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In this paper, which will appear in complete form elsewhere, conditions are ob-
tained under which all solutions of certain real nonlinear systems of differential 
equations tend to zero as t oo . This study originated in some problems of re-
actor dynamics; however, the systems investigated are of a quite general nature. 
Therefore, the results are first given in an abstract setting and then interpreted 
physically. 

Theorem 1 is concerned with the following general form of the Lienard 
equation 

(1) x + h(t, x, x)x + f(x) = e(t) C = d/dt). 

THEOREM 1. Let the fallowing conditions be satisfied: 

(2) h(t, x, z),f(x), e(t) are sufficiently smooth for a local existence and 
uniqueness theorem to hold for (1) on O t < oo ; - oo < x, z < oo. 

There exists a constant k > 0 such that 

(3) k h ( t, x, z) ( 0 t < oo ; - oo < x, z < oo ) . 

Given any constant B > 0 there exists a constant KB > 0 such that 

(4) h(t, x, z) KB (0 t < 00 ; Ix [, I z I B). 
Given any constant B > . 0 there exists a constant KB > 0 such that 

(5) [f(x1) - f(x2)[ KB I X1 - X2 I ([ X1 [, I X2 I ~B). 
(6) xf(x) > 0 (x 0). 

(7) g(x) = f'J(~) oo oo. 

There exists a constant K > 0 such that 

(8) 

(9) 

[e(t)[ K (0 t < oo). 

f'te(t) I dt < 00 • 

Then given any xo, Xo the solution x(t) of (1) satisfying x(0) = Xo, x(0) ± o 
exists on O = t < oo and 

(10) lim x(t) = 0, lim x(t) = 0. 

152 



STABILITY FOR NONLINEAR SYSTEMS 153 

An immediate consequence of Theorem 1 is 

COROLLARY 1. If in addition to the hypothesis of Theorem 1 the condition e ( t) ·-+ 0 
as t oo is also satis:fied, then x( t) - 0 as t - oo. 

The uniqueness hypothesis ( in all the theorems) is not really necessary and 
is used only to simplify various statements. 

If e(t) = 0, then Theorem 1 may be thought of as a "global" asymptotic sta-
bility theorem of the trivial solution x(t) = 0. That is, all solutions tend to zero 
as t - oo and not merely those for which I xo I , I Xo I are sufficiently small. If 
e(t) ¢ 0, then x(t) = 0 is, of course, no longer a solution of (1). This sort of 
complication of stability problems has been considered, for example, in [1, ch. 13]. 

As part of the novelty of Theorem 1 lies in the fact that h is allowed to depend 
on t, it is of interest to focus some attention on hypotheses ( 3) and ( 4) which 
relate to this dependence. That (3) cannot be dropped entirely is obvious from 
the example x + x = 0. Assumption (3) cannot be replaced by h > O; for, if 
h(t) 0 and h(t) E L1(0, oo ), then it can be shown that there exist solutions of 

(11) x + h(t)x + x = o 
which do not tend to zero as t - oo. Although ( 4) is automatically satisfied in 
case h does not depend on t explicitly, it still cannot be dropped entirely. For if 
h(t) E C(0, oo ), h(t) > 0, h- 1(t) E L1(0, oo) and [h(t) + l]h- 2 (t) E L1(0, oo ), 

then there exist solutions of ( 11) which do not tend to zero as t oo. These 
remarks are established by methods which are in the spirit of this paper; in con-
nection with the last one see [2, p. 137]. 

The proof of Theorem 1 is subdivided into three parts. These establish ( under 
an increasing number of hypotheses) : I, the existence and boundedness ( the 
bound depending on xo, x0) of x(t), x(t) on 0 t < oo; II, x(t) 0 as t - oo; 

and III, x(t) 0 as t - oo. I, which is of interest in itself, is due to Antosiewicz 
[3] in the special case that his independent of t. The methods employed involve 
the same sort of considerations as in the Liapounov second method. Equation ( 1) 
s written equivalently as 

(12) x = -z, z = -h(t, x, -z)z + f(x) - e(t), 

and the energy function 

(13) E(x, z) = g(x) + ½z2 
is introduced together with its total derivative with respect to ( 1); that is, 

(14) E'(t, x, z) = -h(t, x, -z)z2 - e(t)z. 

Because of the e(t)z term in (14) and because a global rather than a local result 
is desired, one cannot simply cite the classical Liapounov ordinary stability 
theorem (see [4, p. 113]) in order to obtain I. The present proof of I is similar 
to that of [3]. Because E'(t, x, z) is not negative definite in x, z (even for the 
case e(t) = 0), the classical Liapounov asymptotic stability theorem (see 
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[4, p. 114]) cannot be applied here to give even a local asymptotic result. The 
proofs of II and III circumvent these difficulties. 

