-algebra is denoted by \lls(X), and 
"measurable", for either sets or functions, means"Borel measurable". Let 
X and Y be Borel spaces. Then a stochastic kernel Q(dx I y) on X given Y is a 
function such that Q(· I y) is a measure on X for each fixed y E Y, and Q(B I -) 
is a measurable function on Y for each fixed BE \lls(X). 
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39 



40 R. MONTES-DE-OCA, J.A. MINJAREZ SOSA AND 0. HERNANDEZ-LERMA 

Markov control models. [1, 3, 9, 15] The basic-discrete time, time
homogeneous- Markov control model (X, A, Q, c) consists of the state space 
X, the control set A, the transition law Q and the one-stage cost function 
c. Both X and A are assumed to be Borel spaces. To each state x E X we 
associate a nonempty measurable subset A(x) of A, whose elements are the 
admissible actions when the system is in the state x. The set 

K := {(x,a) Ix E X,a E A(x)} 

of admissible state-action pairs is assumed to be a measurable subset of the 
cartesian product of X and A. The transition law Q(B I x, a), where B E ~(X) 
and (x, a) EK, is a stochastic kernel on X given K. The one-stage cost c is a 
nonnegative measu:r;able function on K. 

We assume throughout the following that K contains the graph of a measur
able map from X to A, which guarantees that the set of policies (see Definition 
2.2) is nonempty. 

Control policies. For each t = 1, 2, ... , let Ht := K x Ht-1, with 
Ho := X, be the space of admissible histories up to time t, i.e., vectors 
ht= (xo,ao, ... ,Xt-1,at-1,xt) where (xn,an) EK for every n = 0, 1, ... , 
t - 1, and Xt E X. 

DEFINITION (2.1). F denotes the set of all measurable functions f: X ----+ A 
such that f(x) E A(x) for all x EX. 

DEFINITION (2.2). (a) A control policy is a sequence ti = { tit} of stochastic 
kernels lit on A given Ht, t = 0, 1, ... satisfying the constraint 

Vht E Ht, t = 0, 1, ... 

The set of all policies is denoted by A. A control policy ti = {lit} is said to be a 
(b) stationary policy if there exists f E F such that lit(· I ht) is concentrated 

at f (xt) for all ht E Ht and t = 0, 1, .... 

As usual, we identify F with the set of all stationary policies. Thus, we may 
writeF c A. 

Performance criteria. We shall denote by Pi the induced probability 
measure when using the policy ti, given the initial state xo = x (see e.g. Hin
derer [15] page 80 for the construction of Pi). The corresponding expectation 
operator is denoted by E!. 

For any policy ti E A and initial state x E X, let 

n 

(2.1) J(ti,x) := limsup(n + 1)- 1 I::E! [c(xt,at)] 
n--+oo t=O 
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be the long-run expected average cost, and 

(2.2) 

the a-discounted expected total cost, where a E (0, 1) is the so-called discount 
factor. The functions 

(2.3) J(x) := inf J(8, x) and Yc,(x) := inf Yc,(8, x), 
8 8 

xEX, 

are the optimal average cost and the optimal a-discounted cost, respectively, 
when the initial state is x. A policy 8 E /:i is said to be average cost optimal 
(hereafter abbreviated AC-optimal) if J(x) = J(8, x) for all x E X, and similary 
for the a-discounted case. 

To guaran.tee the existence of "measurable minimizers" we need appropri
ate (semi-) continuity and (inf-) compactness conditions on the components 
of the Markov control model, such as the following. 

ASSUMPTION (2.3). (a) c is lower semicontinuous (l.s.c), and inf-compact 
on K, i.e. the set 

Ar(x) := {a E A(x) I c(x,a) ::c; r} 

is compact for every r E ~ and x EX; 
(b) Q is strongly continuous, i.e. the mapping (x, a) 1-t J u(y)Q(dy I x, a) is 

continuous on K for every measurable and bounded function u on X; 

3. Optimality conditions 

In this section we state the AC-optimality conditions we wish to compare. 
Let Va(·) be the optimal a-discounted cost (see (2.3)), and let x E X be an 

arbitrary, but fixed state. Define 

ha(x) := Va(x) - Va(x), x E X, a E (0, 1). 

CONDITION 1 (Cl). There exist nonnegative constants N and M, a non
negative (not necessarily measurable) function b on X and a0 E (0, 1) such 
that 

(a) Va(x) < oo for every x E X and a E (0, 1); 
(b) (1 - a)Va(x) ~ M \:/a E [ao, 1); 
(c) -N ~ ha(x) ~ b(x) for every x EX and a E [o:o, 1). 

The next condition is a variant of (Cl). 

