
PERIODIC ORBITS ON TWO MANIFOLDS* 

BY BRUCE L. REINHART 

Given any vector field V on an oriented two manifold, we can assign to any 
curve Can integer I(V, C) defined by an integral. On the other hand, to any C 
with everywhere nonzero tangent vector, we can assign an integer called the 
winding number of C. By comparing these two integers, necessary conditions for 
C to be a periodic orbit may be obtained. These ideas are discussed in the first 
two sections, while in the third we apply them to a problem on the solid torus; 
we show that a certain class of vector field always admits a periodic orbit. 

1. Winding number 

Let M be a compact oriented two dimensional manifold of genus g; that is, a 
sphere with g handles. A regular curve on M is a curve of class C1 with nowhere 
vanishing tangent vector. We have defined [2] the winding number by the 
formula 

1 11 w(c) = 271" t=o d(C(t) - F(t)) mod x(M) 

in which: 
C is a regular closed curve; that is C(O) = C(l) and C(O) C(l). 
C(t) is the tangent vector at parameter t. 
F is a vector field on M, fixed once for all, which we shall specify precisely 

later. 
C-F is the angle from F to C. 
x(M) is the Euler number of M, x(M) = 2 - 2g. 

It is well known that the fundamental group of M may be repre
sented by 2g generators A1, • • • , A20 , with one relation A1A2A11A; 1 • • • 
A 211_1A 211A; 01_1A 2; = 1. Each of these generators may be represented by a regular 
simple closed curve through the base point. The vector field F is specified by the 
conditions that 

(i) F has only one singular point. 
(ii) The winding number of each of the curves Ai is zero. 

Actually these conditions do not specify F uniquely, but they do determine the 
winding number uniquely. 

Let us consider the case g = 3. A suitable field Fis illustrated in Figure 1, 
which shows one half of M. Similarly labelled points are joined along the hidden 
side; thus there are five curves which tend at each end to the singular point. The 
remainder of M is filled by simple closed curves. Let us compute a few winding 
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numbers. First of all, each of the interior boundary curves on the diagram has 
winding number zero, for each is never tangent to F. The outer boundary curve, 
on the other hand, has winding number 2 (mod 4), since along this curve the 
angle between its tangent and the field F makes two full rotations. More gener
ally, from a similar diagram for genus g, we see that the outer boundary curve 
has winding number g - 1. In our paper [2], we have given a formula for com
puting the winding number of any simple closed curve from its homotopy class; 
we hope to prove in a later paper that this formula reduces to the statement 
that the absolute value of the winding number of a simple closed curve is equal 
to one less than the number of handles which it wraps around. 

FIG. 1 

2. Periodic orbits 

Let V be a vector field on M having unique trajectories through nonsingular 
points. Then any periodic orbit C is a regular simple closed curve, so possesses 
a winding number. This winding number is computed by the formula 

w(C) = _.!__ J d(V - F) modx 
211" C 

On the other hand, this latter formula is defined for any closed curve C, whether 
or not it is an orbit of V; if its value is not that prescribed for simple closed 
curves homotopic to C, then C cannot be an orbit. Following these ideas, we 
have proved [2]: 

PROPOSITION. Let S be the locus of singular points of V, C any closed curve not 
passing through any singular point, and wo the winding number of any simple closed 
curve homotopic to C. Suppose 

I(V, C) =LL d(V - F) ¢ w0 mod x 

Then C is not homotopic on M-S to any orbit of V. 
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Now J(V, C) is unchanged if Vis replaced by any other field V' having the 
same singular set S and being homotopic to V. Let us apply this idea to F itself. 
Since I(F, C) = 0 for any C, the same is true for any F' homotopic to F. On 
the other hand, if C is the outer boundary of Figure 1, w( C) = 2. Hence, C is 
not an orbit of F'. This illustrates the general method for applying the winding 
number to questions of existence of periodic orbits. 

3. The solid torus 

Let M be a solid torus; that is, the Cartesian product of the closed two disc 
E2 with the circle S1. Mis a three manifold with boundary B, where Bis the 
product of two circles. A field W of oriented two planes on M is the assignment 
at each point of M of an oriented two dimensional subspace of the tangent space 
at that point; we assume that this assignment is made smoothly. If Vis a vector 
field on M, we say that V is tangent to W if at each point P the vector V(P) 
lies in the plane W(P). 

THEOREM. Let W be a field of two planes on the solid torus such that W(P) is 
the tangent plane to B whenever P is a point of B. Let V be a non-singular vector 
field tangent to W. Then V has a periodic orbit lying on B. 

PROOF. By the field of parallels on B, we mean the unit tangent vectors to 
the curves P X S1, where P is a boundary point of E 2• Any nonsingular vector 
field on B which admits no periodic orbit is homotopic to the field of parallels 
[1]. Also, giving a field of oriented planes Wis equivalent to giving a nonsingular 
vector field orthogonal to it. By a field of 2 frames we mean the assignment at 
each point of an ordered pair of orthogonal unit vectors, the assignment being 
made smoothly over M. The above remarks show that our theorem is equivalent 
to proving that the field of two frames on B consisting of the parallels as first 
vectors, and the interior normals as second vectors, is not extendable to a field 
of two frames on M. Now the field of parallels is certainly extendable to a vector 
field on M; by obstruction theory [3], the homotopy classes of such extensions 
correspond one-one to the elements of H 2 (M, B; 1r"2(S2 )) which is free cyclic. 
Representatives of each class may be constructed as follows: Suppose E2 is a disc 
of radius 1, parametrized by polar coordinates (r, 8). Let cp be an angular co
ordinate on the circle S1. Then the components of the vector field V n are 
sin n(l - r)1r radially, cos n(l - r)1r in the direction of increasing cp, and O in 
the direction of 8. As n = 0, ± 1, · · · the fields Vn represent each homotopy class 
exactly once. The set of all unit vectors orthogonal to Vn forms a circle bundle 
Un over M, and the obstruction to extending the field of interior normals to a 
section of this bundle is an element of H 2 (M, B; 1r1(S 1)) which is also free cyclic. 
The extension is possible if and only if this obstruction is zero. Hence, our 
theorem is proved by the following lemma. 

LEMMA. The obstruction to sectioning Un is a generator of H2( M, B; 1r1 ( S 1) ) . 

PROOF. It is sufficient to consider a typical disc E2 X Q. Any bundle over a 
disc is a product. To describe the product structure, we may give a fixed orthogo, 
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nal homeomorphism between the fibre at the origin r = 0 and the fibre at each 
other point; such a mapping is determined by giving the images of a pair of 
orthogonal unit vectors. Consider the points lying on a single radius Ro . On any 
radius, V n is tangent to the surfaces on which 0 is constant. Hence, we define the 
desired mapping by sending the unit normal to this surface at the origin into 
the unit normal at P on Ro , and sending the vector in the surface making an 
angle 1r/2 with Vn(O) into the similarly defined vector at Vn(P). To compute 
the obstruction, we use this mapping to pull the vector at each boundary point 
back to the origin, thereby defining a mapping of the boundary into the fibre. 
It is easily seen that this map is a homeomorphism, hence generates 1r1 ( S1). 
This completes the proof of the lemma. 
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