PERIODIC ORBITS ON TWO MANIFOLDS*

By Bruce L. REINHART

Given any vector field ¥ on an oriented two manifold, we can assign to any
curve C an integer I(V, (') defined by an integral. On the other hand, to any C
with everywhere nonzero tangent vector, we can assign an integer called the
winding number of C. By comparing these two integers, necessary conditions for
C to be a periodic orbit may be obtained. These ideas are discussed in the first
two sections, while in the third we apply them to a problem on the solid torus;
we show that a certain class of vector field always admits a periodic orbit.

1. Winding number

Let M be a compact oriented two dimensional manifold of genus g; that is, a
sphere with g handles. A regular curve on M is a curve of class C* with nowhere
vanishing tangent vector. We have defined [2] the winding number by the
formula

w(e) = = [ a(ew - F©) mod x(a)

in which: ‘
C is a regular closed curve; that is C(0) = C(1) and C(0) = C(1).
C(t) is the tangent vector at parameter ¢.
F is a vector field on M, fixed once for all, which we shall specify precisely
later.
C-F is the angle from F to C.
x(M) is the Euler number of M, x(M) = 2 — 2g.

It is well known that the fundamental group of M may be repre-
sented by 2¢ generators A;, --- , Ay, with one relation A 4,A7°A7" ---
Asg1AsA5, 145 = 1. Each of these generators may be répresented by a regular
simple closed curve through the base point. The vector field F is specified by the
conditions that

(i) F has only one singular point.

(ii) The winding number of each of the curves 4, is zero.
Actually these conditions do not specify F uniquely, but they do determine the
winding number uniquely.

Let us consider the case ¢ = 3. A suitable field F is illustrated in Figure 1,
which shows one half of . Similarly labelled points are joined along the hidden
side; thus there are five curves which tend at each end to the singular point. The
remainder of M is filled by simple closed curves. Let us compute a few winding
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numbers. First of all, each of the interior boundary curves on the diagram has
winding number zero, for each is never tangent to F. The outer boundary curve,
on the other hand, has winding number 2 (mod 4), since along this curve the
angle between its tangent and the field F makes two full rotations. More gener-
ally, from a similar diagram for genus g, we see that the outer boundary curve
has winding number ¢ — 1. In our paper [2], we have given a formula for com-
puting the winding number of any simple closed curve from its homotopy class;
we hope to prove in a later paper that this formula reduces to the statement
that the absolute value of the winding number of a simple closed curve is equal
to one less than the number of handles which it wraps around.

2. Periodic orbits

Let V be a vector field on M having unique trajectories through nonsingular
points. Then any periodic orbit C is a regular simple closed curve, so possesses
a winding number. This winding number is computed by the formula

w(0) E%rfcd(V—F) mod x

On the other hand, this latter formula is defined for any closed curve C, whether
or not it is an orbit of V; if its value is not that prescribed for simple closed
curves homotopic to C, then C cannot be an orbit. Following these ideas, we
have proved [2]:

ProrositioN. Let S be the locus of singular points of V, C any closed curve not
passing through any singular point, and w, the winding number of any simple closed
curve homotopic to C. Suppose

I(v,o) E%rfcd(V~F) # w, mod x

Then C is not homotopic on M-8 to any orbit of V.
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Now I(V, C) is unchanged if V is replaced by any other field V' having the
same singular set S and being homotopic to V. Let us apply this idea to F itself.
Since I(F, C) = 0 for any C, the same is true for any F’ homotopic to F. On
the other hand, if €' is the outer boundary of Figure 1, w(C) = 2. Hence, C is
not an orbit of F’. This illustrates the general method for applying the winding
number to questions of existence of periodic orbits.

3. The solid torus

Let M be a solid torus; that is, the Cartesian product of the closed two disc
E’ with the circle S'. M is a three manifold with boundary B, where B is the
product of two circles. A field W of oriented two planes on M is the assignment
at each point of M of an oriented two dimensional subspace of the tangent space
at that point; we assume that this assignment is made smoothly. If V is a vector
field on M, we say that V is tangent to W if at each point P the vector V(P)
lies in the plane W(P).

THEOREM. Let W be a field of two planes on the solid torus such that W(P) is
the tangent plane to B whenever P is a point of B. Let V be o non-singular vector
field tangent to W. Then V has a periodic orbit lying on B.

Proor. By the field of parallels on B, we mean the unit tangent vectors to
the curves P X S', where P is a boundary point of E°. Any nonsingular vector
field on B which admits no periodic orbit is homotopic to the field of parallels
[1]. Also, giving a field of oriented planes W is equivalent to giving a nonsingular
vector field orthogonal to it. By a field of 2 frames we mean the assignment at
each point of an ordered pair of orthogonal unit vectors, the assignment being
made smoothly over M. The above remarks show that our theorem is equivalent
to proving that the field of two frames on B consisting of the parallels as first
vectors, and the interior normals as second vectors, is not extendable to a field
of two frames on M. Now the field of parallels is certainly extendable to a vector
field on M ; by obstruction theory [3], the homotopy classes of such extensions
correspond one-one to the elements of H*(M, B; m5(S*)) which is free cyclic.
Representatives of each class may be constructed as follows: Suppose E” is a disc
of radius 1, parametrized by polar coordinates (r, ). Let ¢ be an angular co-
ordinate on the circle S'. Then the components of the vector field V, are
sin n(1 — r)r radially, cos n(1 — r)x in the direction of increasing ¢, and 0 in
the direction of . Asm = 0, &= 1, - - - the fields V,, represent each homotopy class
exactly once. The set of all unit vectors orthogonal to V, forms a circle bundle
U. over M, and the obstruction to extending the field of interior normals to a
section of this bundle is an element of H’ (M, B; =1(,S')) which is also free cyclic.
The extension is possible if and only if this obstruction is zero. Hence, our
theorem is proved by the following lemma.

LemMA. The obstruction to sectioning U, s a generator of H (M, B; m(S")).

Proor. It is sufficient to consider a typical disc B> X Q. Any bundle over a
disc is a product. To describe the produet structure, we may give a fixed orthogo-
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nal homeomorphism between the fibre at the origin » = 0 and the fibre at each
other point; such a mapping is determined by giving the images of a pair of
orthogonal unit vectors. Consider the points lying on a single radius £y . On any
radius, V, is tangent to the surfaces on which 6 is constant. Hence, we define the
desired mapping by sending the unit normal to this surface at the origin into
the unit normal at P on R, and sending the vector in the surface making an
angle 7/2 with V,(0) into the similarly defined vector at V,.(P). To compute
the obstruction, we use this mapping to pull the vector at each boundary point
back to the origin, thereby defining a mapping of the boundary into the fibre.
It is easily seen that this map is a homeomorphism, hence generates m (S").
This completes the proof of the lemma.
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