
TURNING POINTS IN LINEAR ASYMPTOTIC THEORY 

BY RUDOLPH E. LANGER 

1. Introduction 

In the theory of linear ordinary differential equations important chapters are 
appropriately devoted to the dependence of such equations upon parameters. 
A matter of concern, then, is the asymptotic form of the equation's solutions 
relative to the parameter when the latter is numerically large (or small, in which 
case the reciprocal can be considered); strictly, the limiting forms of the solutions 
as the parameter becomes infinite. The general form of the equation with which 
this paper will deal is 

(1) dnu + r..P(n-I)(z r..) dn-IU + ... + Anp(O)(z,r..) U = 0. 
dzn , dzn-l 

In terms of the operator 

(2) £ = ~ +r..P(n-l)(z r..) an-I+ ... +r.."p<O\z,r..), 
dz" ' dzn- 1 

this is £(u) = 0. The parameter is r.., and the coefficients p<•l(z, r..) are power 
series (possibly only polynomials or mere single terms) in 1/r.., thus 

"° (v)() 

(3) pM(z r..) = L 'f!i:__:_ v = 0, 1, · · · , (n - 1). 
' l'-o r..µ ' 

A differential equation depends for its essential character upon its coefficients, 
and these-insofar as they are not constants-depend upon the domain of the 
variable z. A study of an equation (1) is therefore defined only when the z
domain has been specified. In different domains the equation may well have 
quite different solution forms. This matter will remain at the fore in the following 
discussion. As an over-all specification, however, the z-domain will in every 
instance be taken to be a closed bounded region of the complex plane in which 
the functions p~"\z) of the series (3) are all analytic. 

By a familiar change of the dependent variable, the coefficient pen-!) (z, r..) 
of an equation (1) may be reduced to zero. That normalizes the equation, and 
makes the variable u specific. We shall generally suppose this normalization to 
have been made in order to preclude ambiguities in the formulas. 

The method by which the asymptotic solution forms of an equation (1) are 
ordinarily determined depends in the first instance upon a derivation of formal 
solutions, namely of expressions which fulfill the differential equation term by 
term, but which may not be actual solutions because they happen to diverge. 
Truncations of these formal solutions are free of the stigma of divergence, but 
in their turn do not fulfill the given equation in more than an approximate sense. 
To achieve the original purpose it remains, therefore, to give rigorous proof that 
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the formal solution truncations do represent true solutions asymptotically. That 
can generally be done, each result, however, often having validity only for suit
ably delimited sub-domains of A and z. 

In this paper only the formal part of this program is to be considered. The 
limitation of space is one, but not the primary, reason for this. For the formalism 
must be pursued inventively and must be adapted to different classes of differ
ential equations (1) which are defined by it, whereas the lines of the concluding 
rigorous analysis have been pretty well laid down. 

2. The classical algorithm 

For purposes of subsequent comparison and discussion, there is point to setting 
forth briefly the algorithm for formally solving an equation (1) which is now of 
sufficient venerability to be appropriately designated as "classical." This takes 
its cue from the elementary case in which the coefficients pC•l are mere constants, 
and accordingly bases itself upon an exponential expression. 

(4) r = ifO(z)dzA(z, A), 

in which 8(z) and A(z, A) are to be determined.* It is found that 8(z) must 
be a root of the auxiliary equation 

(5) 8n + (n-2)( )8n-2 + + (0)( ) 0 Po z • • • Po Z = . 

To illustrate this as well as the subsequent procedure, we turn to the case n = 2, 
in which a minimum of complications need be confronted. 

With the equation (1) specialized to 

( ) d2u 2 ( ) la dz2 + A P z, X u = 0, 

it is found from ( 4) that 

(6) £(r) = x2/fB(z)dz f (82 + P) A+! (28A' + 8'A) + !_ A"} l A ).,_2 ' 

the accents denoting differentiations with respect to z. The expression within the 
brace of this is representable as a formal power series in 1/A. The leading term 
drops from this series if 8(z) is chosen to be either root 8;(z), j = l, 2, of the 
auxiliary equation 

(5a) 82 + po(z) = 0. 