CONDITION 2 (C2). There exist a constant N~ 0, a nonnegative and 
measurable function b, a number ao E (0, 1) and a stationary policy f E F 
such that 
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(a) Va(x) < oo for every x EX and a E (0, 1); 
(b) ha(x) 2:: -N for every x EX and a E [ao, 1); 
(c) ha(x)::; b(x), andf b(y)Q(dy Ix, J(x)) < ooforeveryx EX and a E [ao, 1). 

Both (Cl) and (C2) were introduced by L. C. Sennott, in [23] and [22] re
spectively, for countable-state MCPs with finite action sets, and were extended 
to the Borel space case by Montes-de-Oca and Hernandez-Lerma [18], and 
Hernandez-Lerma and Lasserre [12]. In these references, it is shown that, 
together with Assumption 2.3 (which trivially holds in the setting of [22,23]) 
each of (Cl) and (C2) ensures the existence of AC-optimal stationary policies. 

Let us now define 

x E X, a E (0, 1). 

CONDITION 3 (C3). (a) There is a policy S and an initial state x such that 
J(6,x) < oo; 

(b) There exists {3 E [O, 1) such that sup.B<a<l Ya(x) < oo for every x E X. 

Condition (C3) was used in [10] and is a slight modification of conditions 
used by Schfil [20]; see also Gatarek and Stettner [7]. Assumption 2.3 and 
(C3) guarantee the existence of AC-optimal stationary policies [10]. In [18] 
it is shown that (C3) implies (Cl), and it was announced without proof that 
the converse is also true; a proof is provided in Theorem 4.1 below. The fact 
that (Cl) and (C3) are equivalent, was first noted (again, without proof) by 
Sennott [23] for MCPs with denumerable state space and finite action sets. 

For each a E (0, 1), let Da be a given policy, and define 

where T 2:: 0 is an integer and x E X. 

CONDITION 4 (C4). There exist a sequence of discount factors an j 1, and 
policies Dan and D such that Dan is an-discount optimal for each n, with a 
finite-valued discounted cost Van(·), and 

(a) lim SUPn--+oo J(Dan, x) 2:: J(D, x) for every x E X 
(b) limr--+oo supn Han (T, x) = 0 for every x EX. 

Condition (C4) is a discrete-time version of a condition used by Hordijk 
and Van der Duyn Schouten [16] to prove the existence of AC-optimal policies 
for Markov decision drift processes with Borel state and action spaces. For 
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completeness, we include here the proof of this fact for discrete-time MCPs. 
We shall use the following notation: Vn = 0, 1, ... , 8 E Li, x E X let, 

n 

Jn(o, x) := L E~c(xt, at), 
t=O 

Note that, from (2.1), 

J(o, x) = lim sup(n + 1)- 1 Jn(o, x). 
n-+oo 

THEOREM (3.1). Suppose that condition (C4) holds. Then there exists an 
AC-optimal policy. 

Proof. Le! an, Oan and /5 be as in (C4). For each n, x E X and T > 0, and 
using the assumption that c is nonnegative, the well-known formula 

00 00 

I:atbt = (1- a) I:at(bo + · · · + bt), 0 <a< 1, bt 2: 0, 
t=O t=O 

yields 

(1- O!n)Van(l5an,x) = (1- O!n)2 [~(t + l)a;(t + 1)- 1Jt(Oan,x)] 

2: (1- O!n)2 [~(t + l)a; [:~i(t + 1)- 1Jt(Oan,x)]] 

(by (3.1)) 
00 

= (1 - O!n)2 I)t + l)a; [J(oan, x) - Han (T, x)] 
t=T 

00 

= (1- an)2 I)t + l)a;[J'(x) - supHa,,.(T, x)] 
t=T m 

00 

(3.2) + (1- O!n)2 L(t + l)a;[J(b<>n> x) - J'(x)], 
t=T 

where 

J' (x) := lim sup J(fj<>n, x). 
n-+oo 
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Since, for each T, (1- o)2 E:T<t + l)ot-. 1 as o j 1, the limsupn of the first 
term of (3.2) equals 

J'(x)- supH 0 m(T,x) ~ J(8,x)- supHom(T,x) 
m m 

by (C4a). Now let { On(i)} be a subsequence of {On} such that 

J'(x) = lim J(8 0 c·>,x). 
i~oo n i 

Then the lim supn of the second term of (3.2) is greater than or equal to 

00 

i~~ u - On(i)>2 I)t + no~(i)[J<o°'n(•>' x> - J'<x>1 = o. 
t=T 

Combining these facts we obtain: 

n---+oo m 

Thus, letting T -. oo, condition (C4b) yields 

(3.3) limsup(l - on)V°'n(8an,x) ~ J(8,x) VxEX. 
n---+oo 

On the other hand, as 80 n is On-discount optimal for each n, we obtain, for 
any policy 1r E a. and x E X, 

n---+oo n---+OO 

(3.4) ::; J(1r,x), 

where the latter inequality is due to a well-known Abelian Theorem (see, e.g. 
[21] Theorem 2.2). Thus, combining (3.3) and (3.4), we get 

J(1r, x) ~ J(8, x) Vx EX, 1r Ea; 

hence, 8 is AC-optimal. • 
(Cl)-(C4) are all variants of the so-called "vanishingtliscount factor" ap

proach, which does not include the following condition. (If (C5b) holds, it is 
sometimes said that c is a "moment function"; see e.g. [11, 13, 14].) 

