
LIAPUNOV'S FUNCTION AND BOUNDEDNESS OF SOLUTIONS* 

BY TARO YOSHIZAWA 

Liapunov has discussed the stability of solutions of a system of differential 
equations by utilizing a scalar function satisfying some conditions [3]. And the 
relations between Liapunov functions and various types of stability have been 
discussed by many authors. For boundedness as well as stability, Liapunov's 
theory is very useful and the relations between Liapunov functions and various 
types of boundedness are very similar to those between Liapunov functions and 
various types of stability. 

Now we consider a system of differential equations, 

(1) dx 
dt = F(t, x), 

where x denotes an n-dimensional vector and F ( t, x) is a given vector field which 
is defined and continuous in the domain 

A:0 t < oo, II x II < oo (the norm is the Euclidean norm). 

Let x = x(t; Xo, to) be a solution of (1) through the initial point (to, xo). Unless 
otherwise stated, we consider the solution for t to . 

There are various types of boundedness [6], but now we consider the following 
types. 

DEFINITIONS. (i) The solutions of (1) are said to be uniformly bounded, if 
for any a > 0 there exists a positive number {3 such that if 11 xo 11 a, 
II x ( t; xo , to) 11 < {3 for t to , where /3 depends only on a and is independent of to . 

(ii) The solutions of (1) are said to be equiultimately bounded for the bound 
B, if there exist positive numbers B and T such that 11 x(t; xo, to) 11 < B for 
t > to + T, where if 11 xo 11 a, T is determined depending only on to and a. 
B is independent of the particular solution. 

(iii) The solutions of (1) are said to be uniform-ultimately bounded for the 
bound B, if Tin (ii) is determined depending only on a and independent of to. 

If (1) is a linear homogeneous system, the stability of x(t) = 0 and 
the boundedness are equivalent [2, 6]; in particular, uniform boundedness is 
equivalent to uniform stability. And, if F(t, x) in (1) is periodic int, (ii) and 
(iii) are equivalent. 

When a function f(t, x) satisfies locally the Lipschitz condition with respect 
to x, we represent this fact by f(t, x) E Co(x). Moreover, if f(t, x) satisfies locally 
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the Lipschitz condition with respect to (t, x), we represent by f(t, x) E Co 
(t, X). 

Now we consider the Liapunov function V(t, x). We assume that V(t, x) 
is continuous and non-negative in its domain of definition and that 
V(t, x) E Co(x). Corresponding to V(t, x) we define the function 

V'(t, x) = lim _hl {V(t + h, x + hF(t, x)) - V(t, x) ). 
h-+o 

To simplify the statements, we give here some definitions. We will say briefly 
V ( t, x) has the property A when there exists a positive continuous increasing 
function a(r) such that V(t, x) a(II x 11). We will say V(t, x) has the property 
B when there exists a non-negative continuous increasing function b(r) such 
that b(II x II) V(t, x) and b(r) - oo as r- oo. Moreover we will say V(t, x) 
has the property C when there exists a positive continuous function c(r) such 
that V'(t,x) -c(II x 11). Let A*beadomaindefined by0 t < oo, II x II~ Ro 
( Ro may be sufficiently large). 

'THEOREM 1. If there exists a positive Liapunov function V ( t, x) which is defined 
in A* and has the properties A, B and if we have V' ( t, x) 0 in the interior of 
A*, the solutions of (1) are uniformly bounded. 

PROOF. For any a > 0 (we may suppose a > Ro), we have V(t, x) a(a) 
when II x II = a by the property A. By the property B, we can choose (3 so that 
b(/3) > a(a). Now we suppose that for some solution x = x(t; xo, to) issuing 
from (to,xo) (0 ~to< 00 , II xo II a), we have II x(t'; xo, to)II = (3 atsomet, 
say t'. Then there exist t1 and t2 such that II x(t1 ; Xo, to) II = a, II x(t2 ; Xo, to) II = /3 
and a < 11 x(t; Xo, to) II < (3 for t1 < t < t2. Considering the function V(t, x(t; 
Xo, to)), we have V(t1, x(t1; Xo, to)) a(a) and V(t2, x(t2; Xo, to)) b(/3). 
On the other hand, we have V(t2, x(t2; xo, to)) V(t1, x(t1 ; xo, to)) by the 
condition V'(t, x) 0, whence we have b(/3) a(a) and there arises a con-
tradiction. Therefore if 11 Xo 11 a, II x(t; xo, to) II < (3; that is to say, the solu-
tions are uniformly bounded. 

EXAMPLE: (Antosiewicz [1]). In the equation x" + cp(x, x')x' + h(x) = e(t), 
we suppose that cp(x, x') and h(x) are continuous for all values of their variables 
and e(t) is continuous. If cp(x, x') 0 for all x, x', H(x) = H h(u) du > 0 for 
all x 0, H(x) - oo with Ix I, and f° I e(t) I dt < oo, then every solution satis-
fies I x(t) I < c1, I x'(t) I < c2 as t - 00 • 

In this case we consider the system 
x' = y, y' = -cp(x, y)y - h(x) + e(t). 

