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Section 1 

In recent times there appeared several papers concerning the question of di­
vergence of the series in perturbation theory of classical mechanics or the re­
lated question of nonexistence of integrals of Hamiltonian systems (see [4], [6], 
[7], [10]). The aim of this paper is to give a very simple model of Hamiltonian 
systems for which the divergence of the series involved can be exemplified very 
easily with algebraic means. 

The simplest problem of this type was investigated by G. D. Birkhoff [1]: 
Consider a mapping 

X1 = f(x, y) 

Yi = g(x, y) 

near a fixed point x = y = 0, assuming that f(x, y), g(x, y) are real analytic 
near the origin. Furthermore, the mapping is assumed to be area-preserving, a 
groperty which is related to Hamiltonian systems of differential equations. The 
fixed point x = y = 0 of ( 1) is called elliptic if the linear part of the mapping 
is equivalent to a rotation about an angle a. Therefore we assume 

f = x cos a - y sin a + !2 + fa + 
g = x sin a + y cos a + g2 + g3 + 

where f, , g, represent homogeneous polynomials of degree v in x, y. 
Birkhoff's result can be formulated as follows: If a/ 'IT' is irrational, then there 

exist real formal series cp(!;, TJ), if;(!;, TJ) such that the formal transformation 

(2) 
X = cp(i;, TJ) 

y = if;(l, TJ) 

transforms the mapping ( 1) into 

t+ 

1/ + 

(3) 

where 

~1 = t cos w - 1/ sin w 

1/1 = t sin w + 1/ cos w 

w = a + /3(f + 7]2 ) + · · · 
is a formal real power series inf + 7]2 . In other words, in appropriate coordinates 
the mapping (1) has the form of a rotation where the angle of rotation w de­
pends on the radius; however, the coordinate transformation (2) might be 
given by divergent series. 
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If rp, t/; are convergent, hence also w convergent, it is clear that the function 
f!' + r,2 is invariant under the mapping ( 3), hence there is an analytic function 
G(x, y) = x2 + y2 + • • • such that G(xi, Yi) = G(x, y). In fact, Birkhoff showed 
that the existence of such an invariant function G(x, y) is necessary and suf­
ficient for the convergence of cp, t/; in (2) with appropriate normalizations. Since 
such an invariant function G(x, y) corresponds to an integral of a system of 
differential equations, Birkhoff called mappings (1), for which (2) converges 
integrable, the others nonintegrable. 

The question arises which case is the "general" one. Since the divergence of 
the series rp, t/; is due in part to the presence of small divisors of the form 
An - 1 (A = eia), it was conjectured that one might have convergence if a/ 1r is 
a number which is badly approximated by rational numbers, i.e., which satisfy, 
say, 

(4) 

for all integers p, q with some positive c. For discussion in this direction see 
Wintner [3], Petersson [2]. It is well known that the numbers a which do not 
satisfy ( 4) are of measure zero. Such considerations would indicate that the 
divergence of (2) is exceptional. 

On the other hand, it was shown quite recently that the integrable case is the 
exceptional one, although in the sense of Baire's categories and not in the sense 
of measure theory. This was carried out for the mappings of the form ( 1) by 
Rii.ssmann [10], using the same ideas and methods developed by C. L. Siegel 
[4] for Hamiltonian systems near an equilibrium. 

Here we want to give explicit examples of mappings for which the non-integra­
bility can be established very easily. Moreover, these examples show very clearly 
that number-theoretical conditions like ( 4) are completely irrelevant. For 
example, we will show that the mapping 

(5) 
Xi = (x + y3) cos a - y sin a, 

Yi = ( x + y3) sin a + y cos a, 

a/1r not integer, 

is always nonintegrable. Moreover, we establish simple conditions for entire 
Cremona transformations which guarantee nonintegrability. Even though the 
arguments given in this note prove only the divergence of the transformation 
(2) into normal form and hence exclude real analytic integrals of the form 
G(x, y) = x2 + y2 + • • • it is easily seen that even differentiable integrals are 
excluded. This follows from Lemma 1 in [6]. 

The proofs of the nonexistence of integrals proposed by Diliberto [7] are of 
different nature, since these integrals are considered in the neighborhood of a 
periodic surface, while the problem discussed here refers to integrals near a 
periodic solution. 

