
NOTE ON A THEOREM OF SUGAWARA 

BY GEORGE w. WHITEHEAD 

1. Sugawara [8] has proved that, if Xis an H-space, then there is a fibre map 
p:E----, B whose fibre Fis of the same weak homotopy type 1 as X and is con­
tractible in E, while E and B have the same weak homotopy type, respectively, 
as the join X * X and the suspension S(X). 2 A similar theorem, using the no­
tion of quasi-fibration, has been proved by Dold and Lashof [3]. 

The object of this note is to point out a simple proof of the semi-simplicial 
analogue of Sugawara's theorem, from which the latter then follows by standard 
techniques using Milnor's notion [5] of realization. Specifically, we shall prove: 

THEOREM 1. If X is an H-complex, then there is a twisted cartesian product 
(X, E(X), T(X)) such that Xis contractible in T(X). 

THEOREM 2. If Xis a regular H-complex, then the projection 1r:T(X)----, E(X) 
is a semi-simplicial fibre map. The realizations I T ( X) I and I E ( X) I have the same 
weak homotopy type ( same homotopy type if X is countable) as I X I * I X I and 
S ( I X I) respectively. 

COROLLARY 1. If X is a connected minimal H-complex, then the conclusions of 
Theorem 2 hold; in addition 11" is a minimal fibre map. 

COROLLARY 2. If Xis a 0-connected H-space all of whose homotopy groups a,re 
countable, then there is a fibre bundle ( E, S ( X), p) whose fibre X has the same weak 
homotopy type as X and is contractible in T. 

In general, the terminology used here will follow that of [7] ( cf. also [l, 2], as 
well as the forthcoming book by D. M. Kan). The author is indebted to P. J. 
Hilton and J. C. Moore for many stimulating discussions. 

2. By "complex" we shall mean a semi-simplicial complex X with base point 
e; e is a vertex of X, and we let eq = s5e E Xq. Let i1, i2:X----, X X X be the 
semi-simplicial maps defined by 

i1(x) = (x, eq), i2(x) = (eq, x) (x E Xq). 

An H-complex is a complex (X, e), together with a map µ:X X X----> X such 
that µi1 = µi2:X C X; equivalently, (X, e) is an H-complex if and only if each 
Xq has a multiplication with identity eq such that all face and degeneracy opera-

tors are homomorphisms. The H-complex X will be called {~;~t}-regular if and 

only if, for each a E Xq, the map) x----, ax} is a one-to-one map of Xq onto Xq. 
(X----> xa 

1 Two spaces X and Y have the same weak homotopy type if and only if there is a space 
Zand maps f:Z-> X, g:Z-> Y such that hand (1* induce isomorphisms of the homotopy 
groups in all dimensions. 

2 This is a slight distortion of Sugawara's theorem, but it is easily deduced from it. 
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Furthermore, Xis called rp,gular if and only if Xis both left- and right-regular. 
Every left-regular H-complex is a Kan complex; in fact Moore's proof [2, 7] of the 
correspmtding fact for group complexes holds without essential change. 

Let (X, e) be an H-complex. Imitating the W-construction [7] associated with 
a monoid complex, we define, for each q > 0, a set Wq by 

Wq = Xq X • • • X Xo. 

Furthermore, let a,::Wq - Wq- 1 , s.,-:l¥q - W9+1 (i 
defined by 

0, • • ·, q) he the maps 

a,.(:cq' , :.ro) ( a ,:;"Cq , • • • , a1Xo-1+1 , ( aoXq-i) • Xq-i-1 , Xq-i-2 , • • • , ;Co) 

s;(Xq, • • • , Xo) ( S;Xq , " • ' , SoXq-i , eq-i, Xq-i-1 , ' ' ' , Xo). 

We verify that all the semi-simplicial identities are satisfied, except that 

a;a;+i(Xq, • • • , Xo) 

2 2 2 = (a;Xq, • • • , a1Xq-i+l, (aoXq-i) • ( (aoXq-i-1) ·Xa-i-2), Xq-i-3, • • • , Xo), 

a7(Xq, • • • , Xo) 

2 2 2 = ( a ;Xq , • • • , a1Xq-i+1 , ( ( aoXq-i) • ( aoXq-i-1)) • Xq-1-2 , Xq-i-3 , • • • , Xo). 

