
ZUBOV'S STABILITY CRITERION 

BY ROBERT w. BASS 

In his book, The Methods of A. Liapunov and Their Application (Moscow1, 
1957), Zubov states: 

PROPOSITION 1. A n.a.s.c. for the stability of a closed2 invariant set M is that 
no path from outside M possess an a-limit point in M. 

This proposition is correct when M is an isolated critical point of a planar 
flow ([2], p. 72). 

But in general, Zubov's condition is merely necessary and not sufficient 
(as was observed both by Pinchas Mendelson and myself). 

Here I shall follow the conventions of Lefschetz's survey Liapunov and Sta
bility in Dynamical Systems [1], Chapter IV of which discusses the stability of 
invariant sets which possess a compact neighborhood. In particular, Lefschetz 
has substituted for Zubov's fallacious criterion the following condition. 

THEOREM 1. A n.a.s.c. for the stability of M is that for each sufficiently small 
e > 0 there exist an 1/ = '11 ( e) > 0 such that3 if p E H ( e) then 'Y; does not intersect 
S( 'Y/). 

Of course, the property indicated in Theorem 1 is not quite as sharp asZubov's 
attempted characterization of stability. I would like to suggest as an alternative 
the following criterion, which is admittedly more complicated but does show 
precisely and to what extent Zubov's characterization fails. In particular, we 
shall see that Zubov's criterion is correct in the case of "structurally stable" 
planar flows. 

This alternative criterion depends on a topological generalization of the 
concept of saddle point which is modeled upon Nemickii's definition of saddle 
point at infinity [2], and which has proved useful in connection with other studies 
of myself [3] and Mendelson [4]. 

DEFINITION 1. We call the w-limit set4 Q(p0) ~ f2J of any point po a saddle 
set when the following conditions hold: there exist a sequence of points {pnl, 
a sequence of positive times ftn} and a point qo EE 0(po) such that Pn - Po, 
tn - + oo, and f(Pn , tn) - qo as n - oo. 

1 An English translation of this book is to be prepared for the U. S. Atomic Energy 
Commission and will become available as a public document. 

2 It is always assumed that the dynamical system is defined on a complete separable 
metric space R, of metric d(p, q), and that M possesses a neighborhood U whose closure 
U is compact. 

3 Here S(o) denotes the set of points p whose distances d(p, M) from M are less than 
o > 0; for sufficiently small o, the closure S(o) of this set is by hypothesis• compact, and H(o) 
represents its (compact) boundary. The set,,;"" {q I q = f(p, t), t & 0) denotes the negative 
semi-orbit or path through p. 

4 O(p0) is .necessarily a closed invariant set (G. D. Birkhoff; cf. [2]); if it is compact, 
then it is also necessarily connected. 
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DEFINITION 2. A positively linked sequence of saddle sets consists of sequences 
of points {pk), { qk}, and associated saddle sets { O(pk) = Ok), the situation for 
each k being precisely as for Po, qo and O(p0) in Definition 1, with the added 
proviso that 

(k = 1 2 3 .. ·) ' ' , 

DEFINITION 3. A strongly positively linked sequence of saddle sets consists 
of the sequences {pk}, {Ok} of Definition 2 plus further sequences of points {Pin} 
and times {Tkn} (k = 1, 2, 3, ···)with the following properties: 

(ii) Tkn -+ + 00 as n -+ 00 

(iii) f(P1n, Tkn) -+ Pk as n-+ oo 

(n = 1 2 .. •) • 
' ' ' 

(k = 1, 2, • • ·); 

(k = 1, 2, .. ,). 

REMARK. As usual, Definitions 1-3 continue to hold if, throughout, we inter
change the concepts alpha & omega, A & 0, positive(ly) & negative(ly), t > 0 & 
t < 0, and + oo & - oo . 

THEOREM 2. A n.a.s.c. for the stability of a closed2 invariant set M is that no 
point of M be either an a-limit point of a path outside M or a limit point of a strongly 
negatively linked sequence of saddle sets outside M. 

PROOF OF NECESSITY. Let M be stable, and let q E M, q E A(r), r EE M. 
Then there exists an unbounded monotone increasing sequence of times { t~} 
such that {qn = f(r, -tn)l satisfies d(qn, q) < 1/n. Thusf(qn, tn) = r, whence 
d(f(qn, tn), M) =_ d(r, M) > 0, while tn-+ + oo as n-+ oo. Therefore Mis 
not stable. 

In the second case, let q E M, where d(pk, q) < l/2k, (k = 1, 2, • ··)and 
( { pk), { Ak}) is a strongly negatively linked sequence of saddle sets { Ak}. By 
Definition 2, there are points {Pin} and positive times { Tkn} such that d(f(Pin, 
-Tkn), Pk) < 1/2k for all n ~ n(k). Hence d(f(pin(k), -Tkn(k)), q) < 1/k. 
Notice that Pik -+ Pi as k -+ oo, whence for all k ~ ko we have d(pin(k) , M) 
~½do> 0, wheredo = d(pi, M). Thusfinally,settingrk =f(Pin(k), -Tkn(k)), we 
have: d(rk, M) < 1/k, d(f(rk, Tkn(k)), M) ~ ½do > 0 for all k ~ ko, while 
0 < Tkn(k) -+ + oo as k -+ oo. Hence M is not stable if either condition fails. 