CONDITION 5 (C5). (a) There exists a policy 8 and an initial state x such 
that J(8, x) < oo; 
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(b) There exist increasing sequences of compact sets Xn i X and An i A such 
that Kn := Xn X An is a subset of Kand 

lim inf{c(x,a) I (x,a) </.Kn}= oo. 
n--->oo 

Condition (C5) has been studied in several contexts, including MCPs with 
denumerable state space, controlled diffusions and semi-Markov processes; 
see [11] and references therein. (C5) and assumption 2.3 ensure the existence 
of "stable" control policies that are average cost optimal [11]. 

4. Comparison of optimality conditions 

We now state :results that describe the majority of the relations between 
the conditions (Cl) to (C5). In Section 5 we present another result, which 
includes strengthened versions of (Cl), (C2) and (C3). 

THEOREM (4.1). Under the Assumption 2.3, (Cl) and (C3) are equivalent; 
hence 

(C2) ==} [(Cl) -¢=:;, (C3)]. 

Proof. In [18, Theorem 4.1] it has been proved that, under Assumption 
2.3, each of (C2) and (C3) implies (Cl). Thus, to complete the proof it only 
remains to show that (Cl) implies (C3). 

Under Assumption 2.3 and condition (Cl), Montes-de-Oca and Hernandez
Lerma [18] have shown the existence of an AC-optimal policy f*, with constant 
optimal cost. Thus, taking S = f*, we get (C3a) for all initial state. On the 
other hand, (Cl) yields, for every x EX and a E [ao, 1), 

9a(x) = Va(x) - ma = ha(x) + ga(x) 

:::; b(x) + N < oo [by (Cle)]. 

That is, taking /3 := ao, we get (C3b). 

We now give several examples illustrating that other implications do not 
necessarily hold between (Cl)-(C5). 

EXAMPLE 4.2: (C4) =fa-(Ci) for i = 1, 2, 3. Take X = {0, 1} and A= {1}. 
The action sets and the one-stage cost are given by A(x) = A for x = 0, 1, 
and c(0, 1) = 1, c(l, 1) = 0. The transition law is given by Q({l} I 1, 1) = 
Q( {0} I 0, 1) = 1. Notice that there is only one policy, namely, f(x) = 1, x EX. 
Therefore, the a-discounted optimal function is given by 

(4.1) {
- 1- ifx=0 Va(x) = Va.Cf, x) = 1-a . 
0 1fx = 1 
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Now, fix a sequence {o:n} with O:n j 1. We define Dan = 8 = f, n = 1, 
2, .... Obviously, Dan is O:n•optimal, for every n 2'.'. 1 and, on the other hand, 
with cxy being the Kronecker symbol (cxy = 1 if x = y, = 0 otherwise), 
J(8an, x) = J(8, x) = cox Vn 2'.: 1, which implies (C4a). Moreover, 

inf(t + 1)- 1Jt(8an1X) = C0x 
t~T 

for any given positive integer T. Therefore, for all n, 

Han (T, x) = 0, x=0,1, 

which yields (C4b). Hence, (C4) holds. Finally, to see that (Cl), (C2) and (C3) 
do not hold it suffices to show (by Theorem 4.1) that (C2) does not hold. The 
latter, however, is trivial since, with x = 1, there is no function b on X that 
satisfies the first inequality in (C2c). • 

EXAMPLE (4.3): (C5) =fr (Ci) for i = 1, 2, 3. Let us consider again the 
Example 4.2. Clearly, (C5a) holds in this case because J(f, x) = cox, for 
x = 0, 1. (C5b) also holds, since taking Xn = X and An = A, n 2'.'. 1, 
we have compact sets Xn j X and An j A and, moreover, limn-+oo inf 
{c(x,a) I (x,a) ¢ Kn} = oo, since {c(x,a) I (x,a) ¢ Kn} is an empty set 
and inf</> := +oo. Therefore, (C5) holds, whereas, as already seen in Example 
4.2, (Cl), (C2) and (C3) do not hold. • 

EXAMPLE 4.4: (C5) =fr (C4). Take X = {0, 1, .... }, A= A(x) = {1}, and 
c(x, 1) = x for all x EX. The transition law is given by 

Q({O} I 0,1) = 1 

Q({x + t} Ix, 1> = 1, x= 1,2, ... 