Define s:Wq - Wa+1 by 

Then· 

s(xa , • • • , xo) ( eq+l ' Xq ' • • • ' Xo) 

aos = identity, a;+1S = sai for i ~ 0, 
2 

sos = s' S;+1S = SS; for i ~ 0. 

Define i:Xq - Wq by 

i(x) - (x, eq-1, • • • , eo); 

then 

iaj = aji, isi - s1i for all j. 

Thus W fails to be a contractible semi-simplicial complex containing X be­
cause of the non-associativity of the multiplication in X. 

Let Tq = { (xq, • • • , xo) E Wq I x; = e; for at most one i with O ~ i < q). 
Then a;Tq C Tq-1, s,Tq C Tq+l, and aiai+l I Tq = a~ I Tq. Moreover si(Xa) C 

Tq+1. Hence Tis a semi-simplicial complex containing X, and Xis contractible 
in T. 

Let E(X) be the suspension of X in the sense of _Milnor [7], and 
define 1r: T - E(X) by 

1r(xa, ea-1, • • • , e;+1, X;, e;-1, • • • , e0) = sg-,- 1Ex; , 
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then 1r is a semi-simplicial map; in fact, if Xj = ei for all j such that i -,= j < q, 
then 

{
sg-i- 1Ea j-q+ixi 

= sg-i-2Ex; 

bq-1 

(j ~ q - i), 

(i < q - 1, j ~ q - i - 1), 

(j = 0, i = q - 1); 

8j1r(Xq, • • • , xo) = 1rs;(xq, • • • , xo) 

Define f:X X E(X) ---t T by 

f(x, stEy) = (x, eq-1, • • • , eq-i, y, eq-i-2, • • • , eo) 

Then aJ = Jai for i > 0, s.f = fs; for i ~ 0, while 

(j ~ q - i), 

(j < q - i). 

· = i(aox, Cq-2, •." , Cq-i, Y, Cq-i-2, •• • , eo) (i > O) 
aof(x, s~Ey) 

((aoX)y, eq-2, • • ·, eo) (i = 0) 

fao(x, s~Ey) 
= i(aox, Cq-2, ". • , Cq-i, Y, Cq-i-2, • • • , eo) (i > O) 

(aoX, Cq-2, "• • , eo) (i = O). 

Hence 1rfao(x, siEy) ao(siEy), so that (X, E(X), T) is a twisted cartesian 
product. This proves Theorem 1. 

We remark that we may use the map f to identify Tq with Xq X Eq (X); 
then the formulas for the face and degeneracy operators become 

= 1 ( aoX, aos~Ey) 
ao(x, siEy) 

( (aox)y, bq) 

a;(x, u) = (aix, a,-u) 

s;(x, u) = (six, SjU) 

while 1r becomes the projection on the second factor. 

if i > 0, 

if i = 0; 

if j > 0; 

if j ~ 0 

We now prove Theorem 2 by showing that 1r is a semi-simplicial fiber map. Let 
z = siEy E Eq+i(X), so that y E Xq-l, andletxi E Xq (i-,= k, 0 ~ i ~ q + 1) 
such that, if ti = (xi, aiz), then aiti = ai-1ti for all i, j such that i < j, 
i -,= k -,= j. We must prove the existence of t E Tq+1 such that ait = t; for 
i-,= k, 1r(t) = z; t must have the form (x, z) for some x E Xq+l. 

CASE I. (Z = 0, k > 0): The above conditions on the aiti become 

( aoX;) ( a;-1Y) = a.-1xo (0 < i -,= k ), 

a,xj = aj-1x; (0 < i < j, i -,= k -,= j). 
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Let x~ be the element of Xq such that x~y = Xo. Then if O < i ,;t- k, 

(a;-1x~)(a;-1y) = a;-1(x~y) = a;-1xo = (aoX;)(a;_1y) 

and therefore 

a;-1x~ = aoX; . 