If we put 
V(t, x, y) = ,Vy2 + 2H(x) - HI e(t) I dt, 

this V(t, x, y) satisfies the condition in Theorem 1. Therefore the solutions of 
this equation are uniformly bounded. 

When F(t, x) E Co(x), the converse of Theorem 1 is valid [6]. 
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THEOREM 2. We assume that F(t, x) E Co(x). If the solutions of (1) are uni-
! ormly bounded, there exists a positive Liapunov function V ( t, x) defined in A* 
such that it has the properties A, Band V'(t, x) 0 in the interior of A*. In this 
case we can obtain V(t, x) such that V(t, x) E Co(t, x). 

PROOF. If we put 

(2) V(t, x) = min [II x(r; x, t)II; 'TE [O, t] n DJ, 
T 

where D is the largest interval to the left of ton which x( r; x, t) is defined, it is 
clear that we can define V(t, x) for each point (t, x) in A*. From (2) we can 
easily see that V(t, x) II x II, i.e., V(t, x) has the property A. By the uniform 
boundedness of solutions, we have II x(t; Xo, to) II < /3(a) when II xo II a. We 
may assume that /3 (a) is a continuous strictly monotone increasing function of 
a. Then there exists a function a(II x II) such that O < a(II x II) V(t, x), 
where a(/3) is the inverse function of f3(a) and a(/3) is a continuous strictly 
monotone increasing function of /3 and a ( {3) --+ oo as /3 --+ oo . Thus V ( t, x) has 
the property B. 

Since II x( r; x, t) II takes its minimum at some T, we can see that V(t, x) E 
Co(t, x). Moreover we have V'(t, x) 0, because for any solution x = x(t; Xo, to), 
V(t, x(t; xo, to)) is a non-increasing function oft. 

Therefore this V ( t, x) is the desired function. 
When F(t, x) E Co(t, x), we can obtain a Liapunov function V(t, x) E Coo 

by Massera's method in [5](V(t, x) E Coo means that V(t, x) has continuous 
partial derivatives of all orders). 

THEOREM 3. If there exists a positive Liapunov function V(t, x) defined in A* 
and having the properties A, Band C, the solutions of (1) are uniform-ultimately 
bounded. Moreover, in this case, the solutions are uniformly bounded. 

PROOF. By the property B, choosing Ro suitably, we have a positive number c 
such that c V(t, x) for !Ix II Ro. Since the solutions are uniformly bounded 
by Theorem 1, there is a positive number B such that if 11 Xo 11 Ro, 
II x(t; xo, to) II < B. Now we consider x = x(t; xo, to) such that II Xo II a, where 
a is an arbitrary positive number and a > Ro . Then there exists a positive 
number /3 depending only on a such that 11 x(t; xo, to) 11 < /3 for t to. Con-
sidering V ( t, x) in the domain, 0 t < oo, Ro 11 x 11 /3, there exists a posi-
tive number X. depending on /3 such that V'(t, x) -X.(/3) by the property C. 
If we suppose that the solution satisfies always Ro < II x(t; xo, to) II /3 
if Ro < II Xo II a, we have 

V(t, x(t; Xo, to)) - V(to, Xo) -X.(t - to). 

From this, we can see that at some t, say t', we have 11 x(t'; xo, to) II = Ro, where 
to t' to + T and T = (a(a) - c)/X.. Hence we have 11 x(t; Xo, to) 11 < B 
when t > t0 + T, and this T depends only on a. Therefore the solutions of (1) 
are uniform-ultimately bounded. 
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When F(t, x) E Co(x), we can obtain the converse of Theorem 3 [6]. Namely, 

THEOREM 4. We assume that F(t, x) E C0 (x). In order that the solutions of 
( 1) are uniformly bounded and unif arm-ultimately bounded, it is necessary and 
sufficient that there exists a positive Liapunov function V ( t, x) E Co ( t, x) defined 
in .6.* which has the properties A, B and C. 

If we put 

(3) 

this V(t, x) is the desired function, where o > 1 and II x II > oB. 
When we apply the theorems on boundedness to differential equations of the 

second order, we can obtain existence theorems for periodic solutions by using 
Massera's theorem [4]. 

