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1. Introduction 
In a recent report by S. Lefschetz and J. P. LaSalle it is stated, concerning 

the question of converse theorems, that, "One virtually witnesses the end of an 
investigation." Although this type of forecast is usually dangerous, it is a fact 
that such a high degree of perfection has been attained in this field that one is 
strongly tempted to concur in the above mentioned opinion. 

We shall try to give a short account of the present state of the problem. It 
should be mentioned that a very comprehensive book on this question has re-
cently been published by W. Hahn [3]. On the other hand, we shall not consider 
the closely related problems of boundedness,_ ultimate boundedness, and the like, 
which have been successfully investigated by T. Yoshizawa as regards both 
direct and converse theorems. Neither shall we discuss problems on special types 
of asymptotic behavior of the solutions based on the order of smallness of the 
Lyapunov function and its derivative (cf. [6], [22]). 

We shall use the following notation. The systems considered are of the form 
x = f(x, t); 

xis an element of a vector space X (which is generally assumed to be Euclidean); 
t is a real variable which varies over J = [O, oo ) ; f is defined in a do-
main G c X X J which contains the t-axis {O} X Jin its interior; f(0, t) = 0. 
Lyapunov's second method studies the stability properties of the solution x = 0 
by means of certain properties of a "Lyapunov function" V(x, t) and its "total 
derivative" or "deriv~tive al<>ng the solutions of the system", V'(x, t). If Xis 
Euclidean n-space a:rid Vis assumed to be continuously differentiable, V'(x, t) = 
(aV/ax)-f(x, t) + (aV/at), where av/ax represents the gradient of V with 
respect to x and the dot;a scalar product; but V' may be constructively defined 
under much more general assumptions. It is always assumed that V(0, t) = 0. 

The theorems whose converse is sought are the following: 
(1) (Simple,stability [11]). If a positive definite V exists such that V' ;;;;; 0, 

x = 0 is stable. 
(2) (Unifo:rtn stability [17]). If a positive definite V exists which has an 

infinitely small upper bouii,d _and such that V' ;;;;; 0, x = 0 is uniformly stable. 
(3) (Uniform asymptotic stability [11], [12]). If a positive definite V exists 

which has. an infinitely SrMll -upper bound and such that V' is negative definite, 
x = 0 is uniformly asymptotically stable. 

( 4) (Instability [11]). -Jf a Lyapunov function V exists which has an infinitely 
small upper bound, such that V' is positive definite and V assumes positive values 
at points arbitrarily near x = 0, then x = 0 is unstable. 

(5) (Instability [11]). If a bounded function V exists such that V' =XV+ W, 
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A > 0, W 0 and, if V > 0 at points arbitrarily near x = 0, then x = 0 is 
unstable. 

( 6) ( Instability [2]). Assume that there is a function V and a domain H having 
points arbitrarily near x = 0, such that Vis positive and bounded and V' > <p( V) 
in H, where <p ( r) is a continuous increasing function of r for r > 0, <p ( 0) = 0. 
Then x = 0 is unstable. 

In assessing the strength of converse theorems, three aspects are important: 
(a) That the theorems hold under the weakest possible regularity assump-

tions on f and provide Lyapunov functions which satisfy the strongest possible 
regularity requirements. We shall use the following notation: C represents the 
class of all continuous functions; Co the class of functions satisfying a local 
Lipschitz condition at each point; Cs , 0 < s < oo, the class of functions having 
continuous derivatives up to the order s; C"' the class of functions having con-
tinuous derivatives of all orders. A bar placed over the C denotes the uniform 
boundedness with respect to t of the functions, Lipschitz constants or derivatives 
involved; for instance, 6. is the class of functions having continuous derivatives 
up to the order s which are uniformly bounded with respect to t. 

(b) That V be defined in the largest possible domain and not merely in a 
sufficiently small neighborhood of x = 0. 

( c) That the theorems hold for equations defined in general spaces (Banach 
spaces, dynamical systems in metric spaces, etc.). 