Hence x~, x1, • • • , Xk-1 , xk+1, • • • , Xq+1 satisfy the Kan consistency condi­
tions, and therefore there is an x E Xq+ 1 such that 

Then 

ao(x, z) 

a;(x, z) 

I 
aox = Xo, a;x = X; 

((aox)y, bq) = (x~y, bq) = (xo, bq) = to 

(a;x, a;2) = (xi, a;z) = ti 

and therefore t = (x, z) is the desired element. 
CASE II. (Z = 1, k > O): Our conditions become 

( aoXo)Y = ( aoX1)Y, 

(O<i,;t-k). 

(O < i ,;t- k) 

aoXi = ai-tXo 

aix; = a;-1x; 

(1 < i ,;t- k), 

(0 < i < j, i ,;t- k ,;t- j). 

Hence aoXo = ao.1:1 and therefore the Xi satisfy the Kan consistency conditions. 
Therefore we can choose x E Xq+1 such that aix = Xi for i ,;t- k, and it again 
follows that ai(x, z) = ti for i ,;t- k. 

The re!Ilaining cases (Z = k = O; l = 1, k = O; l > 1) are trivial, since, for 
all simplexes involved, T behaves like an ordinary (non-twisted) cartesian 
product. 

We complete the proof of Theorem 2 by examining the realization I T I of 
T [5]. Let Cq be the subset of Wq consisting of all sequences of the form 
( eq , • • • , ei+t , x, ei-l , • • • , eo) ; then C is a subcomplex of T containing X; 
clearly s( C) c C, so that C is contractible. In fact, it is easily verified that 
I C I is homeomorphic with the (reduced) cone3 C ( I X I) over I X I under a map 
which sends the point 

< I x, t I, 8 > E C ( I X I) ( X E X q , t E t,/, 8 E I) 

into the point 

I ( eq+l , x, eq-1 , • • • , eo), t' \ E I C I, 
where t has barycentric coordinates (to, • • • , t~), and t' E .:iq+t has barycentric 
coordinates (1 - s, sto, • • • , stq). 

Define g:X X C --t T by 

g(x; Xq, • • • , Xo) = (XXq, Xq-1, • • • , Xo); 

3 The reduced cone C(Y) over a space (Y, e) is the quotient space Y X l/(e X Iu Y XO); 
the image of the point (y, t) in C(Y) is <y, t>. 
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g is a semi-simplicial map of XX C onto T and g- 1 (C) = X V CU X XX, 
while g maps simplexes of X X C not belonging to X V C U X X X in a one­
to-one way onto the simplexes of T not belonging to C. Hence g induces an iso­
morphism 

g:X X C/X V CU X X X ~ T/C. 

Let X * C be the reduced join X X C/X V C; clearly the image of X X X 
in X * C is X # X, and we have 

X X C/X V CU X X X ~ X # C/X * X. 

But X * C/X * Xis easily seen to be isomorphic with X # (C/X). On the 
other hand, the restriction p' to C induces an isomorphism of C/X onto E(X). 
Thus 

T/C ~ X # E(X). 

Now IC I is contractible, and I T /CI = I T \/\ C \; hence \ T \ has the same 
homotopy type as I T/C j. On the other hand, the spaces \ X # E(X)\ and 
\ X \ # I E(X) I have the same weak homotopy type. Finally, I E(X) \ = S( \ XI) 
andthereforejX\ # \E(X)j =\XI# S(\X\) = S(\X\ # \X\),andthe 
latter space has the same weak homotopy type as I X I * I X \. Hence I T \ has 
the same weak homotopy type as IX I * IX\. This completes the proof of 
Theorem 2. 

Corollary 1, except for the minimality of 1r, follows from Lemin~ 2, below. 
The easy proof that 1r is minimal if Xis minimal is left to the reader. • 

To prove Corollary 2, let M be a minimal subcomplex of the total singular 
complex S ( X) of X such that the base-point e 'of X is a vertex of M. Since X is 
an fl-space, S(X) is an fl-complex; since Mis a deformation retract of S(X), 
Mis an fl-complex. Let X = I MI; then 1r: T(M) ---t E(M) is a minimal fibre 
map; by Proposition 2.2 of [1], (T(M), E(M), 7r) is a semi-simplicial fibre 
bundle. According to an unpublished theorem of M. G. Barratt, E(M) has a 
simplicial subdivision K; since the homotopy groups of X are countable, M and 
K are countable. By Corollary 5.6 of [I], the induced bundle over the star of 
every vertex of K is a product bundle. Passing to the realizations, we deduce 
that the restriction of I 7r I to the star of each vertex of I K \ is the projection of 
a product bundle. Hence (\ T(M)I, I K \, J 1r j) is a fibre bundle. (Note: the 
countability hypothesis on X was needed to ensure that the realization of the 
product is the product of the realizations). 