For example, consider the equation 

(4) x" + kf(x)x' + g(x) = kp(t) (k > O), 

wheref(x) andg(x) are continuous. WeputP(t) = Jgp(r)dr andF(x) 
Ji f(l) dt and we assume that (a) P(t) is bounded, (b) F(x) ----+ ± oo as x----+ ± oo 
and (c) xg(x) > 0 for Ix I~ xo > 0 andG(x) = Ji g(l) dt----+ oo as Ix I---+ oo. 
Then considering the equivalent system 

x' = y + kP(t) - kF(x), y' = -g(x) 

and choosing p and q > 0 suitably, we define V(t, x, y) as follows: 
2 

G(x) +} (x~ q, I YI < oo) 

2 

G(x) +} - x + q Clxl q,y p) 

2 

G(x) + f + 2q (x -q, Y p) 
V(t, x, y) 

2 2 
G(x) + '!f_ + --2cy (x -q, I Yi p) 2 p 

2 

G(x) + '!f_ - 2q 
2 

(x~ -q,y -p) 

2 

G(x) + f + x - q ( I XI q, y -p) . 

Then this V(t, x, y) satisfies the condition in Theorem 3, and hence we can see 
that the solutions are uniform-ultimately bounded. Therefore if g(x) E Co(x) 
and p(t) is periodic, ( 4) has at least one periodic solution. 

For equiultimate boundedness we have the following theorem [6]. 
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THEOREM 5. We assume that F(t, x) E Co(x). In order that the solutions of 
( 1) are equiultimately bounded, it is necessary and sufficient that there exist a 
positive number Band a non-negative Liapunov function V(t, x) E Co(t, x) satis-
fying the following conditions in A; namely, 

(1) a([[ x [[) V(t, x) for II x [[ B, where a(r) is a continuous function 
which is positive increasing for r > Band a( r) -+ ctJ as r-+ ctJ, 

(2) V'(t, x) -cV(t, x), where c is a positive constant. 
PROOF. We will show that the condition is sufficient. For the sufficient con-

dition, we need not require F(t, x) E Co(x). Now if we put 

W(t, x) = ec1V(t, x), 

W(t, x) satisfies the following conditions: 
(a) a([[ x [[)e"1 W(t, x) for II x II B, 
(b) W(t, x) E Co(t, x), 
(c) W'(t, x) 0. 

We suppose that for some solution, say x(t; Xo, to)([[ Xo II K), we have 
[[ x(tm ; Xo, to) II > B(B > B) for some sequence {tm} for which tm-+ ctJ with m. 
Then we have 

W(tm, x(tm ; Xo, to) a(B)e° 1"'. 

On the other hand, by the conditions (b) and ( c), we have 

W(tm, x(tm; Xo, to)) W(to, x(to; Xo, to)). 

If we put max II"' II;;; xW(to, x) = {3(to), we have a(B)e° 1"' {3(to). Since 
a(B) > 0 and tm-+ ctJ with m, there arises a contradiction. Therefore we can 
see that the solutions are equiultimately bounded for the bound B. 

Next we will show that the condition is necessary. We suppose that the solu-
tions are equiultimately bounded for the bound B. Now we consider a function as 
follows; namely, 

{ t - B (t B) 
G(t) = 0 (0 t < B). 

And we put 

(5) V(t, x) = sup [G([[ x(t + r; x, t)[[)e\ 0 r]. 
T 

Then we can see that this V ( t, x) is the desired function. 
When the solutions of ( 1) are uniformly bounded and uniform-ultimately 

bounded, we can find /3( II x II) andµ( II x II) such that II x( r; x, t) \I /3( II x II), 
T(t, x) µ(II x II). Therefore we can see by (5) that we have 

V(t, x) G(/3(11 x \l)e"Cllxlll, 

From this we can also obtain Theorem 4. 
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By using Theorem 5, we can obtain a necessary and sufficient condition for 
equiasymptotic stability in the large [6]. 

In this case we assume that F(t, 0) = 0 for 0 t < oo, 

DEFINITION. The solution x(t) = 0 is said to be equiat:iymptotically stable 
in the large, if x(t) = 0 is stable and there exists a positive number T(to, a, E), 
defined for any E > 0 and any non-negative value of a and to 0, such that 
II Xo II a, to 0 and t > to + T(to, a, E) imply II x(t; Xo, to) II < E. 

THEOREM 6. We assume that F ( t, x) E CO ( x). In order that the solution x ( t) = 0 
is equiasymptotically stable in the large, it is necessary and sufficient that there 
exists a Liapunov function V ( t, x) satisfying the following conditions in ~; namely, 

(1) V(t, O) = 0 and V(t, x) > 0, if II x II 0, 
(2) ;\(II x II) V(t, x), where ;\(u) is a continuous increasing function 

such that ;\(u) > 0for u > 0 and ;\(u) oo with u, 
(3) V'(t, x) -cV(t, x), where c is a positive constant. 

In this case, the solutions are equiultimately bounded for any positive number 
E. Hence for E = 1/n(n = 1, 2, • • • ), we can define Vn(t, x) in the same way 
as in Theorem 5. Choosing suitable constants gn, if we put 

., 1 
V(t, x) = ~ 12 n gnVn(t, x), 

this V ( t, x) is the desired function. 
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