Theorem 2 is concerned with the system 

(15) 
" x = - L a;z; 

i=l 

z; = -h;(t, x, z)z; + b;f(x) + e;(t) (i = 1, · • • , n), 

where the a; and b; are constants and z = (z1 , • • • , z,,), which for n = 1 is 
essentially (1). 

THEOREM 2. Let the functions h;, f, ei be sufficiently smooth for a local existence 
and uniqueness theorem to hold for ( 15) on 0 t < oo ; - oo < x, z; < oo . Let 
the h; satisfy (3, 4); the f, (5, 6, 7); and thee;, (8, 9). Furthermore, let the con-
stants a; , b; satisfy either 

(16) 

or 

(17) 

a; = c b; , where c > 0 and the b; are arbitrary 
except that at least one, say bi , is not zero, 

a;/b; > 0 ( i = 1, • • • , n). 

Thengivenanyxo,zothesolutionx(t),z(t) of(15) satisfyingx(0) = xo,z(0) = z0 

exists on 0 t < oo and 

(18) limx(t) = 0, limz(t) = 0. 

In (3) -oo < z < oo means -oo < z; < oo (i = 1, ••• ,n), andlzlin (4) 
means I z I = L I Z; I • 

The proof of Theorem 2 differs only in minor details from that of Theorem 1; 
appropriate energy functions analogous to (13) are defined for the case of (16) 
and (17). An obvious analogue of Corollary 1 holds here when e;(t)-; 0 as 
t-;oo. 

Consideration of the linear special case of ( 15) defined by 

(19) h;(t, x, z) = h; > 0, f(x) = x, e;(t) = 0, 

where the h; are constants, sheds additional light on conditions ( 16, 17). It can 
be shown that the real part of each of the characteristic roots of the coefficient 
matrix associated with (15, 19) is negative if either (16) or (17) is satisfied. 
Hence, in the special case of (19), Theorem 2 reduces to a well-known theorem 
of Liapounov (see [1, p. 314]). This classical theorem may be used together with 
a standard perturbation technique to obtain a local (but not global) asymptotic 
stability result if, for example, the second condition in (19) is generalized to 
f(x) = x + o(x) as x-; o. However, a perturbation technique is hopeless if, 
say,f(x) = x3 (which satisfies (5, 6, 7)). 

We remark that the last n equations of ( 15) may be written as 

z = G(t, x, z)z + bf(x) + e(t), 
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where 

Q = -diag (h1 , • • • , hn), Z = col (z1 , • • • , Zn), 

b = col ( b1 , • • • , bn) , e = col ( e1 , " " • , en) . 

However, if G is of the form G = -h(t, x, z)A, where h(t, x, z) is a scalar func-
tion satisfying (3, 4) and A is a positive definite real symmetric matrix, then the 
system is easily transformed into a special case of ( 15). A similar comment ap-
plies to (20) below. This observation is used in the reactor applications. 

Theorem 3 is concerned with the system 
n 

x = -aoy - L aizi 
i=l 

(20) y = bof(x) + eo(t) 

z; = -h;(t, x, y, z)z; + b;f(x) + e;(t) (i = 1, • • • , n), 

where again the a; and b; are constants and z = (z1 , • • • , Zn). 

THEOREM 3. Let the functions hi, f, e; be sufficiently smooth for a local existence and 
uniqueness theorem to hold for ( 20) on O t < oo ; - oo < x, y, z; < oo . Let the 
hi satisfy (3, 4); thef, (5, 6, 7); and thee;, (8, 9). Furthermore, let the constants 
a; , b; satisfy either 

(21) 

or 

a; = c b; , where c > 0 and the bi are arbitrary except 
that bo -;t-0 and at least one other b; , say bj, is not zero, 

(22) a;/b; > 0 (i = 0, • • • ,n). 

Then given any Xo, Yo, zo the solution x(t), y(t), z(t) of (20) satisfying x(0) 
Xo, y(0) = Yo, z(0) = zo exists on O t < oo and 

(23) lim x(t) = 0, lim y(t) = 0, lim z(t) = 0. 

Here the range of the variables in (3) is O t < oo; - oo < x, y, z; < oo and 
the condition in ( 4) is O t < oo; Ix I , I y I , I z I B. An obvious analogue 
of Corollary 1 holds here when e;(t) ----t O as t ----t oo. 

