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BY LAWRENCE MARKLS 

Let Mn, n ~ 2, be a compact differentiable ( C"') manifold and let CB be the 
Banach space of all C1 contravariant vector fields, or first order differential sys­
tems, on Mn. Here we use the C1-norm on a vector field 

i = 1, 2, • • ·, n. 

That is, 

II s 111 = max II f\P) II + max II grad/(P) II 

for P E ]IC, where we utilize an auxiliary Riemann metric on Mn and the top­
ology of CB is independent of the choice of this metric. 

Two differential systems Sand S' of CB are called E-homeomorphic in case there 
exists a homeomorphism <I> of Mn onto itself such that 

(a) <I> carries the (sensed but not parametrized) solution curves of S onto 
those of S' and, vice versa, <I>-1 carries the solutions of S' onto those of S. 

(b) <I> moves each point of Mn a distance less than E > 0. 
DEFINITION. A differential system S E CB is structurally stable on Mn in case: 

for each E > 0 there exists o > 0 sitch that S' E CB, and II S - S' 111 < o implies 
that S' and S are E-homeomorphic. 

We shall show that the critical points and the periodic solutions of a struc­
turally stable differential system S on a compact manifold Mn are isolated and 
elementary. From a study of the Ininimal (invariant) sets we shall prove the 
existence of periodic solutions of S. Thus, for structurally stable differential sys­
tems, the problem of Seifert [11] (the existence of a periodic solution of a non­
critical differential system on the 3-sphere) and the Poincare- Bendixson analogue 
(the existence of a periodic solution of a non-critical differential system pene­
trating a solid anchor ring) are resolved. 

The theory of structurally stable differential systems in an open submanifold 
e c Mn, with compact closure e and smooth boundary ae, is developed in a 
forthcoming paper [8]. 

THEOREM 1. Let S be a structurally stable differential system on Mn. Then each 
critical point of S is isolated, elementary, and topologically linear. 

SKETCH OF PROOF. Let P be a critical point of S and, in local coordinates ( x) 
centered at P, write 

.i fi( 1 2 n) S: X = X, X, • • • , X i = 1, 2, • • • , n 

with/(O) = 0. Now approximate S, in the C1-norm, by S' E CB on Mn such that 
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near P we have 

i = 1, 2, • • •, n 

where the P\ x) are real polynomials. By choosing the coefficients of the poly­
nomials P\ x) in general position we can require that every critical point of S' 
near P is isolated. Thus every critical point of S near P is isolated and hence P 
is an isolated critical point of S, [9]. 

Now the eigenvalues of Sat Pare those of the matrix (al/axi)(O) =a}. It 
is easy to see that S is topologically linear at P ( that is, there is a neighborhood 
N of P wherein S is homeomorphic to :i/ = aJxi in a neighborhood of the 
origin of the number space Rn). Now the number of eigenvalues of (a}) with 
negative and positive real parts designates the dimensions of the stability and 
instability manifolds, respectively, of S at P. Thus no eigenvalue of S at P has 
a zero real part (that is, Pis an elementary critical point of S). Q. E. D. 

The transversal germ of a periodic solution S (not a critical point) of Sin Mn 
is the map of a transversal (n - 1)-manifold into itself which is obtained by 
following the solutions of S one circuit around a tubular neighborhood of S. 
After the customary equivalence identifications, the transversal germ of S in S 
is a conjugacy class in the group of germs of C1-homeomorphisms of a neighbor­
hood of the origin of Rn-l into Rn-1, with the origin fixed. Two periodic solutions 
S1 and S2, of differential systems S1 and S2 respectively, have tubular neighbor­
hoods N 1 and N 2 wherein S1 and S2 are C1-homeomorphic (with S1 corresponding 
to S2) if and only if S1 and S2 have the same transversal germ. 

The differential of the transversal germ of S, at the origin, has eigenvalues 
which are the non-trivial characteristic multipliers of S. There is an oriented 
anchor ring tubular neighborhood of S in Mn if and only if the transversal germ 
is orientation preserving-otherwise there is a solid Klein bottle tubular neigh­
borhood of S. 

A periodic solution S of S is called isolated in case there exists a tubular neigh­
borhood N of S in Mn such that S is the only periodic solution of S which lies 
entirely within N. 

THEOREM 2. Let S be a periodic solution of a structurally stable differential system 
S in Mn. Then S is isolated, elementary, and topologically linear. 

SKETCH OF PROOF. The last two conclusions on S mean that no (non-trivial) 
characteristic multiplier of S has a modulus of one; and that S has a tubular 
neighborhood N wherein Sis homeomorphic with a differential system S*, with 
a corresponding periodic solution S* in a standard anchor ring or solid Klein 
bottle, and S* in S* has a linear transversal germ. 