With such a choice of 8, the term in 1/A drops from the brace in (6) if ao(z) 

* Throughout the paper an expression denoted by a capital letter, with>- and possibly 
other variables as arguments, shall be understood, in every case, to be formally a power 
series in 1/>-with coefficients that are analytic in the other variables. These coefficients will 
then be designated by the respective lower case letter with attached subscript, in the 
manner of the formulas (3). 



LINEAR ASYMPTOTIC THEORY 

is chosen so that 

p1(z)ao + 20(z)a~ + 0'(z)ao = 0, 

namely, if with 0i(z) we associate 

(7) 

3 

The term in (l/x)"+ 1 drops from the brace, successively forµ = 1, 2, 3, • • • , if 
aµ( z) is chosen so that 

" L P"+1-vCz)av + 20(z)a; + 0'(z)a" + aZ-1(z) = 0, 
v-0 

namely, if with 0iCz) we associate 

{ 
µ-1 } 

a~i) (z) = _ aJil (z) J aZ-1(z) + ~ P"+i-, a, dz. 

2aail0j 
(8) 

For the differential equation (la) the expressions 

(9) 

so obtained are formal solutions in the sense described in §1. 

3. Critique 

The algorithm that has thus been set forth yields a complete set of formal 
solutions if the z-region in which the differential equation is being considered 
is one in which the roots of the axuxiliary equation (5) are all simple, namely 
one in which these auxiliary roots remain distinct. If root multiplicities are present 
-namely multiplicities that maintain identically over the z-region-the resulting 
set is incomplete. Modifications of the algorithm to adapt it to that contingency 
are, however, known [1]. 

The facts shape up differently when in the z-region two or more auxiliary roots 
which are distinct elsewhere fall into a coincidence at an isolated point. Such a 
point is called a turning point. The equation (la), for instance, has a turning 
point at any zero of the function po(z), since the roots of the equation (5a) 
coincide there at the value 0. That the algorithm of §2 fails in the presence of a 
turning point is clearly shown by the formulas (7) and (8), for they evidently 
do not define analytic functions where 0i(z) can vanish. 

Even the most casual observations give evidence that a turning point is apt 
to be critical in asymptotic theory. Because about such a point at least some 
of the solutions of the differential equation undergo radical changes in functional 
character. For example, the solutions of the equation 

u" + )..2p(z)u = 0, 

with X, z and p ( z) real, are respectively of oscillatory and exponential types 
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where p(z) is positive and negative, and make the transition between these types 
as the turning point is traversed. In the instances of less simple equations, and 
in the broader domain of the complex z, a turning point may be expected to mark 
very intricate metamorphoses of the solution forms. 

There is mathematical challenge in this fact. And the challenge has immediacy 
because many modern theories of applied mathematics depend upon it. In quan
tum mechanics, in hydrodynamics, in microwave propagation, in diffraction, 
etc., turning points are encountered. 

The problem posed by the presence of a turning point is far from simple. In a 
primitive way its solution has been sought-and by some is still being sought-by 
excising the turning point neighborhood and sub-dividing the residual region 
into parts in each of which a derivation by the algorithm of §2 is feasible. In 
the turning point neighborhood solutions in the form of power series in ),. are 
obtainable. A patching together of the representations so found for the several 
subregions is then sought by the familiar process of identifications in overlapping 
domains. 

Insofar as it may, this method must seek its assets in the fact that the patches 
are obtainable by classical means, and that it can be resorted to when no subtler 
way is discerned. It must concede as liabilities its laboriousness-when the 
patching can be accomplished at all-and its mathematical inelegance. It throws 
little or no light upon the nature of the configurations which characterize the 
problem. In the following we set forth a method based on a fresh algorithm. This 
calls for no dismemberment of the z-region, and gives the characteristic con
figurations of the problem their determinative roles from the start. 

4. The turning point algorithm 

An equation ( 1), in a specific z-region having been given, consider in associa
tion with it another differential equation 

(10) ddnw + ),.n-2Q(n-2\x, ),.) ddn-2w2 + ... + ),.nQ(O\x, ),.)w = 0. 
xn xn-

We defer the precise specification of this equation, contenting ourselves at this 
point with the particulars that the functions Qc"\x, ),.) shall be power series in 
1/),. with coefficients qi"\x) that are analytic in x, and that x itself be some 
analytic function of z. 

With coefficients A <vl (z, ),.) that at this point are undetermined, except that 
they shall be analytic in z, set 

(11) r = A (0) (z ),.)w +!A (1) (z A) dw + ... + _1_ A (n-1) (z ),.) dn-lw. 
' ),. ' dx ),_n-1 ' dxn- 1 

This relation is differentiable, and after the differentiation the derivative dnw/dxn 
can be eliminated by the use of the equation (10). By a repetition of this process 
the successive derivatives of r can be expressed in terms of w and its first ( n - 1) 
derivatives, thus 
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(12) 

djr = ,./[A(O,j)(z ;\)w + !A<1,i)(z ;\) dw + ... 
dz1 ' ;\ ' dx 

J = 1, 2, • • ·, n, 

the coefficients A <•,i\z, ;\) being specific in terms of those of the equation (10) 
and the formula ( 11). These yield an evaluation 

(13) 

£(r) = An [ a<0)(z, ;\)w + ~ a<1\z, ;\) :: + · "• 

in which each coefficient a<•l (z, ;\) is formally a power series in 1/;\, and is ana
lytic in z. 

The objective is now to drop the terms in (1/;\)1' for successive µ, from the 
series a<vl(z, ;\), v = 0, 1, 2, • · · , (n - 1), by making appropriate choices of 
the equation ( 10), of the function x(z), and of the hitherto unspecified coefficients 
a;"\z). The possibility of doing that in the realm of functions that are analytic 
over the given z-region will depend upon the differential equation (10), as will 
become clear. With the choices indicated ( when such are possible), the formula 
( 11) associates with each solution w of the equation ( 10) an expression r which 
formally fulfills the equation ( 1). It will be clear that when the forms of the 
functions w are known the formula ( 11) in fact yields formal solutions of the 
given differential equation. 

In review we see, now, that the implementation of this algorithm depends upon 
the possibility of choosing for the role (10) a differential equation whose solution 
forms are known, or are in some way determinable, and which, over and above 
that, conforms to the stipulations of analyticity that were imposed upon the 
determinations that have to be made. 

5. The case n = 2 

For simplicity in illustrating the actual operation of the algorithm, the appeal 
to the differential equation (la), is again natural. With the use of A, B, P and Q, 
in the place of A toJ, A <iJ, p<oJ and Q<oJ, and with a superscribed dot signifying a 
differentiation with respect to x, we have then 

(10a) w + ;\2Q(x, ;\)w = 0, 

and 

This latter relation leads, in the manner described in §4, to the formulas 

r' = [A' - ;\BQx']w + [ Ax' + ~ B'] w, 
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(12a) !;" = [A" - }..BQx" - }..BQx'2 - 2}..B'Qx' - }..2AQx' 2]w 

+ [ 2A'x' + Ax" - ABQx'2 + i B"] w. 

Therefrom follows the evaluation 

(13a) 

£(!:) = }..2 {(P - Qx'2)A ·~ ! (2Qx'B' + Qx'2B + Qx"B) + _!_ A"}w A }..2 

wherein each brace encloses an expression that is, in fact, a power series in 1/A. 
The leading terms drop from both of the braced expressions in (13a) if x(z) 

is chosen so that 

(14) po(z) - qo(x)x' 2 = 0. 

In an integrated form this relation can be taken to be 

(15) f q~(x) dx = [ p5(z) dz, 

it being supposed that the origin.of z is chosen within the z-region, and. that the 
origin of xis assigned to it. At this point the requirement that x(z) be analytic 
clearly imposes upon qo(x) the specification that it vanish at every x that corre
sponds to a zero of po(z), and that it vanish there to the same order as p0(z). 

The terms in 1/}.. drop from the braces of (13a) if the equations 

(po - qox'2)a1 + (p1 - q1x'2 )ao - (2qox'b~ + qoX'2bo + qox'bo) = 0, 

(po - qox'2)b1 + (p1 - q1x'2)bo + (2x'a~ + x"ao) = 0, 

are fulfilled. By virtue of the prior determination (14) these equations reduce to 

-2yqoxt(,VqoX 1bo)' + (p1 - qiX'2 )ao = 0, 

2,vxt( ,vxtao)' + (p1 - q1x'2)bo = 0. 
(16) 

The system is integrable by quadratures. The sum of ao times the second and 
- bo times the first can be written as 

(x'a~ + qoX'b~)' = 0. 

This is fulfilled by the choice 

(17) 

With the use of this relation we may eliminate ao from the first equation (16) 
and b0 from the second one. They thereupon integrate directly to give 
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(18) 

( x')l 1• x'2 
bo(z) = - sin Pi - ~1 dz, 

Po o 2po 

1. ,2 
' l - 1 X ao(z) = x'' cos p ~ dz. 

o 2po 

The terms in (l/}.)"+ 1 drop from the braces of (13a) if the equations 

-2y qox' ( V qoa:'b,,)' + (p1 - qiX'2)a,, + f,, = 0, 
(19) 

2yx, ( VX1a,,)' + (pi - qiX'2)b,, + cf>,, = 0, 

are fulfilled, the terms f,, and cf>,, being constructed of the functions aiz),bP(z) 
with p < µ. To integrate this system let the equations (16) and (19) be respec
tively multiplied by -a,,/yqo, -b,,yqo, ao/yqo, boyqo and added, and again 
let them be respectively multiplied by - b,, , a,, , - b0 and ao and added. The 
resulting equations are expressible as 

2[-yqox'boyx'a,, - yx'aoyqox'b,,]' + ~0/.!.. + bo cf>,,'\lio = 0, 
vqo 

2[,yx'aoyx'a,, + y'qox'boy'qox'b,,]' - bof" + ao cf,µ = 0. 

These can be integrated and then solved for a,, and b,, to give 

aµ(z) aor) { (bof,, - ao cf,µ) dt - v'io :o(z) { (~io + b0 cf:,µ,Yqo) dt, 

(20) 
ao(z) 1• (aofµ _ c) bo(z) 1• ( ) b,,(z) = 2yqij O vfo + bo cf:,µv qo dt + - 2- 0 bof,, - ao c/>µ dt. 

These formulas are successively applicable forµ = l, 2, 3, • • • . 

6. Some specific asymptotic theories 

It is of no little interest to observe how the formulas of §5 have been found 
adaptable to important classes of differential equations (la), the adaptation 
clearing the way, in each instance, for the construction of an asymptotic theory 
for the equations of the class in question. One such class, incidentally, is that of 
the equations having no turning-point. The algorithm of §4 is thus shown to be 
of a wider scope than that of §2, since it applies with no less effect whenever 
the latter does so. The decisive element, as was remarked in §4, inheres in the 
choice of an equation for the role ( 10a). This equation must have known solution 
forms, and must yield analytic formulas for x(z) and the coefficients a,,(z) 
andbµ(z). 

Class (i): Equations (la) in z-regions containing no turning-point. For these 
equations the function po(z) has no zero in the z-region. The choice Q(x, A) = 1, 
places the solvable equation w + A2w = 0 into the role ( 10a), and gives to the 
relation ( 15) the form 
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x = { p!(z) dz. 

This _determination of x(z) is analytic, and no singularities are seen to be in
volved in the determinations (18) or (20). 

Class (ii): Equations (la) in regions which include a turning-point that is a 
simple zero of po( z). Let the origin be taken at the turning-point. The choice 
Q(x, >.) = x gives the role (l0a) to the equation w + >.2 xw = 0. This is a trans
formed Bessel equation, whose solutions are 

ie(j>.xi), 

with e signifying any cylinder (Bessel) function of the order ½. The forms of 
these functions are known. The relation ( 15) can be put into the form 

[ 3 z ]' x = 21 p!(z) dz ' , 

and this (with proper definition at z = 0) defines x(z) to be analytic. The inte
grals in the formulas (18) and (20) are improper but convergent. The formulas 
give analytic determinations if the removable singularities in the expressions 
for the bµ(z), µ = 0, 1, 2, • • • are appropriately removed [2], [3]. 

Class (iii) : Equations ( 1 a) in the region about a second order zero of p0 ( z) . 

The choice Q(x, >.) = x2 + ~ K(>.), in which K is an unspecified power series 

in 1/>. with constant coefficients, assigns the role ( 10a) to the differential equation 

w + [>.2x2 + 4i>.K(>.)]w = 0. 

This is a confluent form of the hypergeometric equation whose solutions are of 
known forms and are commonly symbolized by 

X -½}J1 K ,±¼( iAX2 ), 

The relation ( 15) is effectively 

x = [ 2 { p8(z) dz J, 
which gives an analytic determination of x(z). The coefficients kµ of the series 
K(>.) may now, and must, be chosen, in the instance of any given equation 
(la), to make the integrals in the formulas (18) and (20) convergent. Thus, 
when ko (which is q1) is chosen so as to give the function (p1 - q1x' 2 ) a zero at 
the origin, the integrals in the formula (18) are proper, and the determinations 
(18) of ao(z) and bo(z) are analytic. By the successive appropriate choices of 
kµ-I, analyticity may be assured to the determinations of aµ(z) and bµ(z). This 
theory was given by R. W. McKelvey [4]. 

Class (iv): Equations (la) in regions containing two simple turning points, 

say at z = a and z = (3. The choice Q(x, >.) = c2(1 - x2 ) + ~K(>.), gives the 
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role (10a) to a transformed Weber equation. With the choice 

21fJ 1 
C = - po(z) dz, 

7r "' 

the relation (14) gives 

2 ' ' lx 1• c _1 (1 - X )' dx = a pZ(z) dz 

and hereby x(z) is determined to be analytic, even at the points z = a and z = {3. 
With proper choices of the constants kµ. the determinations (18) and (20) are 
analytic. This theory was elaborated from [5] by N. D. Kazarinoff [6]. 

7. The classification of differential equations, and general theory 

For a differential equation (1) of the second order, the auxiliary equation (5) 
has just two roots, and if the equation is normalized these roots can coincide only 
at the value 0. For such an equation, therefore, the only feature in which turning 
points can differ is the order to which the (single) auxiliary root difference van
ishes. In the classes (i), (ii) and (iii) of §6 that order is respectively 0, ½, and 1. 

In the case of a differential equation (1) of higher order, there is a corre
spondingly greater number of auxiliary roots, and therefore a plurality of root
differences. At a turning-point these latter may vanish to various orders, and the 
values at which the roots coincide may also be various. Turning-points therefore 
exist in greater variety, in as many kinds as there are configurations of the 
auxiliary roots. A salient matter is the number of roots that are involved in 
coincidences, for some of them may not do so but remain distinct. To focus the 
attention upon those that do, we shall designate the configuration of them
leaving the simple roots, if there are such, aside-as the coincidence pattern of 
the differential equation at the turning point. 

A coincidence pattern involving k roots may present itself in a differential 
equation of the order k. It may, however, also present itself in an equation of 
any higher order n. The total root configuration is, of course, simplest in the 
former case, because the coincidence pattern appears then unaccompanied by 
additional distinct roots. An asymptotic theory applies to the differential equa
tions ( 1), of all orders, which have a common coincidence pattern. Different 
coincidence patterns, on the other hand, distinguish equations whose asymptotic 
theories must be expected to be distinct. These assertions are, in effect, verified 
by a known general result, which is the following ( [7]) : 

If the formal solutions are derivable, by any means, for the differential equations 
of the order k with a certain coincidence pattern involving the k roots, then they can 
be derived also, by the application of a specific algorithm, for any differential equa
tion, whatever its order, having that same coincidence pattern. 

For instance, the formal solutions can be obtained for any differential equation 
for which just one auxiliary root difference vanishes, and does so to the order 
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½ or 1. For its coincidence pattern is then that of the class (ii) or (iii) of §6. 
This was done for equations of the third order in [3] and by L. R. Bragg [8]. 

8. Asymptotic theories for equations with coincidence patterns involving 
more than two roots 

An asymptotic theory may be expected to be the more intricate the larger 
the number of roots that are involved in its determinative coincidence pattern. 
For the metamorphoses which the differential equation's solutions may undergo 
at the turning point are then more intricate. As of the present, the asymptotic 
theories for differential equations ( 1) having more extensive coincidence patterns 
comprise a field that has only begun to be cultivated, the vast expanse of which 
awaits development by further research. The theories that have been developed 
are few. We shall outline them briefly. 

The coincidence pattern upon three auxiliary roots, one root being identically 
zero and the root differences vanishing to the order½ is presented in third order 
differential equations (1) by those in which pa2\z) = pa0'(z) = 0 and pa1'(z) 
has a simple zero. This latter is the turning-point. The form of the differential 
equation is 

(21) u"' + EC2)(z,X)u" + X2{P<1\z, X)u' + E<0)(z, X)u} = 0, 

and of its auxiliary equation 

It was found in this case that the role of the equation ( 10) could be appropriately 
assigned to the equation 

(22) d3w 2{ dw ~ 
dxs + X x dx + K(X)wf = 0. 

in which K(X) is an unspecified power series in 1/X with constant coefficients 
[9]. The solutions of this equation were not known, but were completely de
terminable because of the relative simplicity of the coefficients, [10]. The series 
K(X) must be adjusted to the differential equation (21) that is given. The ex
tensibility of this theory to differential equations (1) of higher order having the 
same coincidence pattern follows, of course, by the general result referred to in §7. 

In the theory of hydrodynamic stability the so-called Orr-Sommerfeld equation 

d4i/; 2 d2V1 4 • {[ ( ) ] [d 2V1 2 ] d2w} - - 2a - + a VI - iaR w y - c - - a VI - - = 0 dy4 dy2 dy2 dy2 ' 

is prominent, and must be considered on an interval of y which includes a zero 
of the function [w(y) - c]. The parameter a is of moderate magnitude, but 
aR is large. The equation is of the general form 

(23) u"" + X2{Pc2l(z, X)u" + E<1l(z, X)u' + E<0\z, X)u} = 0, 

in a region which encloses a simple zero of the function pci2) ( z), namely with a 
turning-point. This has been the direct or indirect source of incentive for the 
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development of asymptotic theory for the equation (23). The auxiliary equation 
in the case of the latter is 

04 + pri2l(z)0 2 = 0. 

The coincidence pattern thus involves four auxiliary roots, with one root differ
ence vanishing identically and the others vanishing to the order ½ at the turning
point. 

Asymptotic theory for the equation (23) has been developed, effectively by 
the method of §4, though still with substantial differences in procedure by C. C. 
Lin and A. L. Rabenstein and by myself. Of these derivations that of Lin and 
Rabenstein [11] holds quite scrupulously to the algorithm of §4. It assigns the 
role (10) to the differential equation 

(24) 

in which K<1) (},) and K<2\}..) are both power series in 1/}.., which must be ad
justed to the given equation (23). The solution forms of the equation (24) have 
to be determined, to give explicitness to the formula (11). That was done by 
the method of Laplace transforms. 

My own attack [12], [13], upon the problem of the equation (23) seizes first 
upon the fact that every such equation admits at least one formal solution which 
is a power series in 1/}.. with coefficients that are analytic in z. By the use of this 
fact it is possible to so modify the method as to base the application of the al
gorithm of §4 upon the differential equation (22) of the third order, whose solu
tion forms are known since they were determined in connection with the prior 
construction of the theory for the equation (21), rather than upon the equation 
(24) for which the determination of the solution forms remained as a quite sub
stantial task. An incidental and fortunate feature of this method is that the 
function determinations that are required by the algortithm are all found to be 
explicitly possible in terms of quadratures. 

9. Summary 

It will be noted that in essence the method that has been set forth assigns 
differential equations (1) to various classes, for each of which the asymptotic 
theory can be expected to take its own form. The feature which determines the 
assignment at a turning-point is the coincidence pattern of the auxiliary roots. 
Each class includes equations of all orders equal to or greater than the number of 
roots in the pattern. 

For the determination of the formal solutions of an equation (1) of a certain 
class, the algorithm of §4 refers the problem to a particular member of the class, 
namely the equation (10). This member is of the minimum order for the class 
and is likely to have optimally simple coefficients. If the solution forms of this 
equation are available in the mathematical literature, as they are for some im
portant classes whose coincidence patterns involve just two roots, the problem 
at hand is as good as solved. In the alternative, the solution forms for this 
equation (10) must be determined. While that, in essence, recalls the original 
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problem, it does so only as that is presented by a specific and optimally simple 
exemplar. 

It is true that the choice of a differential equation for the role of (10) cannot 
be explicitly prescribed. Ingenuity and insight into the problem have to be en
listed for it. That, however, is not unusual in the creation of mathematical 
theory. 

Asymptotic theories have been constructed for a number of classes of equations 
(1), as has been shown. To regard the method as of only limited applicability 
because there remain many classes to which, at this time, it has not been ex
tended, is, in effect, to subscribe the thesis that all possible advances have been 
made. It seems more sanguine to believe that only further research is needed, 
and that for such there is promise of rewards. 

MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY, MADISON, WISCONSIN 

BIBLIOGRAPHY 

[1] H. L. TURRITTIN, Asymptotic solutions of certain ordinary differential equations. Amer. 
Journ. of Math., v. 58 (1936) p. 364. 

[2] R. E. LANGER. The asymptotic solutions of ordinary linear differential equations of the 
second order, with special reference to a turning point. Trans. Amer. Math. Soc., 
v. 67 (1949) pp. 461-490. 

[3] R. E. LANGER. On the asymptotic forms of the solutions of ordinary linear differential 
equations of the third order in a region containing a turning point. Trans. Amer. 
Math. Soc., v. 80 (1955) pp. 93-123. 

[4] R. W. McKELVEY. The solutions of second order linear ordinary differential equations 
about a turning point of order two. Trans. Amer. Math. Soc., v. 79 (1955) pp. 
103-123. 

[5] R. E. LANGER. The asymptotic solutions of a linear differential equation of the second 
order with two turning points. Trans. Amer. Math. Soc., v. 90 (1959) pp. 113-142. 

[6] N. D. KAZARINOFF. Asymptotic theory of second order differential equations with two 
simple turning points. Archive for Rational Mechanics and Analysis, v. 2 (1958) 
pp. 129-150. 

[7] R. E. LANGER. On the construction of related differential equations. Trans. Amer. Math. 
Soc., v. 81 (1956) pp. 394--410. 

[8] L. R. BRAGG. Fundamental solutions of a linear ordinary differential equation of the 
third order in the neighborhood of a simple second order turning point. Duke Math. 
Journ., v. 29 (1958) pp. 239-264. 

[9] R. E. LANGER. The solutions of a class of ordinary linear differential equations of the 
third order in a region containing a multiple turning point. Duke Math. Journ., 
v. 23 (1956) pp. 93-110. 

[10] R. E. LANGER. The solutions of the differential equation v"' + '>.2zv' + 3µ).2v = 0. Duke 
Math. Journ., v. 22 (1955) pp. 525--542. 

[11] C. C. LIN AND A. L. RABENSTEIN. On the asymptotic solutions of a class of ordinary 
differential equations of the fourth order. Technical Summary Report i';i 37, Mathe
matics Research Center, United States Army, University of Wisconsin (1958). 

[12] R. E. LANGER. On the asymptotic solutions of a class of ordinary differential equations 
of the fourth order, with special reference to an equation of hydrodynamics. Trans. 
Amer. Math. Soc., v. 84 (1957) pp. 144-191. 

[13] R. E. LANGER. Formal solutions and a related equation for a class of fourth order differ
ential equations of a hydrodynamic type. Trans. Amer. Math. Soc., v. 92 (1959) 
pp. 371-410. 