PROOF OF SUFFICIENCY. Lefschetz's criterion of Theorem 1 is clearly suffi
cient for the stability of M. In fact, if it holds then for each q E S( r,) we know 
that d(f(p, t), M) < e for all t ~ 0; i.e. r, = r,(e) satisfies Liapunov's stability 
definition. 

Now if Lefschetz's criterion should fail, then there exist sequences {Pin} C 

H(e) and {tnl, 0 < tn-+ +oo such that d(f(Pin, -tn), M)-+ 0 as n-+ oo, 

Because M has a compact neighborhood, and because, if e > 0 be sufficiently 
small, H ( e) is compact, we can (by preliminary selections) assume without 
loss of generality that Pin-+ Pi E H( e) and f(Pin, -tn) -+ q E Mas n-+ oo. 
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We shall now prove that 

(*) A(p1) ",t- 0. 
For if A (p1) is empty, we can further assume that f(Pin , - T n) is outside the 
compact set S(e) for some Tn > 0. (Indeed, if 'YP-;n C S(e) for all large n then 
f(p1, -T) cannot leave S(e) for any T > 0, because by continuity 
thenf(P1n, -T) EE S(e) if n is large enough; but -y;1 C S(e) would imply (*) 
by one of Birkhoff's fundamental theorems [2].) Thus when (*) fails we can by 
a preliminary selection assume that f(P1n , - T), T > 0, passes within a distance 
of l/n from M before its first exit from S(e), while f(p 1 , -T) eventually leaves 
S(e) for all T ~ To > 0. However, if f(p 1, -T), T > 0, does not come closer 
to M than o > 0 before its first exit from S(e), then for sufficiently large k, by 
continuity, f(p 11c, -T), T > 0, does not come closer to M than o/2 before its 
own first exist, which is a contradiction. Therefore (*) is correct. 

There are now only two possibilities: 

(i) q E A(p1); 

(ii) A(p1) n M = 0; 
indeed, if q' E A ( P1) n M we can easily replace q by q' without essential loss 
of generality. 

Now 
(**) suppose that (i) is false for ALL pairs of points q E M, Pi E H(e), 

and for ALL O < e < eo • 

• • Then we have the following situation: Pin -t P1, f(P1n, -tn) -t q E M 
for tn ~ + oo as n -t oo, while d(A (p1), M) == o > 0. Clearly, for all sufficiently 
large n, there are positive times { T2n}, 0 < T2n < tn , T2n -t + oo, such that 
f(P1n , - T2n) E H ( o/2). Hence by a preliminary selection we may further 
assume that as n -t oo, f(P1n, -T2n) -t P2 E H(o/2), where P2 EE A(p1). Now 
by(*), A(p2) ";t-0, and by(**), A(p2) n M = 0. Hence we can repeat the 
preceding construction to find Pa EE A(p2). Similarly, we can construct {p1c} 
satisfying Definition 3. That is, if (**) holds and if Lefschetz's sufficient criterion 
fails, then 

(***) M contains a limit point of a strongly negatively linked sequence of 
saddle points. 

Hence the truth of (**) and the failure of (***) are sufficient for Lefschetz's 
(sufficient) criterion. This concludes the proof of Theorem 2. 

ALTERNATIVE PROOF (Added May 1, 1959). According to a result ·of Ura [7], 
an invariant set M is stable if and only if M contains all of its positive indirect 
prolongation points. But according to an argument of Seibert [8], either M con
tains all such points, or (***) occurs for a sequence of saddle points outside M, 
or M contains an a-limit point of a point outside M. Hence Ura's criterion and 
our Theorem 2 are equivalent. 

Seibert also suggests the desirability of extending our Definitions 2 and 3 to 
cover uncountable collections of saddle sets. 
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REMARK. It is not difficult to construct a stable invariant set M, some point 
of which is a limit point of a sequence of saddle sets. In fact, let M be a critical 
point corresponding to a plane "center", i.e. let a neighborhood of M in E 2 

consist solely of closed (periodic) paths. Now in the well known manner con
tinuously deform the flow so as to leave the paths unchanged except that exactly 
two (distinct) critical points (P1k, P2k) are produced on each member Ck of a 
disjoint sequence { Ck} of closed curves whose common limit point is M, say 
d(Ck, M) < ½d(Ck-1, M), (k = I, 2, • • • ). Clearly each Pik(i = I, 2) is a 
saddle point; moreover, M remains a stable invariant point. This example 
(suggested by Peter Seibert) shows that it is solely the "strongly linked" feature 
of the sequence of saddle sets which is sufficient for the instability of Min Theorem 2. 

CONCLUSION. It is apparent that Zubov's criterion fails only to the extent 
that the dynamical system in R may contain convergent sequences of saddle 
sets. In a planar flow which is defined by two sufficiently smooth simultaneous 
first order differential equations in E2, we know that if the system is structurally 
stable ( [5], [6]) then the only saddle sets are elementary saddle points in the 
usual sense (for cf. the Poincare-Bendixson Theorem and the hypothesis that 
there is a compact region, e.g. a disk, in E2 from which no path exits). Thus, as a 
corollary of Theorem 2, we have 

THEOREM 3. In a structurally stable planar dynamical system Proposition I 
is correct. 

It seems likely that the analog of Theorem 3 inay hold for structurally stable 
systems of higher dimension [6b, c]. 
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