Using approximation techniques, we can assume that Sis in class C"' on Mn. 
In a tubular neighborhood N of S in Mn introduce coordinates which make N 
a real analytic manifold, say a solid anchor ring to simplify the exposition. Ap­
proximate S in N ( or in the universal covering cylinder fv, by a polynomial-



192 LAWRENCE MARKUS 

trigonometric system 

S': i = Li=oPt(x) cos21rry + Q;(x) sin21rry 
iJ = 1 

for i = 1, 2, • • • , n - 1 and setting y = xn. Here the real polynomials P;(x) 
and Q;(x) vanish at x = 0. Among all periodic solutions of S', encircling N just 
once, none is the limit of a sequence of isolated periodic solutions of S'. This 
follows from the local arcwise, connectedness of a real analytic variety [3], namely, 
the zeros of the square of the: displacement on the ( n - l )-transversal through 
S, upon one circuit of the solutions of S'. Thus Sin Sis either isolated or lies in 
a tubular subneighborhood, of N "'.hich contains no isolated periodic solutions of 
~ ( among the periodic solutions of. S encircling N just once) . 

. Now select the real coefficients of P;(x) and Q;(x) in general position. Then 
Sin S', and hence Sin S, ifj isolated among periodic solutions which encircle N 
just once. Moreover, Sin S' is elementary and topologically linear [12], and the 
same holds for S in S. 

But then Sin Sis is<:>lated among all periodic solutions of S. Q. E. D. 

CoROLLARY. For a given bound .. T.> 0 there exist only a finite number of periodic 
solutions, of the structurally stable system S in Mn, with (minimal) periods less 
.than T. Thus S has at most a countable set of periodic solutions. 

The corollary follows directly from Theorem 2 and simple continuity argu­
ments. It is unknown whether a structurally stable system S on a compact 
manifold Mn can have 'an infinite number of periodic solutions. The geodesic fl.ow 
in the tangent sphere bundle of a compact surface of constant negative curvature 
is a possible candidate for consideration. 

THEOREM 3. The positive limit set S+ of a solution Sofa structurally stable sys­
tem S on Mn is either a critical point, a periodic solution, or each neighborhood of 
S+ contains infinitely many periodic solutions of S with arbitrarily long ( minimal) 
periods. 

SKETCH OF PRoOF.1 If S+ is not a critical point or a periodic solution of s, then 
S must approach a point P E S+ arbitrarily closely, and for arbitrarily large 
times t. Then a slight perturbation of S creates a differential system S' with a 
periodic solution lying in a prescribed neighborhood of S+ . By the definition of 
structural stability S must also have a periodic solution lying near S+ . Q. E. D. 

COROLLARY 1. A minimal set K of a structurally stable system S in Mn is either a 
critical point, or a periodic solution, or every neighborhood of K contains infinitely 
many periodic solutions of S wi,th arbitrarily long (minimal) periods. 

Thus if there are only a finite number of periodic solutions of S, the only mini­
mal ( compact, invariant) sets are critical points and periodic solutions, as con­
jectured by A. Andronov. 

1 A flaw has been observed in the proof of Theorem 3. Thus Theorem 3 must be consid­
ered as an additional hypothesis in Theorems 4 and 5 and the corresponding material in [7]. 
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COROLLARY 2. Let S be a structurally stable system without critical points on the 
compact manifold Mn. Then there exist at least two periodic solutions of S on M". 
If S has only a finite number of periodic solutions, then there must exist an orbitally 
stable and also an orbitally, totally nnstable, periodic solution of S. 

The existence of the orbitally stable, and unstable, periodic solutions of S 
follows from considerations of the Baire category of sets of solutions which have 
the periodic solutions as limit sets. It is Corollary 2 which is applicable to the 
Seifert problem and the Poincare-Bendixson analogue. . 

For a general dynamical system [2] on a compact m~nifold M" a solution is 
wandering in case it is embedded in a tube, which is the union of solution curves, 
and which never intersects itself. The complement of the wandering motions is 
the compact set of non-wandering motions M 1 . Relative to the dynamical system 
restricted to M 1 , define the non-wandering set M 2 . Thus obtain a sequence 
of nested compact sets M 1 :::, M 2 => • • · with an intersection M, , the central 
motions. 

THEOREM 4. Let S be a structurally stable system on a compact Mn. Then the 
central motions M, are exactly the non-wandering motions Mi . Moreover, the set 2: 
of critical points and periodic solutions of Sis dense in M,, and 2: is exactly M, in 
case S has only a finite number of periodic solutions. 

SKETCH OF PROOF. The set 2: of critical points and periodic solutions of S 
certainly lies in M,. Now a non-wandering, non-periodic solution Sc Mi must 
return to a prescribed neighborhood of a point P E S. Then a slight perturbation 
of S leads to the differential system S' with a periodic solution which passes nearly 
through P. Thus S must have a periodic solution which passes nearly through P. 
Therefore the closure of 2: contains Mi . Thus M, => Mi and M, = Mi . Q. E. D. 

Suppose S defines a volume preserving flow, say relative to a non-vanishing 
n-form, on the compact Mn. Then the Poincare-Caratheodory recurrence 
theorem states that almost every point of Mn lies on a solution of S which is both 
( +) and ( - ) Poisson stable. Then an argument like that used in Theorem 4 
yields the next result. 

THEOREM 5. Let S be a structurally stable system on a compact Mn and define a 
volume preserving flow, relative to a non-vanishing n-f orm. Then the union of all 
periodic solutions is dense in M". 

Thus, if S is structurally stable on the compact M" and if S has only a finite 
number of periodic solutions, then S cannot be volume-preserving. Further, if a 
Hamiltonian differential system JC, say restricted to a compact energy manifold 
M", has only finitely many periodic solutions, then JC cannot be structurally 
stable on Mn. 
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