Section 2 
To construct such area preserv1ng nonintegrable mappings ( 1) we study 

entire Cremona transformations, i.e., mappings for which f(x, y), g(x, y) are 
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polynomials. From the fact that 

fvg,, - f ,,gv = I 

it follows that the inverse mapping is also given by polynomials: 

(6) 
x = J(x1 , Yi) 

(see W. Engel [8]). 
Let k denote the larger of the degrees off and g; similarly, k the larger of the 

degrees of J, §. Let F, G be the homogeneous polynomials of degree le which are 
contained inf, g respectively. Sincej, 1gx - f,,gy = I it follows that FyGx - F,,GY = 
0 if k > I which implies that 

aF + bG = O; 

without loss of generality we can assume 

(7) G = µF. 

Similarly for the inverse 

The number µ has a geometrical interpretation for the mapping: For large 
x 2 + y2 the image point will lie near the line Y1 = µx1 . 

LEMMA. If the Cremona transformation (I), denoted by M, satisfies le = k > 1 
and 

(µ - µ,)F(l, µ)F(I, µ,) ~ 0 

and if F(x, y), F(x, y) are relatively prime over the ring of real polynomials, then 
the iterates M 2a of even order have only finitely many fixed points; in fact, their 
mlmber is at most le2q. 

PROOF. For all integers v we denote by (x,, y,) the coordinates of the image 
point of x, y under M'. The fixed points of M 2q satisfy 

X2q = Xo; Y2q = Yo, 

which are in one to one correspondence with the solutions of 

(8) 
Xq - X-q = 0 

yq - Y-q = 0. 

Xq , X-q represent polynomials in x, y for which we easily compute the highest 
order terms by induction: 
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where 

There are similar equations for X-q, Y-q. Thus the left hand sides of (8) repre­
sent two polynomials of degree kq. 

According to a well known theorem of Bezout the number of common root 
exceeds the product of the degrees of these polynomials-i.e., k2q-only if the 
polynomials have a common factor. Thus the Lemma will be proven if it is 
shown that the polynomials Xq - X-q and yq - Y-q have no common factor, for 
which it suffices to show that their principal parts have no common factor. These 
principal parts are 

nkq-1 A A ...... kq-I 
µaqP - µaqF . 

They have a common factor only if 
,.,.,.,.-1 d . FAkq-1 

aqP an aq 

have a common factor, since µ ~ µ. Since aq<iq ~ 0 this implies that F and F 
have a common factor which contradicts the assumption. 

Section 3 

To prove that a mapping M is nonintegrable it is sufficient to show that there 
is sequence of integers q1 , q2 , • • • q, - oo, such that Mq" has finitely many 1 

fixed points in • 

0 < x2 + Y2 ~ p; 

where p, - 0. If, namely, (2) is convergent then one can assume the mapping 
to be of the form ( 3). Then with each fixed point P the whole circle through P 
consists of fixed points; i.e., their number is infinite. 

To establish infinitely many fixed points of the iterates of M we use Birkhoff's 
fixed point theorem for which we refer to [5]. If 

q = 1, 2, 3, 4 

one can find a convergent transformation (2) such that M has the form (3) up 
to terms of order 3 inclusively. Under the additional assumption {3 ~ 0 Birk­
hoff's fixed point theorem states: For any e > 0 there is a q such that Mq has at 
least 2q fixed points in x2 + y2 < e2. It is easily seen that one can restrict q to 
even numbers. 

Section 4 

Summarizing, we have shown that under the conditions of the Lemma and 
the additional assumption that ( 1) has an elliptic fixed point with {3 ~ 0 the 

1 I.e., at least one and not infinitely many fixed points. 
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mapping is nonintegrable near that fixed point. For the example ( 5) one easily 
checks that the conditions of the Lemma are satisfied, as well as (3 = t 7" 0 
provided 

sin a 7" 0.2 

The construction of Cremona transformations is achieved easily by repeated 
application of mappings 

X1 X + h(y) 

Yi Y 

and rotations. Since the conditions of the Lemma and (3 -;z'-0 can be formulated 
by finitely many inequalities one finds that in the class of area-preserving Cre­
mona transformation the nonintegrable case is the general situation. 
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