We shall briefly refer to problems (b) and (c) in Part V. As to problem (a), 
the most effective method of attack used so far (Kurzweil, Massera) has been 
to find first a Lyapunov function Vo which satisfies the essential requirements of 
the theorems except that Vo E Co and then to smooth out Vo to obtain V E C"'. 
The smoothing-out operation consists basically in a convolution transform with 
a kernel belonging to C"' . 

In what follows we shall denote the converse theorems with the same number 
as the direct statements, primed; the statements are therefore omitted except 
for the regularity conditions. 

2. Simple and uniform stability 
( 1') (Persidskii [17]). f E Cs , V E C. . 
(2') (Krasovskii [5]). f E 61 , V E 61 . 
(2') (Kurzweil [8]). f E C1, V E C1. 
(1') (Yoshizawa [19]). f E C, V continuous at {O) X J. 

It should be stressed that the last result is in a sense deceptive, because even 
continuity of V for x 0 is not assured. Now, the gist of Lyapunov's second 
method lies precisely in the possibility of deducing stability properties from 
properties of V and V', where the latter can be computed directly, without a 
previous integration of the system; but this direct computation requires that V 
be sufficiently regular ( for a detailed discussion of this point, cf. [16]). 

As a matter of fact, Kurzweil and Vrkoc [10] have shown by means of a simple 
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counterexample that if f E, C'and uniqueness of the solutions fails to hold, there 
may not exist a continuous V satisfying the requirements of Theorems (1) or 
(2) even if x = 0 is uniformly stable. To obtain a converse theorem in the case 
J E C they have introduced a new concept of stability, which we conventionally 
denote by * -stability and which differs from the usual one, roughly speaking, 
in that the solution x = 0 is compared not only with perturbed exact solutions 
of the equation but also with (in some sense) approximate solutions. It is shown 
that, if uniqueness holds, both concepts coincide. With this concept of stability 
the following converse th~orems hold: • 

(1*) (Kurzweil-Vrkoc, [10]). f E C, V E Coo. 
(2*) (Kurzweil-Vrkoc, [10]).f EC, VE Coo. 

As a consequence of the previous remark, (1*) and (2*) reduce to (1') and 
(2') if uniqueness of the solutions is assumed. 

3. Asymptotic stability 
The most conspicuous results are: .• 

(3') (Massera, [13]). f E Cr periodic, V E 61. 
(3') (Barbasin, [1]). f E C. autonomous, V E 6., s 1. 
(3') (Mallcin, [12]).J E C1; .VE (Ji .. 
(3') (Krasovski'i'., [7]). f E 61 , V E 61 (as a corollary of a much more 

general theorem). 
(3') (Massera, [Hj]). f E Co, V E Coo . 
(3') (Kurzweil, [9]). f E C, V E Coo. 

Ih the first of Massera's papers, as well as in Malkin's, V(x, t) is expressed as 
the integral from t to oo of G(x(r)), where x(r) is the solution through (x, t) 
and G is a suitable gauge function which ensures the convergence of the integral. 
In the second paper of Mass~:ra, as was explained in the Introduction, a function 
Vo is constructed (which is, roughly speaking, a supremum of G(x( T)) for 
T t) and then Vo is smoothed out to obtain V. Kurzweil combines these 
methods and other technical reso,urces with his idea of approximate solutions; 
owing to the very weak assumption on f his proof is very long and complicated. 

