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The stability of systems with nonlinear controls presents one of the most 
interesting applications of the direct method of Liapunov. This application was 
first dealt with, we believe, by the Soviet mathematician Lurye [1]. There are 
noteworthy contributions by Letov [2], Malkin (see [2]) and Yacubovich [3]. 
The basic treatment of the first two rested upon a transformation of coordinates, 
and while most ingenious it was assuredly excessively explicit. A treatment by 
matrices was outlined by Malkin and carried out much further by Y acubovich. 
A parallel development was also described about the same time by Bass ( un-
published material). Of the work of Yacubovich we only know the outline in 
his short Doklady notes. Our main purpose here is to present and extend the 
more or less complete argument of these latter authors. Let it be observed in 
passing that, with modern computing machines, the treatment by matrices is 
as accessible as any to computation, and is certainly more direct than any other 
treatment. 

Remark. Standard matrix notations are used. An n-vector x with components 
Xi is thought of as a column-vector (n X 1 matrix). The corresponding row-
vector is written x'. The quadratic form F = L ai;XiX; where aii = a;i, 
A = (ai;) = A', is written x' ·Ax. If F > O[ < O] for x 0 we say that Fis a 
positive [negative] quadratic form, written also A > O[ < O]. 

A real square matrix whose characteristic roots all have negative real parts 
is said to be stable. 

1. The problem. A Liapunov function 
A very wide class of control problems leads to a system of the form 

x = Ax+ f(cr)b 
(F) 

ir = c'x - rf(cr) 

and this is the system which we propose to discuss. Here x, b, c are n-vectors and 
er, f( er), rare scalars. The matrix A is constant. The system x = Ax is the initial 
physical system, the components of x are its parameters, while er, f( er) are the 
feedback signal and characteristic. 

To simplify matters we assume thatf(cr) is continuous. Moreover, crf(cr) > 0 
for er~ 0 and fgf(cr)dcr - oo as Is 1- oo. 

Until further notice and as a working hypothesis the matrix A is assumed to 
be stable. 

* This research was partially supported by the United States Air Force through the Air 
Force Office of Scientific Research of the Air Research and Development Command, under 
Contract Number AF 49(638)-382. Reproduction in whole or in part is permitted for any 
purpose of the United States Government. 
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A certain simplication may be made as follows. Let the component bh of b 
be ~O. Then by changing the scale of measurement of xh one may replace it by 
bhxh and hence bh by + 1. The bh are certainly not all zero since it would mean a 
non operating control. One may then say that the true control parameters are 
the components of c and the scalar r. 

The problem is to determine the control so as to obtain asymptotic stability for 
all initial positions of x and all allowable choices off( r,). 

The solution will consist in finding a function V ( x, r,), of class C1 in x, r, which 
is >0 except for x = 0, <T = 0 when it vanishes and whose time derivative 

. d 
V = dt V(x(t), r,(t)) 

along any solution of ( F) is a negative definite function of x and f ( r,). Moreover 
V - oo as [[ x [[2 + r,2 - oo. By modification of a well known theorem of Liapunov 
we will then have the desired kind of stability. 

The function that we shall study, due to Lurye, is of the form 

(1.1) V(x, r,) = x' ·Bx+ { f(r,) d<T. 

It is certainly positive except for x = 0, <T = 0 when it vanishes, provided that 
B > 0. We find at once from (F): 

- V(x, r,) = x' ·Bx+ x' ·Bx+ rJ2(r,) - 2f(r,){½(b'-Bx + x' ·Bb) + ½c' ·x)l. 

Introduce the new vector g whose components are 

so that g = Bb. Set also 

(1.2) 

Then we may write 

gk = L bk;b; 

A'B + BA -C. 

(1.3) - }' = +x' ·Cx + rj2(r,) - 2f(r,) (g' + ½c') ·x. 

We find at once that C' = C, so that C is a matrix of a quadratic form. Thus 
Vis a quadratic form in X1 , • • • , Xn , f( r,). 

Take any symmetric C > 0. It is well known ( [4]) that, since A is stable, the 
relation (1.2) has a unique solution as a stable symmetric matrix B, which is 
given by 

B = 1+"' eA'tceAt dt. 