Similar to ( 19) we consider the special linear case of ( 20) defined by 

(24) h;(t, x, y, z) = h; > 0, f(x) = x, ei(t) = 0, 

where the h; are constants. Here it can also be shown that the real part of each 
of the characteristic roots of the coefficient matrix associated with (20, 24) is 
negative if either (21) or (22) is satisfied. The remarks following (19) are 
equally applicable here. 

On comparing Theorems 2 and 3 it might be suspected that more than one y 
type component could appear in (20) without causing any change in the con-
clusion of Theorem 3. Consideration of the example x = -yi - Y2 - z, y1 = 
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f(x), Y2 = f(x), i = -z + f(x), where f satisfies (5, 6, 7), shows that this is 
not the case. 

In the proof of Theorem 3, under hypothesis (21), the energy function 

(25) ( ) 1 () 1 2 1~ 2 E x, Y, z = cg x + 2 y + 2 6 Zj 

is employed. The periodicity of all solutions of the autonomous system 

x = -c boy, y = bof(x), 

note ( 6), also plays an important role in the proof. 
Finally, Theorem 2 with n = l ( which is really Theorem 1) and Theorem 3 

are applied to certain problems in reactor dynamics. These enable us to con-
sider not only more general reactor models than were considered previously in 
[5], but also to obtain global rather than local results. To illustrate the applica-
bility of Theorem 3, consider the dynamic equations for a class of heterogeneous 
reactors of m(m 2) media: 

(26) 

m 

u = - L <X.jTj 
i=l 

m 

E;T; = -h(t, u, T) L X;j(T; - Ti)+ 'IJd(u) + e;(t) 
i=l 

(i = 1, • • • , m), 

where T = col ( T1 , • • • , Tm). The special case studied in [5] had h(t, u, T) = 1, 
f(u) = exp [u] - 1, e;(t) = 0 (i = 1, • • • , m). In (26) u is the logarithm of 
the ratio of the reactor power to the stationary power ( u = 0 at equilibrium) 
and T; is the deviation of temperature from equilibrium temperature in the ith 
medium (T; = 0 at equilibrium). The quantities E;, a;, X;;, '1/i are the reactor 
parameters ( for details see [5]), where Xii = Xii and Lf=1 '1/i = 1, E; > 0 for 
physical reasons; his a heat conduction term and e;( t), i = 1, • • • , mare forcing 
terms. Letting a = col (a1, • • • , am), similarly 'I/ and e, andµ' = transpose of 
µ (for anyµ), and E = diag (E 1 , ···,Em), A = (A;i), where A;;= Lj,t,iXij, 
Aij = -X;j (i r" j), (26) can be written as 

u = -T'a 
(27) 

ET= -h(t, u, T)AT + 'IJf(u) + e(t). 
If X;j = Xji > 0 (i r" j), it can be shown that the real symmetric matrix A 

in (27) has precisely one characteristic value equal to zero and that the remain-
ing m - 1 characteristic values are positive. Moreover, if E; > 0, there exists 
a real nonsingular constant matrix R such that 

(28) R'ER = I, R'AR = D = diag (d1, • '', dm), 
where I is the m by m unit matrix. Furthermore, exactly one d; is zero, say 
dj = 0, and d; > 0 (i r" j). Letting T = RQ in (27) and 
(29) a = R'a, b = R''IJ, e(t) = R'e(t), 
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( 27) becomes 

(30) Q; = b;f(u) + e;(t) 

Q; = -h(t, u, RQ) d;Q; + b;f(u) + e;(t) (i j), 

which, under the above assumptions regarding ~; and X;; , has the same stability 
properties as (26), since Risa nonsingular constant matrix, and (30) obviously 
has the form of ( 20) . • • 

THEOREM 4. Let h, f, e; satisfy the hypothesis of Theorem l and be sufficiently 
smooth to guarantee local existence and uniqueness for (26); let X;; = X;; > 0, 
E; > 0, i = 1, • · • , m; let R be chosen as in (28); and let a, b be defined by (29). 
Further, let a, b satisfy either 

(31) 

or 

(32) 

a = c b, where c > 0 and b is arbitrary except that 
b; 0 and at least one other b; is not zero, 

Then given any Uo, To the solution u(t), T(t) of (26) for which u(0) = u0 , 

T(0) = To exists for 0 t < oo and u(t) = 0, T(t) = 0. 

Note that the verification of (31) or (32) is a purely algebraic matter; (31) is 
analogous to the crucial assumption (2.6) of [6] used in the analysis of a certain 
continuous medium reactor. 

Added in proof: The complete paper has appeared in Arch. for Rat. Mech: 
and Anal., 5 (1960), 194-211. For further generalizations see J. J. Levin, same 
journal, 6 (1960), 65-74. •• • 
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