3. Some remarks on minimal complexes 

We shall need some facts about obstruction theory in Kan complexes; for 
details the reader is referred to the forthcoming book by D. Kan. 

Let X be a Kan complex; for simplicity we assume that X has only one vertex. 
Two simplexes x, y E X,. are called compatible if and only if iJ;x = a;y for all i, 
With. each ordered pair x, y of compatible n-simplexes there is associated a 
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separation element dn(x, y) E 1rn(X). The separation element has the following 
properties: 

1) dn(x, x) = 0; 
2) dn(x, y) + dn(y, z) = dn(x, z); 

3) given x E Xn, a E ?rn(X), there exists y E Xn such that dn(x, y) = a; 

4) if x, y E Xn+l are such that aiajx = aiajy for all i, J and if Xis n-simple, 
then I:f!o1 (-1/dn(aix, aiy) = 0; 

5) if Xis minimal, dn(x, y) = 0, then x = y. 

LEMMA 1. Let X be a Kan H-complex with only one vertex. Let a, X1, X2 E Xn 
and suppose X1 and X2 are compatible. Then dn(ax 1 , ax2) = dn(x 1 , x2). 

PROOF. We first show that, if 0 ~ i ~ n - 1, then dn( (siaia)x 1 , (siaia)x2) = 

dn(ax1, ax2). Let Uk = (si+1a)(sixk) (k = 1, 2). Hence 

( Sia ja) ( Si-la jXk) 

(sia;a)xk 

ajUk = 1 axk 

a(siai+IXk) 

(Si+laj-1a) (s;aj-IXk) 

It follows that aju1 = aju2 unless J = i or J = i + 1, while 

aiu1 aQd a;u2 are compatible, 

a;+1u1 and ai+1u2 are compatible. 

Hence Ui , u2 satisfy the conditions of 4) and therefore 4 

n+l 

0 = L (-1/dn(ajul, aju2) 
i=O 

= (-l/{dn((s;aia)x1, (sia;a)x2) - dn(ax1, ax2)}. 

u < i), 
u = i), 

U = i + 1), 

U = i + 2), 

U > i + 2). 

Applying the above result for i = n - 1, n - 2, • • ·, 0, we see that 

dn(ax1, ax2) = dn(a'x1, a'x2), 

where 

a' = soaos1a1' • • Sn-lan-la 

= s; aoa1' " 'an-la E s; Xo j 

Since X has only one vertex, a' = en , and our conclusion follows. 

4 If Xis an H-complex with multiplication p. then I p. I induces a functionµ.' on I X I X 
I X I to I X I whose restriction to every compact set is continuous and such that µ.'i1 = 
µ.'i2: I X j c I X I-In such a space all Whitehead products [a, ,B] vanish, and, in particular, 
I X I is n-simple for every n. Hence if Xis also a Kan complex, Xis n-simple for every n. 
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LEMMA 2. Every connected minimal H-complex is regular. 

PROOF. We shall prove that Xis left-regular; the proof that Xis right-regular 
is similar. Let a E Xn ; we prove, by induction on n, that left multiplication by 
,a is a one-to-one mapping to Xn onto itself. This is trivial if n = 0, for then 
a = e0 • Assume the result in dimensions less than n. 

Let x, y E Xn such that ax = ay. Then (a;a)(a;x) = a;(ax) = a;(ay) = 

( a,,a,) ( a;y); by the induction hypothesis a;x = a;y for all i, and therefore x, y 
:are compatible. But ax = ay and therefore dn(ax, ay) = O; by Lemma 1, 
dn(x, y) = O; by property 5), above, x = y. 