Under the circumstances Vis a quadratic form in x1 , • • • , Xn, f. Since C > 0 
the first n of the well-known conditions to have the form - V definite positive 
are already satisfied. The only condition left (a necessary and sufficient condi-
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tion) is that the determinant 

C, - (g + c) 
- (g' + ~c'), r 

>0. 
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Let I CI = o > 0. From known theorems on determinant expansion (2.3) reduces 
to 

or finally to 

( 1.4) 

Since C > 0 likewise c-1 > 0. Therefore the right hand side of ( 1.4) ;:;; 0 
and so r > 0. However, it should be observed that the control efficiency actually 
increases with r, since increasing r means moving away from the situation where 
V ( x, er) ceases to be negative definite. 

An example. Let the characteristic roots - µ1 , • • • , - µn of A be real and 
distinct, hence negative: µn > 0. Choose coordinates such that A = -D, 
D = diag (µ1 , • • • , µn). Then the system (F) is 

x = -Dx + f(u)b 

& = c' ·x - rj(u). 

Furthermore suppose that no bh = 0 so that b = (1, 1, • • • , 1). The explicit 
form of the system ( 1.2) is here 

(Xi + Ak)bik = Cik 

Choose now C = diag (d1 , • • • , dn), dh > 0, so that 

c-1 = diag (!__ · · • l) B = diag (!:!... ,· · ·, ~) 
d1 ' ' dn ' 2µ1 2µn 

and (1.4) becomes 

or 

The h-th parenthesis in the sum is least for ef = chµh if c,. > 0, or zero if c" ;;;; 0. 
Hence 
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where the sum is extended to all h for which ch is positive. This gives a lower 
bound, in the present case for the value of r. 

2. Control with some characteristic roots zero 
Let several (not all) the characteristic roots of A be zero. A comparatively 

simple situation will arise when, by a suitable choice of coordinates the basic 
system (F) may be put in the form 

x = Ax+ f(a-)b, 

y = f(a-) d, 
ir = c' • x + 2e' • y - rf( a-). 

Here the notations are so chosen that x, b, c are n-vectors, A is the same as 
before, and y, d, e are p-vectors. In particular, the components of b, dare 0 or 1. 
As for a-, f( a-), r they are still scalars. Since the y1, remain fixed in the uncontrolled 
system they are known as neutral parameters. 

We look for a Lia punov function 

V(x,y,a-) = y'•My +{x'•Bx+ [ J(a-) da-}, 

the l · · ·} being the same as previously and M > 0. By direct calculation we find 

-V = x'·Cx + rl(a-) - 2f(a-)(g' + ½c')·x + (d'M + e')f(a-)·y, 

A'B +BA= -C. 

If one chooses M and d so that 

(2.1) Md+ e = 0 

and treat the remaining terms as done earlier, one will obtain a Liapunov func-
tion V such that - V > 0 for x, a- 0 but zero for x, a- = 0, y 0. Hence the 
Liapunov function under consideration only guarantees stability but not asymp-
totic stability in the large. By a further argument it is possible to show that every 
solution approaches the linear subspace of critical points defined by x = 0, a-= 0 
and e' • y = 0 as t -----+ oo . 

To proceed a little further suppose that d = (1, 1, • • • , 1). Upon setting 

(2.2) 

the system (2.1) yields 

(2.3) m = -e. 

The question arises then whether one may determine M > 0 such that (2.3) 
holds. 

Consider first the case p = 2. We have then 
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and since M > 0: 

For simplicity set m12 = p. Then m 11 = -e1 - p, m 12 = -e2 - p, and pis subject 
to the sole inequality 

(-e1 - p)(-e2 - p) - p2 = e1e2 + (e1 + e2)p > 0. 

If e1 + e2 = 0 this becomes e1e2 > 0 which is ruled out. If e1 + e2 ¢. 0 one may 
always choose a suitable p. 

The general case is, of course, more complicated. Let us endeavor to choose 

M=(Aµ) 
µ' s 

where A = diag (p, • • • , p) (p - 1 terms), µ' = (µ1, • • • , µp_ 1) and sis a 
scalar. We assume p > 0. Thus A > 0 and the condition for M to be >O is 
(same calculation as earlier) 

2 
s > I: µi. 

p 

On the other hand the relations (2.3) are here 

µi+P= -e;,(i<p); s+ Lµ;= -eµ,. 

Upon setting 

k > 0, 

a simple calculation reduces (2.4) to 

(2.5) 71 = hp + k + ep < 0. 

If the line 71 = hp + k + ep in the (p, 71) plane intersects the positive p axis, 
one may select 71 to satisfy (2.5), and hence choose M in the special form se-
lected. However, if this special form is not admissible, it may very well be that 
one may, nevertheless, select M to satisfy (2.3) and b > 0. 
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