Barbasin's proof is based on an entirely different idea, the so-called "method 
of sections". Krasovski'i'. puts the problem in a more general setting which en-
ables him to obtain simul~~neously converse theorems on asymptotic stability 
and on instability. He defi:ries what he calls noncritical and uniform behavior or, 
as we prefer to render it, uniformly noncritical behavior, as follows: 

The solutions of a differential system have a uniformly noncritical behavior 
in the cylinder II x II < o, t 0 (which is supposed to be contained in G) if 
given r,, 0 < r, < o, there is a T = T( r,) > 0 such that the solution x(t) pass-
ing through any (xo, to), II Xo II> r,, to~ T, satisfies II x(r)II > o for some 
T = T(Xo, to) in (to - T, t0 + T). If we always have r < to and if f E 6, this 
behavior is equivalent to uniform asymptotic stability. If the system is autono-
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mous, a necessary and sufficient condition for uniformly noncritical behavior is 
that the sphere 11 x II < o contain no non-trivial complete trajectory (i.e., a 
trajectory lying in the sphere for - oo < t < + oo ) . 

The following theorems can then be proved: 

THEOREM A. (Krasovskil'., [4]). If f E C1 autonomous, a necessary and sufficient 
condition for the existence of a V E G\ with a definite V' is that there exist a neigh-
borhood of x = 0 containing no complete trajectory except the trivial one. 

THEOREM B. (Krasovskil'., [7]). If f E C1 , a necessary and sufficient condition 
for the existence of a V E C1 with a definite V' is that the behavior be uniformly 
noncritical in some cylinder 11 x II < o, t 0. 

Krasovskil'.'s Theorem (3') above is a corollary of Theorem B. The method of 
proof of Theorem A is a combination of the method of sections and integral 
representations of the type of Massera's. The method of proof of Theorem Bis 
much more elementary. 

4. Instability 
Theorem ( 4), as it stands, admits no converse, because its assumptions imply 

much more than mere instability. On the other hand, Theorem (5) is a corollary 
of Theorem (6), so that any Theorem (5') implies (6'). 

(4*) (Krasovski1, [7]). A necessary and sufficient condition for the existence 
of a V satisfying the assumptions of Theorem (4) is that the behavior be uniformly 
noncritical and that there exist t0 0 and Xn -t O such that r(Xn, to) > 0. 

(5') (Vrkoc, [18]). f E C1, V E C1, V' = V (A = 0, W == 0). 

5. Other refinements 
We now briefly refer to problems (b) and ( c) ( cf. Introduction). 
The question of defining V in the largest possible domain ( which includes the 

case of asymptotic stability in the large) has been partly solved by Kurzweil 
and Zubov. Zubov proved in 1955 [20] the following result (with slight changes 
in the formulation): 

(3') If f E C. autonomous, s l, a V E C exists in the domain A C X of 
asymptotic stability ( the attractive domain of x = 0), V -t oo as x approaches 
the boundary of A. 

The proof of Kurzweil's (3') defines Vin any domain H X J contained in 
the domain of asymptotic stability in X X J; if the system is autonomous, 
this leads again to Zubov's result by taking H = A. It is not unlikely that, with 
small modifications in the proof, Kurzweil's method will yield the definition of 
V in the domain of asymptotic stability in the general non-autonomous case. 
Zubov has also tackled this general case, but he obtains only V E C, which is 
very unsatisfactory (cf. previous remark to Theorem ( 1') of Yoshizawa) . 

The possibility of extending the converse theorems to systems defined in 
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spaces which are more general than finite-dimensional Euclidean is closely re-
lated to the problems of regularity. Indeed, in a general space there may not 
exist a convenient notion of differential (needed for the definition of V') and, 
even if it exists, there may not be "enough" smooth functions in the space. For 
instance, it is easy to show that in a real Banach space which is not isomorphic 
to Hilbert space there are no positive definite quadratic forms. Zubov [21] has 
proved converse theorems in the case of general dynamical systems but he ob-
tains only V E G, which is unavoidable in this general setting but deceptive in 
the sense explained in the remark made before. Another result in this general 
direction is: 

(3') (Massera, [14], [15]). f E G., V E G,, 0 s < oo in any Banach 
space where gauge functions E G. exist; in particular, in any Banach space 
whatsoever, f E Go, V E Go . 

Cf. also [16] and the report on Linear Differential Equations and Functional 
Analysis in this Symposium. 
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