Let y E Xn . By the induction hypothesis, there exist X; E Xn-1 (1 ~ i ~ n) 
:such that (a,,a,)xi = a;y. Then if i < j, we have 

(a;aJa) (a;xJ) = a;( (aja)xi) = aiaiy, 

(aiaJa)(aJ-1Xi) = (aJ-1aia)(aJ-1x;) = aJ-1((a;a)x;) 

.and hence 

(aiaia)(aixJ) = (a;aia) (aJ-1x;); 

by the induction hypothesis, d;XJ = ai_1x;. By the Kan condition there exists 
x' E Xn such that aix' = x; for 1 ~ i ~ n. Then, if i > 0, 

a;(ax') = (a;a) (a;x') = (a;a)xi = a;y; 

since X is minimal, ao(ax') = iJoy; thus ax' and y are compatible, and a -
dn(ax',y)isdefined.Choosez E Xnsuchthatdn(z,en) = -a;thendn(x'z,x') = 

-a. Let x = x'z; then 

dn(ax, y) = dn(ax, ax') + dn(ax', y) 

= dn(x, x') + a = O; 

since Xis minimal, ax y. This completes the proof of Lemma 2. 

Appendix 

Let W~ be the class of spaces with base points which have the same homotopy 
type as a countable CW-complex [6); all spaces considered here will be members 
of 'W~ . It follows from the results of [6] that all the constructions made below 
will not take us outside the class 'W~. 

THEOREM. The following conditions on a connected space X are equivalent: 
(1) Xis an H-space; 
(2) there are spaces Y and Z such that X X nY has the same homotopy 

type as OZ; 

(3) there is a fibration X' .!:.+ Y ~ Z, where X' has the same homotopy type 
as X and i is null-homotopic; 

( 4) X is dominated by nSX. 
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PROOF. We first recall the known fact: every space dominated by an H-space 
is an H-space. In fact, let X be an H-space and let J:X - Y, g: Y - X be maps 
such that Jg ,...__, 1. Let ix:X V X c X X X, 

XV X ix XX X µ, X 

lu x g 
I 

J v J 1 r g v g J x J 1 Jug 

y Vy iy YXY y 

tJ,x:X V X - X the natural map (q,(xo, x) = q,(x, x0) = x), and let µ,:X X 
X - X be the multiplication in X, so that µix ,...__, tJ,x . Define µ': Y X Y - Y 
byµ' = Jµ(g X g); then µ'iy = Jµ(g X g)iy = Jµix(g V g) ~ jq,x(g V g) = 
Jgct,y ,...__, q,y, and therefore Y is an H-space. 

It follows that (2) ⇒ (1) and (4) ⇒ (1). That (1) ⇒ (3) is Sugawara's 
theorem. That (1) ⇒ (4) is due to James [4]. Itremainstoprovethat (3) ⇒ (2). 

We may safely assume that X = X'. Let h:X X I - Y be a null-homotopy 
of i; then ph:X x I - Z defines a map h':X - nz. The map p:Y - Zin­
duces a map rlp:nY - nz. Let µ,:nz x nz - nz be the usual multiplication 
of loops. Define J:X x nY - nz by 

J = µ, ( h' X rlp) . 

We claim that J is a homotopy equivalence. 
We may assume that Y and Z are 0-connected. Let Y, Z be the universal 

covering spaces5 of Y, Z. Then p induces a map p: Y - Z such that the square· 
in the diagram 

- p -Y-----"Z 

;/ I 7ry 17rz 
/ ~ 

X~Y-----"Z 
'I, p 

is commutative. Since i is null-homotopic, there is a map i:.X - Y such that 
1ryi = i, and i is homotopic to a map of X into the (discrete) fibre of 1ry ; since 

Xis connected, i is null-homotopic. It is easily verified that X ! Y L Z is a 
fibration. Hence we may assume that Y and Z are I-connected; it follows that 
nY and nz are 0-connected. 

Since all the spaces involved belong to 'W~ it suffices to prove that J * maps 
the homotopy groups of X X nY isomorphically onto those of nz. This follows 
immediately from the known direct sum decomposition 

1ri+1(Z) ~ 1ri+1( Y) EB 1ri(X) 

5 Let X E 'W~ and let W be a countable CW-complex, f:X--, W a homotopy equivalence. 
Let p:W -> W be the universal covering; it follows easily that the fibration p':X -> X 
induced by f is the universal covering of X. 
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:and commutativity of the diagram 

(rlp)* 

The details are left to the reader. 
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