(C5a) holds because there is only one policy, say f, and J(f, 0) = 0. To see that 
(C5b) holds it suffices to take Xn = {0, 1, ... , n} and An = A, n = 1, 2, .... 

We next show that C4 does not hold. Indeed, since 

[ 
t l t t+2 

(t + 1)- 1Ef ~c(xk,ak) = (t + 1)- 1 ~(k + 1) = - 2-, 

we have J(f, 1) = oo and, on the other hand, 

~(t + U-'E{ [i;c(x,,a,)] = ~ ('; 2) ': T; 2 
for any given positive integer T. Therefore, Han (T, 1) = oo for every sequence 
o:n j 1, which implies that (C4) does not hold. • 
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Conditions (Cl)-(C4) hold true for denumerable state MCPs under 
so-called Lyapunov Function Condition, which does not require any 
structure on the cost function -see [6] and references therein. Therefore, i.t 
can be seen that Ci (i = 1, ... , 4) does not imply C5. This is also shown in the 
following example. 

EXAMPLE (4.5): Ci cf;,- C5 for i = 1, 2, 3, 4. Take X = A = {1,2, .. 
A(x) = {1, 2, ... , x} for all x E X, and c(x, a) = 0 for all (x, a) E K. The 
transition law is arbitrary. Clearly, (Cl), (C2), (C3), (C4) and (C5a) hold, but 
(C5b) does not. To see the latter, take (e.g.) Xn = An = {1, 2, ... , n} for n = 1, 
2, . . . and note that 

inf{c(x,a) I (x,a) r/. Kn}= 0, \In 

5. Further results 

In this section we first introduce a condition M and then we combine M 
with (Cl), (C2) and (C3) and show that each of these combinations implies 
(C4). 

CONDITION M (M). There exist a sequence an i 1, and an-discount optimal 
policies 80 n =: On such that (with H0 as in (3.1)) 

sup Han (T, x) ~ G(T) VT and x, 
n 

where G(T) -i- 0 as T -i- oo. 
Condition M can be shown to hold for some LQ problems [19], as well as in 

the following strengthened versions of (Cl), (C2) and (C3). 

CONDITION 1 *(Cl*). Cl and M hold. 

CONDITION 2* (C2*). C2 and M hold. 

CONDITION 3* (C3*). C3 and M hold. 

THEOREM (5.1). Under the Assumption 2.3, C2* (hence Cl*, C3* -see 
Theorem (4.1)) implies C4. 

Proof. Under the Assumption 2.3 and C2, Montes-de-Oca and Hernandez
Lerma [18] have shown the existence of a sequence of discount factors an j 1 
and stationary policies 80 n and 8 such that 

(a) 80 n is an-optimal, for every n; 
(b) 8 is average cost optimal. 

Evidently, (b) yields 

lim sup J(8a.n, x) :2: J(8, x) VxEX, 
n---+oo 
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which proves C4(a). Finally, C4(b) follows from M. • 
REMARK 5.2. It is easy to prove that (C4b) is equivalent to the existence of 

the limit 
Vx E X and n 2: 1, 

i.e., 

(5.1) 

Vx E X and n 2: 1. By [25], the above limit exist if and only if 

00 

lim(l - (3) L {3t E{'"n [c(Xt, at)], 
.Bil t=O 

exists Vn, x. An obvious sufficient condition for (5.1) is that the following limit 
exists 

This condition is true, for instance, when c is a bounded function and a suitable 
ergodicity condition holds (see e.g. [9] page 56). 

REMARK 5.3 It is clear that Example 4.5 satisfies condition M since c(x, a) = 
0 V(x, a) E K. Hence, by Theorem 5.1, Ci* =fo C5 for i = 1, 2, 3, 4. 

6. Conclusions and open problems 

In the previous sections we have presented a comparison between several 
conditions that ensure the existence of AC-optimal policies for MCPs on 
Borel spaces, with unbounded costs. The conditions Cl-C4 are based on the 
"vanishing discount factor" approach, whereas C5 imposes a special structure 
on the one-stage cost. There remain, however, several open problems: 

1. In Theorem 4.1 we have seen that C2 implies (Cl) <===} (C3). Is the 
converse true? If not, one should be able to provide a counterexample. 

2. Similarly, C4 does not imply Cl, C2, C3; see Example 4.2. Does Cl or C2 
imply C4?. If not, give a counterexample. 

3. Does the convex analytic approach [ 4] or the "ergodicity/recurrence" 
approach (cf. [17]) give AC-optimal policies for MCPs on Borel spaces with 
unbounded cost? If yes, how do the corresponding assumptions relate to 
Cl-C5? 

In relation to problem 3, the reference [14] provides some results on the 
vanishing~scount-factor approach and linear programming. 
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