PERIODIC SOLUTIONS AND INVARIANT SETS OF STRUCTURALLY STABLE DIFFERENTIAL SYSTEMS

BY LAWRENCE MARKUS

Let M^n , $n \geq 2$, be a compact differentiable (C^{∞}) manifold and let \otimes be the Banach space of all $C¹$ contravariant vector fields, or first order differential systems, on M^n . Here we use the C^1 -norm on a vector field

$$
\S: \dot{x}^i = f^i(x^1, x^2, \cdots, x^n) \qquad \qquad i = 1, 2, \cdots, n.
$$

That is,

$$
\| S \|_1 = \max \| f^i(P) \| + \max \| \text{ grad } f^i(P) \|
$$

for $P \in M^n$, where we utilize an auxiliary Riemann metric on M^n and the topology of CB is independent of the choice of this metric.

Two differential systems S and S' of $\mathcal B$ are called ϵ -homeomorphic in case there exists a homeomorphism Φ of M^n onto itself such that

(a) Φ carries the (sensed but not parametrized) solution curves of S onto those of S' and, vice versa, Φ^{-1} carries the solutions of S' onto those of S.

(b) Φ moves each point of M^n a distance less than $\epsilon > 0$.

DEFINITION. A differential system $S \in \mathcal{B}$ is structurally stable on M^n in case: *for each* $\epsilon > 0$ *there exists* $\delta > 0$ *such that* $S' \in \mathcal{B}$, and $\| S - S' \|_1 < \delta$ *implies that* S' *and* S *are* ϵ *-homeomorphic.*

We shall show that the critical points and the periodic solutions of a structurally stable differential system S on a compact manifold M^n are isolated and elementary. From a study of the minimal (invariant) sets we shall prove the existence of periodic solutions of S. Thus, for structurally stable differential systems, the problem of Seifert [11] (the existence of a periodic solution of a noncritical differential system on the 3-sphere) and the Poincare- Bendixson analogue (the existence of a periodic solution of a non-critical differential system penetrating a solid anchor ring) are resolved.

The theory of structurally stable differential systems in an open submanifold $e \text{ }\subset M^n$, with compact closure \bar{e} and smooth boundary ∂e , is developed in a forthcoming paper [8].

THEOREM 1. Let S be a structurally stable differential system on M^n . Then each *critical point of* S *is isolated, elementary, and topologically linear.*

SKETCH OF PROOF. Let P be a critical point of S and, in local coordinates (x) centered at *P,* write

$$
s: \dot{x}^i = f^i(x^1, x^2, \cdots, x^n) \qquad \qquad i = 1, 2, \cdots, n
$$

with $f'(0) = 0$. Now approximate *S*, in the C^1 -norm, by $S' \in \mathcal{B}$ on M^n such that

near *P* we have

$$
S': \dot{x}^i = P^i(x^1, x^2, \cdots, x^n) \qquad \qquad i = 1, 2, \cdots, n
$$

where the $P^i(x)$ are real polynomials. By choosing the coefficients of the polynomials $P^i(x)$ in general position we can require that every critical point of S' near *P* is isolated. Thus every critical point of S near *P* is isolated and hence *P* is an isolated critical point of S, [9].

Now the eigenvalues of S at P are those of the matrix $(\partial f^{i}/\partial x^{j})(0) = a_{i}^{i}$. It is easy to see that s is topologically linear at P (that is, there is a neighborhood *N* of *P* wherein S is homeomorphic to $\dot{x}^i = a_j^i x^j$ in a neighborhood of the origin of the number space R^n). Now the number of eigenvalues of (a_i^i) with negative and positive real parts designates the dimensions of the stability and instability manifolds, respectively, of S at *P.* Thus no eigenvalue of S at *P* has a zero real part (that is, P is an elementary critical point of δ). Q. E. D.

The transversal germ of a periodic solution *S* (not a critical point) of Sin *Mn* is the map of a transversal $(n - 1)$ -manifold into itself which is obtained by following the solutions of S one circuit around a tubular neighborhood of *S.* After the customary equivalence identifications, the transversal germ of S in S is a conjugacy class in the group of germs of $C¹$ -homeomorphisms of a neighborhood of the origin of R^{n-1} into R^{n-1} , with the origin fixed. Two periodic solutions S_1 and S_2 , of differential systems S_1 and S_2 respectively, have tubular neighborhoods N_1 and N_2 wherein S_1 and S_2 are C^1 -homeomorphic (with S_1 corresponding to S_2) if and only if S_1 and S_2 have the same transversal germ.

