A NOTE ON H-SPACES

BY FRANKLIN P. PETERSON

1. Introduction

Let (X, x_0) be an H-space with multiplication $\phi_1 : (X \times X, (x_0, x_0)) \rightarrow (X, x_0)$ such that x_0 is a homotopy-unit. Let ϕ_2 be another *H*-structure on (X, x_0) . It is known that the following three *H*-structures on $(0X, x_0)$ are homotopycommutative and homotopy-equivalent to one another:

$$
\Omega\phi_1\,,\,\Omega\phi_2\,,\,\psi\!:\!\Omega X\,\times\,\Omega X\rightarrow\Omega X
$$

are defined by

$$
\Omega \phi_i(f, g)(t) = \phi_i(f(t), g(t))
$$

and ψ is multiplication of loops. In this note we give an example where $\phi_i: X_i \times$ $X_i \rightarrow X_i$, for $i = 1$ and 2, are homotopy-commutative H-spaces and ΩX_1 is of the same homotopy type as ΩX_2 , but $\Omega \phi_1$ is not homotopy-equivalent to $\Omega \phi_2$.

2. The Example

Let $K(\pi, n)$ be an Eilenberg-MacLane space of type

 $(\pi, n);$ i.e. $\pi_i(K(\pi, n)) = 0$ if $i \neq n$, and $\pi_n(K(\pi, n)) = \pi$.

Each $K(\pi, n)$ is a homotopy-commutative H-space with a unique multiplication. Our spaces X_i will have two non-vanishing homotopy groups. Let

$$
\iota_n \in H^n(K(Z,n);Z)
$$

denote the fundamental class. Let $X_1 = K(Z, 3) \times K(Z, 5)$ and $\phi_1: X_1 \times X_1 \rightarrow X_1$ be the product multiplication. Let X_2 be the fibre space over $K(Z, 3)$ with fibre $K(Z, 5)$ and with k-invariant

$$
\delta^* \,\mathrm{Sq}^2(\iota_3) \,=\, \left(\,\iota_3\right)^2 \,\epsilon \,H^6(K(Z,\,3)\,;\,Z),
$$

where δ^* is the Bockstein operation associated to the exact coefficient sequence

$$
0 \to Z \to Z \xrightarrow{\eta} Z_2 \to 0
$$

If $\theta \in H^q(K(\pi, n); G)$, let ${}^1\theta \in H^{q-1}(K(\pi, n-1); G)$ denote the suspension of θ . Then $\delta^* \text{Sq}^2(\iota_3) = {}^1({}^1(\delta^* \text{Sq}^2(\iota_5)))$, where $\delta^* \text{Sq}^2(\iota_5) \in H^8(K(Z, 5); Z)$. Hence X_2 has a homotopy-commutative multiplication because $X_2 = \Omega^2 Y$, where Y has k-invariant $\delta^* \text{Sq}^2(\iota_5)$. Call this multiplication ϕ_2 . Furthermore, $\Omega X_1 =$ $K(Z, 2) \times K(Z, 4)$, and ΩX_2 is of the same homotopy type as ΩX_1 because $^{1}(\delta^{*}\mathrm{Sq}^{2}(\iota_{3})) = 0.$

Let $\Delta_i = (\Omega \phi_i)^* : H^*(\Omega X_i) \to H^*(\Omega X_i \times \Omega X_i)$. In order to show that $\Omega \phi_1$ and $\Omega \phi_2$ are not homotopy equivalent, we shall show that $\Delta_1 \neq \Delta_2$.

3. Δ_2

Let us first study $H^*(X_2)$. Let $p:X_2\to K(Z, 3)$ and $i:K(Z, 5)\to X_2$ be the projection onto the base and injection of the fibre respectively. By considering the cohomology spectral sequence of this fibre space, we see that $d_5(\epsilon_5)$ = δ^* Sq²(ι_3). Hence $d_5(2\iota_5) = 0$, and there exists an element $u \in H^5(X_2)$ such that $i^*(u) = 2\iota_5$. Furthermore, $H^5(X_2)$ is the infinite cyclic group generated by u. Let η denote reduction mod 2. Then $\eta(u) = p^*(Sq^2(\iota_3))$, as $\eta(u)$ is the only non-zero element in $H^5(X_2; Z_2)$, and $p^*(Sq^2(\iota_3)) \neq 0$.

Consider now the fibre space

$$
\Omega K(Z, 5) = K(Z, 4) \xrightarrow{1_i} \Omega X_2 \xrightarrow{1_p} \Omega K(Z, 3) = K(Z, 2)
$$

Since $u \in H^4(\Omega X_2)$ is a suspension, $\Delta_2(u) = u \otimes 1 + 1 \otimes u$. Also, $({}^1i)^*({}^1u) =$ $1(i^*(u)) = 2(\frac{1}{4}i) = 2\mu$. Since

$$
0 \to H^4(K(Z, 2)) \xrightarrow{(\text{1}p)^*} H^4(\Omega X_2) \xrightarrow{(\text{1}q)^*} H^4(K(Z, 4)) \to 0
$$

is exact, and $H^4(K(Z, 2)) = Z$ and $H^4(K(Z, 4)) = Z$, we have that either ¹u is divisible by 2 or $u^1u + (u^1p)^*(u^2)$ is divisible by 2. However $\eta(u) = u^1(\eta(u)) =$ $({}^1p)^*(Sq^2(\iota_2)) \neq 0$, thus 1u is not divisible by 2. Define $v =$ $\frac{1}{2}$ ($^{1}u + {1 \choose 2}$ *($\frac{2}{2}$)) e $H^{4}(\Omega X_2)$. For notational sake, let $y = {1 \choose 2}$ *(ι_2); i.e. $v =$ $\frac{1}{2}(u + y^2)$. Clearly, $\Delta_2(y) = y \otimes 1 + 1 \otimes y$, and thus $\Delta_2(y^2) =$ $(y \otimes 1 + 1 \otimes y)^2 = y^2 \otimes 1 + 2y \otimes y + 1 \otimes y^2$. Thus, computing with rational coefficients, we have

$$
\Delta_2(v) = \frac{1}{2} \binom{1}{u} \otimes 1 + 1 \otimes \frac{1}{2} \binom{1}{u} + \frac{1}{2} \binom{y^2}{y} \otimes 1 + \frac{1}{2} \binom{2y \otimes y} + 1 \otimes \frac{1}{2} \binom{y^2}{y}
$$

= $v \otimes 1 + y \otimes y + 1 \otimes v$.

Thus $\eta(v) \in H^4(\Omega X_2; Z_2)$ is not primitive.

Consider $\Omega X_1 = K(Z, 2) \times K(Z, 4)$. $\eta(\ell_2)$ and $\eta(\ell_4)$ are the two generators of $H^4(\Omega X_1; Z_2)$. Note that $\Delta_1(\eta(\mu_1)) = \eta(\mu_1) \otimes 1 + 1 \otimes \eta(\mu_1)$, and $\Delta_1(\eta(\mu_2)) =$ $[\eta(\iota_2) \otimes 1 + 1 \otimes \eta(\iota_2)]^2 = \eta(\iota_2)^2 \otimes 1 + 1 \otimes \eta(\iota_2)^2$. Thus every element of $H^4(\Omega X_1; Z_2)$ is primitive and $\Delta_1 \neq \Delta_2$.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY