
CONTRIBUTIONS TO THE THEORY OF OPTIMAL CONTROL 

BY R. E. KALMAN 

1. Introdµction 

The purpose of this paper is to give an account of recent research on a classical 
problem in the theory of control: the design of linear control systems so as to 
minimize the integral of a quadratic function evaluated along motions of the 
system. This problem dates back in its modern form to Wiener and Hall at about 
1943 ([1], [2]). In spite of its relatively long history, the problem has never been 
formulated rigorously from a mathematical point of view. Even the most up-to­
date expositions of the subject (see, e.g., [3]) are inaccessible to the mathema­
tician due to the lack of precisely stated conditions and results. 

The problem is quite broad, and there are many unsettled questions. This 
paper will be concerned with only the simplest case, the so-called regulator prob­
lem. For other aspects of the problem, the reader may consult [4]-[8] which, while 
devoted primarily to questions of theoretical engineering, contain precise mathe­
matical results. 

The conventional theory of the regulator problem is based largely on Fourier 
and Laplace transforms. By contrast, the approach of this paper is direct and uses 
the well-known theory of ordinary differential equations. We have also drawn 
on Lyapunov's theory of stability. While our earlier treatments ([5], [6], [8]) fol­
lowed the point of view of dynamic programing, here we utilize classical tools 
of the calculus of variations, in particular the Hamilton-Jacobi equation. 

The principal contribution of the paper lies in the introduction and exploita­
tion of the concepts of controllability and observability ([8]), with the aid of which 
we give, for the first time, a complete theory of the regulator problem. In par­
ticular, we prove existence and stability theorems for the regulator problem and 
study in some detail stability properties of the matrix Riccati equation, which 
arises as a special case of the Hamilton-Jacobi equation. 

A careful discussion of the conceptual aspects of the control problems has 
been included as an aid to persons not familiar with the field of control. Some 
mathematical arguments, in particular the review of the calculus of variations, 
are more leisurely than usual in order to render the paper reasonably self­
contained. 

2. Notation and terminology 

We use standard vector-matrix notation, with the following conventions: 
small Greek letters are scalars; small Latin letters are vectors, capitals are mat­
rices. The unit matrix is I. Exceptions: i, J, m, n, pare integers; t, E, L, V are 
scalars;</>, if;,~ are vectors. The inner product is [x, y]. The transpose of a matrix 
is denoted by the prime. The norm is II x II = [x, xf The norm II A \\ of a matrix 
A is sup II Ax II over II x II = 1. Special conventions: II x II~ = [x, Px] where Pis 
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symmetric, nonnegative definite. If A; Bare symmetric, A > B[A ~ B] means 
A - B is positive [nonnegative] definite. The letters t, u, r are arbitrary real 
numbers which always denote the time; we use to s t1 s t2 to denote fixed, or­
dered values of t. All scalars, vectors, and matrices are real throughout. For a 
scalar function L( u) of the vector u, L,, is the gradient vector and Luu is the 
jacobian matrix. 

We shall study the system represented by the equations 

dx/dt = F(t)x + G(t)u(t) 

. y(t) = H(t)x(t) 

(2.1) 

(2.2) 

where: u is an m-vector, xis an n-vector, y is a p-vector; F(t), G(t), as well as 
H(t) are rectangular matrices continuous int, either of which may be singular. 

In view of the physical motivation of our problem, we adopt the following 
terminology: Equations (2.1-2) are the plant (or model); xis the state of; u(t) 
is the control junction or input to; and y(t) is the output of the plant. The plant 
is constant if F, G, Hare constants. Hu(t) = 0 or G(t) = 0, the plant is free. 

The behavior of the plant is described by the solution of the differential equa­
tion (2.1) which will exist for all t and be unique if, say, u(t) is Lebesgue inte­
grable. As is well known ([9]), the general solution has the form 1 

x(t) = <I>(t, to)x(to) + { <I>(t, T )G( T )u( T) dT 
to . 

(2.3) 

where <I>(t, r), defined for all t, r, is a fundamental matrix ( [9]) of solutions of 
the free system (2.1), satisfying the additional requirement that 

<I>(t, t) = I for all t (2.4) 

In view of (2.4), we call cf> the transition matrix of (2.1 )-a terminology bor­
rowed from the theory of Markov processes ([7], [8], [IO]). 

The solution (2.3) is conveniently regarded as the motion of the state of (2.1); 
this leads to the notation 

x(t) = cp,,(t; x, to) (2.5) 

Read: the motion of (2.1) starting at initial state x at time to and observed at 
time t, and influenced by the fixed control function u(t) defined in the interval 
[to, t]. Since (2.5) holds for all t, to, we have in particular the identity: x = 
cp,,(t; x, t) for all t, x, u. Free motions are denoted by cp1 . We observe also that 
(2.1) has an equilibrium state x* at 0, in other words, a state for which x* 
¢1 ( t; x*, to) for all t, to . 

3. Statement of problem 

In the simplest applications, the object of a control system is the following: 
Given any state x of the plant (2.1) at any time to, "generate" a control Junction 

1 The function (2.3) will satisfy the differential equation (2.1) almost everywhere. 
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u(t), defined fort ~ to and depending on x, to, which causes x to be "transferred" 
to the equilibrium state 0. In other words, u(t) is chosen so as to assure 

limqi,,(t; x, to) = 0 (3.1) 
! ➔eo 

For technological reasons, the function u(t) must be generated from actual 
measurements of the behavior of the plant. To describe how the control system 
is to be physically realized, one must therefore provide an algorithm for comput­
ing the number u(t 1) from the knowledge of y(t) fort ~ t1 . This is usually re­
ferred to as the Feedback Principle. 

One may separate the problem of physical realization into two stages: 
(A) Computation of the "best approximation" :i:(t1) of the state x(t1) from 

knowledge of y(t) for t ~ t1. 
(B) Computation of ·u(t1) given :i:(t1). 

In the engineering literature one often makes the simplifying assumption of 
treating the two problems separately, i.e., simply regarding :i:(t) as though it 
were x(t). We are concerned here only with Problem (B) and therefore always 
assume that x(t) is known exactly. Somewhat surprisingly, the theory of Problem 
(A), which includes as a special case Wiener's theory of the filtering and predic­
tion of time series, turns out to be analogous to the theory of Problem (B) de­
veloped in this paper. This assertion follows from the duality theorem discovered 
by the author ([7], [8]); this theorem can be used to show also that the separa­
tion of Problems (A) and (B) is indeed legitimate. 

Assuming x(t) is known exactly and taking into account the Feedback Prin­
ciple, the problem of generating u(t) reduces to specifying the control law 

u(t) = k(x(t), t) (3.2) 

From the definition of state it is clear that nothing would be gained by letting 
u{ t) depend also on values of the state prior to time t. To assure that (2.1) with 
(3.2) has a unique solution, it suffices to have k E C1. If (3.2) does not depend 
explicitly on t, we say the control law is constant. 

To arrive at the control law "rationally," we now add the further desideratum 
that the integral of a nonnegative function of the state along any motion 'Pu should be 
minimized by the choice of u(t). Stating this requirement with some care, we shall 
see that it uniquely determines u(t) and hence also the control law (3.2), and 
even implies (3.1). We call the resulting control system optimal. 

Let us now state precisely the 

(3.3) OPTIMAL REGULATOR PROBLEM. Find a control law (3.2) for which 

V 0 (x,to,t1) = inf {v(<1iu(t1;x,to)) + J11 L(<tiu(t;x,to) u(t),t)dtl (3.4) 
tt (t) lo 'f 

is attained for all x, to , and t1 , where v, L are nonnegative scalar functions of class 
C2 in all arguments. 
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The class of functions u(t) which are admitted to competition in taking the 
infimum in (3.4) are to be of class D0 (i.e., continuous except at isolated points 
at which u(t) has finite left- and right-hand limits). 

It is well known in the calculus of variations ([11], p. 196) that the condition 
Luu ~ 0 or Luu :=:; 0 is necessary for the existence of even local extremals. To 
avoid complications due to the equality sign, we assume from the outset that 

Luu(x, u, t) > 0 for all x, u, t (3.5) 

which is equivalent to assuming that L is strictly convex in u. 
In engineering language, one calls t1 the terminal time (it may be infinity!), the 

integral is the performance index, and (at least when it does not depend on u) L 
is the error criterion or more generally the loss function. The function -,, is added 
for greater generality. We use the notation V(x, to, t1 ; u) for the value of the 
integral in (3.4) for some specified, fixed u(t). The superscript o identifies 
"optimal". 

4. Relations with the calculus of variations 

In this section we transcribe some well-known results ([11], Ch. 12) of the 
local problem of the calculus of variations into a form best suited to our problem. 
Let us first solve (3.3) in a very special case. 

(4.1) LEMMA (Caratheodory). Let k(x, t) be an m-vector function of class C1 in 
x, t. Write u0 = k(x, t). Assume -,, = 0 and that the function Lin (3.4) satisfies 
the following conditions for all x and all to :=:; t :=:; t1 : 

(a) L(x, u0
, t) = 0 

(b) L(x, u, t) > 0 for all u ~ u0 

Then the optimal performance index V 0 is identically zero for all x and is attained 
by using the optimal control law given by 

u0 = k(x(t), t) ( 4.2) 

Proof. Let c/Ju0 denote the motion of the plant under control law ( 4.2); simi­
larly, let <f>u1 be the motion corresponding to some fixed control function u\t). 
By (b) above and since the integrand of (3.4) is in classD 0 int, it follows that 
V(x, to, t1 ; u1) > 0 unless u1(t) = u0 (t) at every continuity point of u1(t) in 
the interval (to, t1). On the other hand, by (a) we see that V 0 (x, to, t1) vanishes 
identically in x.2 Q. E. D. 

Anticipating the final result (4.14), let V 0 (x, t, t1) be an arbitrary scalar func­
tion of class C2 in x, t, (t1 being a fixed number) and subject also to 

(4.3) 

Let us replace L by 

2 It is clear that two optimal controls u 0 (t) and u1 (t) can differ only on a set of measure 
zero. 
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L*(x, u, t) = L(x, u, t) + V~(x, t, t1) + [V:(x, t, t1), F(t)x + G(t)u] 

The integral of the last two terms along any motion between the limits t0 , t1 is 

(4.4) 

Since the second term in ( 4.4) does not depend on u(t), it follows that the two 
variational problems, 

1t1 

inf L*(c/Ju(t; x, to), u(t), t) dt 
u(t) to 

(4.5) 

and (3.3) are equivalent in that they have the same minimizing function u(t) 
( if such exists) . 

Now we try to find functions V0 (x, t, t1) and k(x, t, t1) for which the hypothe­
ses of the Lemma are satisfied when Lis replaced by L*. 

In order that L*(x, u, t) have a minimum with respect to u at u = u0 = 
k(x, t, t1), it is necessary that all first partial derivatives of L* with respect to u 
vanish at u0

• This and the condition L*(x, u0
, t) = 0 give 

G'(t)V: = -L,,(x, u0
, t) 

- V~ = L(x, u0
, t) + [V~, F(t)x + G(t)u 0

] 

(4.6) 

(4.7) 

These equations are called by Caratheodory the fundamental equations of the 
variational problem (3.3). 

From assumption (3.5) it follows at once (by the strict convexity3 of L(x, u, t) 
in u) that (4.6) can be solved for u 0

; more precisely, there exists a function y; 
of class C1 such that 

u0 = ,/;(x, G'(t) v:(x, t, t1), t) = k(x, t, t1) (4.8) 

which is the desired optimal control law. 

To check condition (b) of the Lernrna, we write, using (4.6-7), 

L*(x, u, t) = L(x, u, t) - L(x, u0
, t) - [u - u0

, Lu(x, u0
, t)] (4.9) 

= E(x, u, u0
, t) 

which is the well-known Weierstrass E-function. It is clear by inspection that 
Eis the quadratic remainder in the Taylor series of Latu = u0

• Using the well­
known estimate for the remainder, we have 

E(x, u, u0
, t) = II u - U 0 \12L,.,.(x,u+8(u 0 -u),t) (0 ~ 0 ~ 1) (4.10) 

which is nonnegative and in view of (3.5) vanishes if and only if u = u0
• 

Hence if there is a function V0 satisfying ( 4.3, 4.6-7) and in addition (3.5) 

3 A scalar function a(x) of a vector xis convex in x if and only if for all x1 , x2 the func­
tion fl(X) = a(Xx1 + (1 - X)x2) is convex in X over the interval 0 ::;; X ::;; 1. This will be the 
case if and only if d2f//dX2 = [x1 - x2 , axx(X1 - x2)]~ 0. Hence a(x) is convex if and only if 
a., ~ 0; similarly, a(x) is strictly convex if and only if axx > 0. 
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holds, we can apply the Lemma and find that V0 is just the left-hand side of 
(3.4). The optimal control law is (4.8). 

We now define the so-called conjugate variable t by 

t = v~ 
and write VI = Vl(x, G'(t)t, t). We define the Hamiltonian as 

JC(x, t t) = L(x, VI, t) + [t, F(t)x + G(t)V1] 

It is easily shown that if Lis of class C2, so is also JC. 

(4.11) 

(4.12) 

Now if V0 (x, t, t1) is any solution of class 0 2 of (4.6-7), it follows by substitu­
tion that V0 is a solution of the Hamilton-Jacobi partial differential equation of 
the first order : 

V~ + JC(x, V~, t) = 0 (4.13) 

Conversely, let V0 (x, t, t1) (t 1 = parameter) be any solution of (4.13) of class 
C2 • Defining u0 by means of ( 4.8), it follows that V 0 satisfies the fundamental 
equations ( 4.6-7). 

In summary, we have 

( 4.14) THEOREM. If there exists a solution V 0 (x, t, t1) of class C2 of the Hamilton­
Jacobi equation (or, equivalently, of (4.6-7)) which satisfies V0 (x, t1 , t1) = v(x) 
and if (3.5) holds, then V0 is the optimal performance index for the regulator prob­
lem ( 3.3), and the corresponding optimal control law is given by ( 4.8). 

5. Controllability 

The purpose of this section is to impose conditions on the plant (2.1) to assure 
that the problem posed by (3.3) is meaningful in the limit t1 = oo. Guided by 
physical intuition, we introduce the 

(5.1) DEFINITION. A state xis said to be controllable at time to if there exists 
a control function u1( t), depending on x and to and defined over some finite 
closed interval [to, t1], such that c/Jui(t1 ; x, to) = 0. If this is true for every state 
x, we say that the plant is completely controllable at time to ; if this is true for every 
to , we say simply that the plant is completely controllable. 

The following equivalent characterization of controllability is useful: 

(5.2) PROPOSITION. A plant is completely controllable at time t (i) if and (ii) 
only if the symmetric matrix 

1t1 

W(to, t1) = if?(to,t)G(t)G'(t)if/(to,t)dt 
to 

(5.3) 

is positive definite for some ti > to. 
Proof. (i) Set 

u1(t) = -G'(t)if?'(to, t)W- 1(to, t1)x (5.4) 

Substitution into (2.3) shows that c/Ju1(t1 ; x, to) = 0. 
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(ii) Suppose there exists some x ~ 0 such that 11 x ll~<to,til = 0. Define 

u2(t) = -G'(t)ifl(to, t)x 

which implies that 

II X ll~<to,t1) = { 1 
II u2(t) 112 dt = 0 

Since u2(t) is continuous in t, it is therefore identically zero in the interval 
[to, ti]. 

On the other hand, if the plant is completely controllable at to , there exists a 
control function u1(t) as required by (5.1) which satisfies the relation 

x = -Jti q,(t 0 , t)G(t)u1(t) dt 
to 

and therefore 

!ti 

II x 112 = - [u1(t),u2(t)] dt = 0 
to 

contradicting the assumption that x ~ 0. Q. E. D. 

(5.5) COROLLARY. A. constant plant is completely controllable (i) if and (ii) 
only if 

rank [G, FG, • • • , Fn- 1G] = n (5.6) 

( where the square brackets denote a composite matrix of n rows and mn columns) 
in which case one may choose t1 - to > 0 as small as desired. 

Proof. Because of stationarity, controllability does not depend on to. Hence 
take to = 0. 

(i) By (5.2), it suffices to prove that W(0, t1) is positive definite no matter 
how small t1 > 0. Let g1, • · · , gm be the columns of G. If W(0, t1) is semidefinite, 
then proceeding as in part (ii) of the proof of (5.2) we conclude that there is a 
vector x ~ 0 such that 

[x, eFtl] = 0 for all O ::::; t :::; t1 and i = 1, • • • , m 

Differentiating j times with respect to t, and then setting t = 0, we get 

[x, F 1l] = 0 for all i = 1, • • • , m and j = 0, • • • , n - 1 (5.7) 

If (5.6) holds, this implies that xis orthogonal to a set of generators of En, con­
tradicting the assumption that x ~ 0. 

(ii) Assume the plant is completely controllable but (5.6) is false. Then 
there is a vector x ~ 0 which satisfies ( 5.7). By the Cayley-Hamilton theorem 
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It follows that II x li~co,t1J = 0 for all t1 , contradicting the assumption of com­
plete controllability. Q. E. D. 

Condition (5.6) has been used as a technical device in several recent papers in 
the theory of control ( [12]-[14]), without reference to the ''physical" interpre­
tation ( 5.1). 

(5.8) Remark. Let x be the state of the plant at to and y the "desired" state 
at t1 . It follows easily by a slight extension of the preceding arguments that y is 
reachable from x (i.e., there exists a motion cp,.1 which meets x at t0 and y at t1) if 
and only if the equation ~ 

x - <I>(to, t1)Y = W(to, t1)v 

has a solution, in which case 

u1( t) = -G' ( t)<I>' (to , t)v 

is the appropriate control function. 

(5.9) 

(5.10) 

Moreover, elementary methods of the calculus of variations show (see also 
[15]) that the minimum control energy required to achieve the transfer is 

1t1 

8(x, to; Y, t1) = II u1(t) 112 dt = JI x - <I>(to, t1)y ll~-l(t 0 ,t 1l 
t 0 

(5.11) 

Clearly, the required "energy" is zero if and only if the free motion going through 
x at to intersects y at t1 . 

Equation (5.9) may have a solution for some but not all x, y. Then w-1 does 
not exist and it is convenient to replace it with the generalized inverse Wt in the 
sense of Penrose ([16], [17]). (See Appendix). With this convention, (5.11) is 
the minimum energy required for transferring x as close to y as possible. 

If W(to, t1) is invertible, then (5.9) always has a solution; we see that a 
plant is completely controllable at time to if and only if starting from the origin at 
time to any state x can be reached in a finite length of time by applying an appropriate 
control function u( t). In other words, there is a noteworthy "symmetry" between 
sending x to O and sending O to x. 

(5.12) Remark. Using the generalized inverse, we may replace (5.10) by a 
control law defined in [to , t1]: 

u1(t) = -G'(t)Wt(t, t1)[x - <I>(t, t1)y] 

Even if the plant is stationary, this control law is not. In fact, a stationary con­
trol law can be obtained in this case only by letting u1c t) be discontinuous ( [8]). 

The following definition is designed to single out a class of nonstationary 
plants which are in a sense "quasi-stationary". This will play an important role 
in the sequel. 

( 5.13) DEFINITION. A plant is uniformly completely controllable if the following 
relations hold for all t: 
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(i) 0 < ao(u)I S W(t, t + u) S a1(u)J 

(ii) 0 < f3o(u)I S <l>(t + u, t)W(t, t + u)<I>'(t + u, t) S f31(u)I 

where u is a fixed constant. In other words, one can always transfer x to O and 
0 toxin a finite length u of time; moreover, such a transfer can never take place 
using an arbitrarily small amount ( or requiring an arbitrarily large amount) of 
control energy. 

Definition (5.13) has surprisingly far-flung consequences. We mention some 
of these; the proofs are elementary. 

Ffrst of all, if (i-ii) hold, then, for all t, 

Vf3o(u)/a1(u) S II <l>(t + u, t)II S Vf31(u)/ao(u) 

which is equivalent to 

Vao(u)/f31(u) S II <l>(t, t + u) II S Va1(u)//3o(u) 

(5.14) 

(5.15) 

(5.16) From formulas (5.3) and (5.14-15) we see that (i-ii) hold also for 
the constant u' = 2u; this implies further that (i-ii) hold for any u' ?: u. 

(5.17) Using (5.16), we see that (i-ii) actually imply the following stronger 
bound on the transition matrix: 

II <l>(t, 7) II S aa(I t - 'T !) for all t, T (5.18) 

(5.19) It is now clear that if any two of the relations (5.18), (i), and (ii) 
hold, the remaining relation is also true. 

The bound (5.18) obviously restricts the class of dynamical systems (2.1). 
Some such restriction appears to be an unavoidable consequence of any "rea­
sonable" definition of uniform complete controllability. For instance, if only (i) 
holds, the following peculiar situation may arise. Consider the scalar system: 

dx/dt = -tx + -y2(t - I)e 1+112u(t) 

( defined only for t ?: I). We find easily that 
( ) (,2-12) /2 

<p t, T = e 

which does not satisfy (5.18); furthermore, 
(t t + ) 2(u-I)t+(u-1)2 -21+1 w, a=e -e 

and it is clear that w does not satisfy (i) unless u = l, while (ii) is never satis­
fied. In other words, to transfer x to O over an interval of time shorter than 1 
may require an arbitrarily large amount of control energy, whereas doing the 
same job over an interval of time longer than 1 may require only a vanishingly 
small amount of energy as to - oo . Transferring O to x will require more and 
more energy as to - oo • 

Finally, let us note a well-known and readily verifiable condition for (5.18) 
(easily proved using the Gronwall-Bellman lemma): 

!12 IIF(T) lldT S 'Y(t2 - l1) for all t1, t2 
!1 

(5.20) 
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We now seek to characterize a plant according to its "output" properties. 
This is most conveniently done as follows. Lett* = -t and F*(t*) = F'(t), 
G*(t*) = H'(t), and H*(t*) = G'(t). Then 

dx*/dt* = F*(t*)x* + G*(t*)u*(t*) 

y*(t*) = H*(t*)x*(t*) 
( 5.21) 

where x*, u*, y* are n, p, and m vectors respectively, is the dual plant of (2.1-2). 
We shall not discuss the significance of this concept in detail ( for which see [8]), 
except for pointing out that (i) the duality relations are reflexive if tci'* = to ; 
(ii) the transition matrix of (5.21) satisfies the relation 

<I>*(t*, r*) = <I>' ( r, t) 

It is convenient to introduce the: 

for all t,r (5.22) 

(5.23) DEFINITION. A plant (2.1-2) is uniformly completely observable if its 
dual is uniformly completely controllable. 

It follows easily from (5.23) that the explicit expression for W* corresponding 
to (5.3) is • 

= 1:~~• <I>' (t, to)H' (t) H(t)<I>(t, to) dt 

(5.24) 

Using W* defined by (5.24), we can now state (5.23) explicitly. To avoid any 
possibility of confusion, the constants a, {3, er occurring in (i-ii) are to be re­
placed by a*, {3*, er*. 

6. Solution of the linear regulator problem 

The point of view of the classical calculus of variations outlined in Section 4 
is purely "local." At present, there are few global results and just about none 
in the theory of control. In the "local" (linear) case, however, the ideas of the 
preceding section lead to (what is hoped to become) a definitive theory of the 
regulator problem. This is the subject of the remainder of the paper. 

To get the linear case of the regulator problem, it is not enough to have a linear 
model (2.1) for the plant but we need also the assumption: 

(A1) L(x, u, t) = ½I II H(t)x ll~<tl + II u ll!<t)}, v(x) = ½II x II~ 
where A is symmetric, nonnegative definite while Q(t), R(t) are symmetric, 
positive definite and of class C2 in t. 

In view of (A1), the Hamiltonian function (4.12) is 

X(x, t t) = ½{II H(t)x ll~<tl + 2[F(t)x, ~] - II G'(t)~ li!-1<t)} (6.1) 

With this choice of X, the function 

(6.2) 



112 R. E. KALMAN 

( t1 = parameter) is a solution of the Hamilton-Jacobi equation ( 4.13) if and only 
if P(t, t1) is a solution of the following ordinary nonlinear differential equation 
of the Ricca ti type: 

-a: = F'(t)P + PF(t) - PG(t)R- 1(t)G'(t)P + H'(t)Q(t)H(t) (6.3) 

It is clear that (6.2) determines P only up to a constant, skew-symmetric 
matrix ( constancy follows from the fact that dP / dt is symmetric). Henceforth, 
to avoid trivia, we always assume that Pis symmetric. 

Given any symmetric, nonnegative definitive matrix A, (6.3) has a unique 
solution II(t; A, t1 ) which takes on the value A at t = t1 . This solution is known 
to exist only in some neighborhood of t1 ; without further analysis we cannot 
conclude existence for all t. (Because of the phenomenon of finite escape time, for 
which see [10], Example 3.) 

Nonetheless, II(t; A, t1) does exist for all t ~ t1 . We prove this indirectly as 
follows: 

(6.4) ExIS'l'ENCE THEOREM. (i) For all t1 and all symmetric, nonnegative definite 
A, (6.3) has a unique solution IT(t; A, ti) defined for all t ~ t1. (ii) Under Assump­
tion (A1) the optimal performance index for Problem (3.3) is given by 

V 0 (x, to, ti) = II X lltcto;A,t1) 

Moreover, the optimal performance index is attained if and only if the control law is 
given by 

(6.5) 

Proof. If we assume (i), then (ii) follows immediately from ( 4.14). Therefore, 
if II ( t; A, t1) exists, it must necessarily satisfy the relation 

Jt1 

I/ xllt<to;A,t 1J ~ II H(t)cp(t, to) x ll~<tJ dt + II 'P (t1, to)x II! 
to 

~ a(t1, to) II X 112 

which follows by setting u(t) = 0 in (3.4). Since a(t 1 , to) is finite for all pairs 
t1, t0 , it is clear that II(t; A, t1) (if it exists) is contained in a compact region 
for all tE [to, t1]. Including this fact in the standard proof of the existence theorem 
for differential equations proves (i). Q. E. D. 

In order to study the case t1 ---t oo, we first define a particular solution of ( 6.3) 
which is of central significance for the ensuing development. 

(6.6) PROPOSITION. If the plant is completely controllable, then 

lim II(t; 0, t1) = f>(t) 
t1➔00 

(i) exists for all t and (ii) is a solution of (6.3). 
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Proof. (i) Suppose the plant is completely controllable at t to. Then for 
every x there exists a control function u1 (t), given by (5.4), which transfers x to 
0 at or before t = t2(x, to). We set u1(t) = 0 fOl' t > t2. Then 

[I x [[rru0;o,t1) = V 0 (x, to, t1) :s; V(x, to, t2 ; u1) = V(x, to, co; u1) :s; a(to) [[ x [[2 

which shows that [[ II(to ; 0, t1) II is bounded for all t1 ~ to. On the other hand, 
(3.4) shows that [[ II(to ; 0, t1) [[ is nondecreasing as t1 ----+ co. Hence the desired 
limit exists for arbitrary t = t0 • Q. E. D. 

(ii) Using the continuity of solutions of (6.3) with respect to initial condi­
tions, we have 

P(t) = lim II(t; 0, t2) = lim II(t; II(t1; 0, t2), t1) 
t 2➔CO t 2➔00 

= II(t; lim II(t1; 0, t2), t1) = IT(t; P(t1), t1) 
t2➔00 

which shows that P(t) is a solution of (6.3) which is defined for all t. Q. E. D. 

(6.7) EXISTENCE THEOREM. Assuming (A1), v(x) = 0, and t1 = co, the optimal 
performance index for Problem ( 3.3) is [[ x [!}ct) and the optimal control law is 

(6.8) 

Proof. Assume throughout the v(x) = 0. First we show: If u(t) is determined 
by the control law ( 6. 7), the corresponding performance index is 

V(x, to, co; u0
) = lim V(x, to, t1; u0

) = [[ x [\icto) 
t 1-+00 

We see from (6.4) and (6.6) that 

V(x, to, t1; u0
) = \IX \[}Cto) - \[ c/J,.,.(t1; X, to) [[i(t1) :s; [[ X [[}(to) 

On the other hand, 

V(x, to, t1 ; u0
) ~ V 0 (x, to, t1) = [[ X [\ircto;O,t1) ~ [[ X [[i<to) - € 

where e ----+ 0 as t1 ----+ co , which proves ( 6. 9). Hence 

V 0 (x, to, co) :s; V(x, to, co; u0
) 

The inequality sign cannot arise. For if V(x, to, co; u0
) - V 0 (x, to, co) ~ 71 > 0, 

there is some control function u1 such that V(x, to, co; u0 ) - V(x, to, co, u1) ~ 
71/2. For t1 sufficiently large, we then have 

V(x, to, co; u 0
) = V 0 (x, to, t1) + 71/4 ~ V(x, to, t1; u1) + 71/2 

which is a contradiction and everything is proved. Q. E. D. 

In the engineering literature it is often assumed ( tacitly and incorrectly) that 
a system with optimal control law ( 6.8) is necessarily stable. We now give rigor­
ous sufficient conditions insuring uniform asymptotic stability and point out in 
the process of proof some trivial but interesting parallels between the calculus of 
variations and the second method of Lyapunov. 
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The following definition is standard [10], [18]: The system (2.1) is uniformly 
asymptotically stable if (i) 11 cf>(t, to) II S a and (ii) 11 cf>(t, to) I\ - 0 with t - oo 
uniformly in to. It can be shown ([10], Theorem 3] that uniform asymptotic sta­
bility in the linear case is equivalent to exponential asymptotic stability, which is 
defined by the condition (a, f3 > O) 

II cf>(t, to) II S a exp [- {3(t - to)] for all to and all t ~ to. 

(6.10) STABILITY THEOREM. Consider a plant with control law (6.8) which is 
uniformly completely controllable and uniformly completely observable. In addition 
to (A 1), assume also 

Q(t) ~ a4J > 0, 

Q(t) S aJ, 

R(t) ~ a5J > 0 

R(t) S ar/ 

Then the controlled plant is uniformly asymptotically stable and V0 (x, t, oo) is one 
of its Lyapunov functions. 

Proof. As is well known, it suffices to prove that (a) V0 is bounded from above 
and (b) below by increasing functions of II x II independent oft, (c) the deriva­
tive V0 of V0 along optimal motions of the plant is negative definite [10, 18], 
and (d) V 0 

- oo with II x II - 00 • 

• (a) By uniform complete controllability, let u1{t) be the control function, 
depending on x, to and defined in [to , to + 17] ( 17 = positive constant), which 
transfers x to O ator before t = to+ 17. In accordance with the remarks following 
( 5.13), there is no loss of generality in taking the constants 17 and 17* ( occurring 
in the definition of uniform complete controllability and uniform complete 
observability) to be the same. Having set 17 = 17*, we let t1 = to + 17. If u\t) 
is defined explicitly by means of ( 5;4), then 

c/Jui(t; x, to) = tl>(t, to)[I - W(to, t)W- 1(to, t1)]x 

= cf>(t, t1)z(t) 
( 6.11) 

From the definition of TV (see (5.3) ), it follows easily4 that the norm of the 
bracketed term above is less than or equal to 1. Using (5.18) then gives 

II z(t)II S as II x II 
where a8 depends only on 17 and it is therefore constant. By (6.11) and (A 3 ) 

we get 

(6.12) 

4 We need to show only that ifB > 0 and B :2:: A :2:: 0, then II AB- 1 II :,; 1. Now II AB- 1 112 = 
Xro.x(B-1A--'2B_:_1) = Xm.x(A•B-•). By the well-known theorem about simultaneous diagonali­
zation of a positive definite and a symmetric matrix, we have the representation A2 = T'/\T, 
B2 = T'T, where Tis nonsingular and A is diagonal. B :2:: A :2:: 0 implies 1 :2:: X (/\) :2:: 0. Hence 
Amox(A•B-•) = Amax(/\) =,; 1. 
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Making use of the foregoing and of the elementary inequality 

II Ax 1[2 ::; [j A [[2 • II X 112 = Amax(A'A)jj X 112 ::; (tr A'A)[j X 112 

(valid for any matrix A and any vector x), (6.12) becomes 

V 0 (x, to' CX)) ::; a6as(tr W*(t1' to))II X 112 + a1 II X 112w-1uo,ti) 

and by uniform complete controllability and observability we have finally 

V 0 (x, to, 00
) ::; [na6asa:(u) + a1ao(u)J[[ x 1!2 = a9 II x l/2 • 

(b) In view of (6.7), we can define 

inf V 0 (x, to' CX)) = a10(to)ll X l\2 

" 

115 

We show that a1o(to) ~ a11 > 0. In fact, in the contrary case we can make t:, 

defined by 

II X 1!2t:Cx, t) = ·J00 II u0 (t) ![2 at::; a51 J"' II u0 (t) [[!ct) at::; V 0 (x, to, CX)) 
to to 

as small as desired by suitable choice of x, to. We introduce the abbreviation 

f t, 

z(t) = <I>(to, t)G(t)u 0 (t) at 
to 

and note that, by the Schwarz inequality, 

11 z(t) 112 ::; ({ 1 1/<I>(to, t)G(t) 112 at)({' II u0 (t) 112 at) 

and by uniform complete controllability, 

Utilizing this estimate, we find with the aid of (A2): 

V 0 (x, to' CX)) ~ ft, a4 II H(t)<I>(t, to) [x + z(t) l 112 at 
to 

~ 1:1 a4( II H(t)<I>(t, to)x 112 - II H(t)<I>(t, to)z(t) 112} at 

~ a4tll <I>(t1,to)x l/2w•ct1,t 0) - na1(u) E (x,to)[trW*(t1,to)] II x [/2 } 

By (5.18) and uniform complete observability, this reduces to 

V 0 (x, to, oo) ~ a4(aa2cu)a:(u) - n2c~1(u)a:(u) E (x, to)lll X 112 

~ [a1a - a14 E (x, to)]/[ x l/2 
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which contradicts the assumption that a 12 (and hence e) can be made arbitrarily 
small by suitable choice of x, to . 

( c) Since G and H are allowed to be singular, we cannot prove of course 
that Y is negative definite. However, inspection of the last step of (b) yields the 
further inequality, 

Y 0 (<f>,,o(t1; x, to), t1' 00) - Y 0 (x, to' 00 ) ::; -[a13 - 0'14 E (x, to)lll X 112 

and we have simultaneously also the further inequality 

Y 0 (<f>uo(t1; x, to), ti' 00) - Y 0 (x, to' 00) ::; 0!5 E (x, to)II X 112 

which follows immediately by (A2) and the definition of Y 0
• Setting 

a:15 = a:5a1a/ ( a5 + a14) > 0 

we have finally that 

Y 0 (<1>u0 (to + (]"; x, to), to+ IT, 00 ) - Y 0 (x, to' 00 ) ::; -a15 II X 112 

which shows that Y 0 is strictly decreasing along any interval of time of length 
1T2 , unless x = 0. Taking account of this fact, the proof of Lyapunov's theorem 
on uniform asymptotic stability ( [10]) goes through as usual. 

(d) This is trivial in view of Y 0 2 a12 II x 112. Q. E. D. 
It is of some interest to observe that if we have merely complete controllabil­

ity, part (a) does not go through but we have nevertheless proved (nonuniform) 
asymptotic stability. 

7. Stability of the Riccati equation 

We now turn again to ( 6.3) and examine briefly its stability properties. Let 
5P(t) = P(t) - P(t) denote the deviation of a given motion P(t) of (6.3) from 
P(t). Substituting into (6.3) shows that 

d(5P)/dt = -F'(t)5P - 5PF(t) - 5PG(t)R-1(t)G'(t)5P (7.1) 

where 

F(t) = F(t) - G(t)R- 1(t)G'(t)P(t) 

For simplicity, we temporarily drop the argument tin G, H, P, Q, R. 

(7.2) STABILITY THEOREM. Let 

'U(5P, t) = ½ tr (5PP- 1 ) 2 . 

Then ( i) the derivative of 'U along motions of ( 7 .1) is 

U(5P, t) 

provided P 2: 0; 

(7.3) 

(ii) IJA 2: 0, then under the hypotheses of (6.10), all solutions IT(t; A, t1) of 
(6.3) are uniformly asymptotically stable relative to P(t) as t- - oo, and 'Vis an 
appropriate Lyapunov function. 
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Proof. (i) This is established by lengthy, elementary calculations. The square 
root of P exists by assumption and that of P by part (b) of (6.10). 

(ii) Clearly, 'D vanishes if and only if oP = 0. We recall the fact that for 
any symmetric, n X n matrices A, B, 

(i = 1, • • • , n) (7.5) 

where the Ai are eigenvalues. This is a consequence of the Fischer-Courant varia­
tional description of eigenvalues (for which see [20], p. 115 Theorem 3 and p. 120, 
Exercise 9). Using (7.5) and the results of (6.10) it follows easily that 

0 < a tr (oP)2 :::; 'D(oP, t) :::;; /3 tr (oP)2, oP ~ 0 

Moreover, (7.4) being the trace of a nonnegative definite matrix, 'O is clearly 
nonnegative. By arguments analogous to part (c) of the proof of (6.10), it fol­
lows then also that 'D is uniformly decreasing along any motion of (6.3) as 
ast--+ -oo. 

(7.6) COROLLARY. The motion F(t) is unstable (as t--+ oo ). 

Proof. Immediate consequence of part (ii) of the proof of (7.2). 

(7.7) Remark. If the problem is stationary, i.e., F, G, H, Q, R are constants, 
P(t, t1) = P(t + h, t1 + h) which shows that dP(t, t1)/dt1 = -dP(t, t1)/dt· 
Hence in this case one can compute P(t) = const. from (6.3) by replacing t by 
-t; for any initial A ~ 0, this computation is asymptotically stable in the large. 

( 7 .8) Remark. Because of the Corollary, in the nonstationary case ( at least one 
of F, G, H, Q, R not constant), one cannot compute P(t) as t--+ oo from the 
knowledge of P(to). 

8. General solution of the Riccati equation 

Consider the canonic (Hamiltonian) differential equations associated with 
(6.1): 

dx/dt = X1;(x, t t) = F(t)x - G(t)R- 1(t)G'(t)t (8.1) 

dVdt = -X,,(x, t, t) = -H'(t)Q(t)H(t)x - F'(t)t (8.2) 

Let P(t) be a solution of (6.3), defined in some interval U = (- ao, t2). In 
view of (4.11) and (6.2), we assume that the initial conditions of (8.1-2) at 
time t1 are related by ( t1 < t2 ! ) 

H t1) = V! ( X ( t1), t1) = P( t1) X ( f1) 

Then the same relation will hold between solutions of (8.1-2) corresponding to 
these initial conditions, for all t that P ( t) exists: 

Ht) = v:(x(t), t) = P(t)x(t), t E U (8.3) 

We can also verify (8.3) directly by substituting (6.3) into (8.1-2). 
Now let X(t), Z(t) be a pair of matrix solutions of (8.1-2) satisfying the initial 
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conditions X(t1) I, :E:(t1) = P(t1). By (8.3) we have obviously 

:E:(t) = P(t)X(t), t E U (8.4) 

which shows that X(t) is a solution of the matrix differential equation 

dX/dt = [F(t) - G(t)R- 1(t)G'(t)P(t)]X, t E U 

Setting v(x) = 11 x 1l!<t,) in (3.4), we see from (6.4-5) that X(t) is the transi­
tion matrix iJ>0 (t, t1) of the optimally controlled plant corresponding to this choice 
of v. Since if>0 (t, t1) exists for all t E U, we have 

P(t) = :B:(t)if>0 (t1, t), 

To obtain an explicit expression for P(t), let 

e(t t1) = (en(t, t1) 
' 821(t, t1) 

t E U (8.5) 

be the transition matrix of the system (8.1-2). We get the following formula 
valid fort E U: 

P(t) = [e21Ct, t1) + e2lt1, t)P(t1rne11(t, t1) + e12Ct, t1)P(t1)r 1 

This procedure is very well known in the calculus of variations ([21; 11, Ch. 
15)) and is being periodically rediscovered ( [22], [23]). 

RIAS, BALTIMORE, MARYLAND 
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Appendix: The generalized inverse of a matrix 
Following Penrose ( [16]), the generalized inverse of an arbitrary square matrix 

A is a matrix At satisfying the relations: 

(i) ,+4.AtA = A, (ii) A tAA t = At, 
(iii) (A tA)' = A tA, (iv) (AA t)' = AA t 

It can be shown that At always exists and is uniquely determined by these rela-
tions. Examples: ( 1) If D is diagonal, then the elements of its generalized inverse 
are 

dt = d:;;1 if d;; r5-0 

= 0 otherwise 

(2) If A is symmetric, there is an orthogonal transformation T such that 
A = T'DT. Then At = T'DtT. 

Consider now the linear equation Ax = y. Penrose proves ([17]) that the 
''best approximate solution" x0 = A ty of this equation has the properties: 

(i) II Ax - Y II II Ax 0 
- Y II for all x 

(ii) If II Ax - Y II = II Ax 0 
- Y II, then II x II II x0 II 
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