The differential of the transversal germ of *S,* at the origin, has eigenvalues which are the non-trivial characteristic multipliers of S. There is an oriented anchor ring tubular neighborhood of S in $Mⁿ$ if and only if the transversal germ is orientation preserving-otherwise there is a solid Klein bottle tubular neighborhood of S.

A periodic solution S of S is called isolated in case there exists a tubular neighborhood *N* of *S* in M^n such that *S* is the only periodic solution of *S* which lies entirely within *N.*

THEOREM 2. *Let S be a periodic solution of a structurally stable differential system* S *in* M^n . Then S is isolated, elementary, and topologically linear.

SKETCH OF PROOF. The last two conclusions on S mean that no (non-trivial) characteristic multiplier of *S* has a modulus of one; and that *S* has a tubular neighborhood *N* wherein *S* is homeomorphic with a differential system S^* , with a corresponding periodic solution *S** in a standard anchor ring or solid Klein bottle, and S^* in S^* has a linear transversal germ.

Using approximation techniques, we can assume that S is in class C^{∞} on M^{n} . In a tubular neighborhood N of S in $Mⁿ$ introduce coordinates which make N a real analytic manifold, say a solid anchor ring to simplify the exposition. **Ap**proximate S in N (or in the universal covering cylinder \tilde{N}) by a polynomialtrigonometric system

$$
s': \dot{x}^i = \sum_{r=0}^s P_r^i(x) \cos 2\pi r y + Q_r^i(x) \sin 2\pi r y
$$

$$
\dot{y} = 1
$$

for $i = 1, 2, \dots, n-1$ and setting $y = x^n$. Here the real polynomials $P_r^i(x)$ and $Q_r^i(x)$ vanish at $x = 0$. Among all periodic solutions of S', encircling N just once, none is the limit of a sequence of isolated periodic solutions of S'. This follows from the local arcwise, connectedness of a real analytic variety [3], namely, the zeros of the square of the displacement on the $(n - 1)$ -transversal through *S*, upon one circuit of the solutions of S'. Thus *S* in S is either isolated or lies in a tubular subneighborhood of N which contains no isolated periodic solutions of [~](among the periodic solutions of. S encircling *N* just once) .

Now select the real coefficients of $P_r^i(x)$ and $Q_r^i(x)$ in general position. Then S in S' , and hence S in S , is isolated among periodic solutions which encircle N just once. Moreover, S in S' is elementary and topologically linear $[12]$, and the same holds for *S* in S.

But then S in S is isolated among all periodic solutions of S . Q. E. D.

COROLLARY. For a given bound $T > 0$ there exist only a finite number of periodic solutions, of the structurally stable system *S* in M^n , with (minimal) periods less *.than T. Thus* S *has at most a countable set of periodic solutions.*

The corollary follows directly from Theorem 2 and simple continuity arguments. It is unknown whether a structurally stable system S on a compact manifold $Mⁿ$ can have an infinite number of periodic solutions. The geodesic flow in the tangent sphere bundle of a compact surface of constant negative curvature is a possible candidate for consideration.

THEOREM 3. The positive limit set S_+ of a solution S of a structurally stable sys*tem S* on M^n *is either a critical point, a periodic solution, or each neighborhood of S+ contains infinitely many periodic solutions of* S *with arbitrarily long* (*minimal) periods.*

SKETCH OF PROOF.¹ If S_+ is not a critical point or a periodic solution of δ , then *S* must approach a point $P \in S_+$ arbitrarily closely, and for arbitrarily large times *t.* Then a slight perturbation of S creates a differential system S' with a periodic solution lying in a prescribed neighborhood of *S+* . By the definition of structural stability S must also have a periodic solution lying near *S+* . Q. E. D.

COROLLARY 1. A minimal set K of a structurally stable system S in M^n is either a *critical point, or a periodic solution, or every neighborhood of K contains infinitely many periodic solutions of S with arbitrarily long (minimal) periods.*

Thus if there are only a finite number of periodic solutions of S, the only minimal (compact, invariant) sets are critical points and periodic solutions, as conjectured by A. Andronov.

1 **A** flaw has been observed in the proof of Theorem 3. Thus Theorem 3 must **be** considered as an additional hypothesis in Theorems 4 and 5 and the corresponding material in **[7].**

COROLLARY 2.*Let* S *be a structurally stable system without critical points on the compact manifold* M^n *. Then there exist at least two periodic solutions of* $\mathcal S$ *on* M^n . *If* S *has only a finite number of periodic solutions, then there must exist an orbitally stable and also an orbitally, totally nnstable, periodic solution of* S.

The existence of the orbitally stable, and unstable, periodic solutions of S follows from considerations of the Baire category of sets of solutions which have the periodic solutions as limit sets. It is Corollary 2 which is applicable to the Seifert problem and the Poincaré-Bendixson analogue.

For a general dynamical system [2] on a compact manifold M^n a solution is wandering in case it is embedded in a tube, which is the union of solution curves, and which never intersects itself. The complement of the wandering motions is the compact set of non-wandering motions M_1 . Relative to the dynamical system restricted to M_1 , define the non-wandering set M_2 . Thus obtain a sequence of nested compact sets $M_1 \supset M_2 \supset \cdots$ with an intersection M_r , the central motions.

THEOREM 4. Let S be a structurally stable system on a compact M^n . Then the *central motions M_r are exactly the non-wandering motions M₁. Moreover, the set* Σ *of critical points and periodic solutions of S is dense in* M_r , and Σ *is exactly* M_r *in case* S *has only a finite number of periodic solutions.*

SKETCH OF PROOF. The set Σ of critical points and periodic solutions of S certainly lies in M_r . Now a non-wandering, non-periodic solution $S \subset M_1$ must return to a prescribed neighborhood of a point $P \in S$. Then a slight perturbation of S leads to the differential system S' with a periodic solution which passes nearly through *P.* Thus S must have a periodic solution which passes nearly through *P.* Therefore the closure of Σ contains M_1 . Thus $M_r \supset M_1$ and $M_r = M_1$. Q. E. D.

Suppose S defines a volume preserving flow, say relative to a non-vanishing n -form, on the compact M^n . Then the Poincaré-Caratheodory recurrence theorem states that almost every point of $Mⁿ$ lies on a solution of $\mathcal S$ which is both $(+)$ and $(-)$ Poisson stable. Then an argument like that used in Theorem 4 yields the next result.

THEOREM 5. Let S be a structurally stable system on a compact M^n and define a *volume preserving flow, relative to a non-vanishing n-form. Then the union of all periodic solutions is dense in M".*

Thus, if S is structurally stable on the compact M^n and if S has only a finite number of periodic solutions, then S cannot be volume-preserving. Further, if a Hamiltonian differential system JC, say restricted to a compact energy manifold $Mⁿ$, has only finitely many periodic solutions, then $\mathcal K$ cannot be structurally stable on M^n .

UNIVERSITY OF MINNESOTA, MINNEAPOLIS

BIBLIOGRAPHY

[1] A. ANRONOV and L. PoNTRJAGIN, *Systemes grossiers,* Doklady Akad. Nauk., 14 (1937), 247-251.

194 LAWRENCE MARKUS

- (2] G.D. BIRKHOFF, Dynamical systems, New York, 1927.
- [3] F. BRUHAT and H. WHITNEY, *Quelques proprietes des ensembles analytique-reels,* Commentarii Helv., 33 (1959), 132-160.
- [4] H. DE BAGGIS, *Dynamical systems with stable structure,* Contributions to the theory of non-linear oscillations 2: 37-59. Princeton, 1952.
- [5] S. LEFSCHETZ, Differential equations: geometric theory, New York, 1957.
- [6] L. MARKUS, *Global structure of ordinary differential equations in the plane*, Trans. Am. Math. Soc., 76 (1954), 127-148.
- [7] L. MARKUS, *Invariant sets of structurally stable differential systems,* Proc. Nat. Acad. Sci., Nov. 1959.
- **[8] L.** MARKUS, *Structurally stable differential systems,* Ann. Math., to appear.
- [9] M. M. PEIXOTO, *On structural stability,* Ann. of Math., 69 (1959), 199-222.
- [10] M. M. PEIXOTO, *Some examples of n-dimensional structural stability,* Proc. Nat. Acad. • Sci., 45 (1959), 633-636.
- [11] H. SEIFERT, *Closed integral curves in 3-space and isotopic two-dimensional deformations,* Proc. Am. Math. Soc., 1 (1950), 287-302.
- **[12]** S. STERNBERG, *On the structure of local homeomorphisms of Euclidean n-space II,* Am. J. Math., 80 (1958), 623-631.