
ON DYNAMICAL SYSTEMS* 

BY STEPHEN SMALE 

1. General considerations 

We consider here systems (X, M) where Xis a c«> vector field on a c«>-olosed 
manifold M. The vector field X generates a global I-parameter group 'Pt of dif
ferentiable homeomorphisms (or di:ffeomorphisms) of M. Thus for each x E M, 
'Pt(x) is the solution curve (or orbit) with cpo(x) = x. 

Anequivalenceh between (X,M) and (X',M) isahomeomorphismh:M -M 
which sends orbits of X into orbits of X'. Perhaps the main problem of this sub
ject is: Given M classify all the X on M under this equivalence. It is no doubt 
quite unreasonable to expect an answer to this question in the foreseeable future. 
However, it still seems important to solve this problem for some sets C of vector 
fields on M, especially if C is large in some sense. 

The set of all c«> vector fields on M with the C1 topology ( roughly X and X' 
are close if they are pointwise close and their first derivatives are pointwise close) 
form a space, say B. In view of the preceding paragraph we should look for a 
set C c B where C is open and dense in B and moreover is amenable to classifi
cation in some sense. Although we are far from answering this, we would like to 
propose a candidate for such a C. 

We say X belongs to C if it satisfies the following five conditions: 
(I) There are a finite number of singular points of X, say /31, • • • , f3k, 

each of simple type. This means that at each {3;, the matrix of first partial de
rivatives of X in local coordinates has eigenvalues with real part non-zero. 

(2) There are a finite number of closed orbits of X, say f3H1, • • • , f3m , each 
of simple type. This means that no characteristic exponent (see, e.g., [5]) of 
{3; , i > k, has absolute value 1. 

( 3) The limit points of all the orbits of X as t - ± oo lie on the {3; . 
( 4) The stable and unstable manifolds have normal intersection with each 

other. This can be explained as follows. Let {3, , i ~ k be one of the singlllar 
points of X, and let h be the number of eigenvalues associated to {3; with real 
part positive. Then [5] there is an h-dimensional c«> sub-manifold W; of M pass
ing through {3; such that if x E W;, lime-.:-«> 'Pt(x) = {3;. If h = 0 let W; = (3,. 
Call W; the unstable manifold of X at {3;. 

Consider the new system X* obtained by reversing the direction of each vector 
of X on M. Then {3; is a simple singularity of X* and the above applies to yield 
the unstable ( n-h )-manifold w: of X* at {3; . Call w: the stable man if ol,d of X 
at {3; . 

In a similar but slightly more complicated way, one can define the stable and 
unstable manifolds of {3;, i > k, where the {3; are closed orbits. Thus for each i, 
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1 ~ i ~ m, we have W; and w;, the unstable and stable manifolds of X at {3; . 
For x E W; (or w:) let lV;,, (or w;,,) be the tangent space of W; (or w;) 

at x. Then by the normal intersection condition we mean for each i, j, 
if x Ewin w;, 

dim W; + dim Wt - n = dim (W;,, n w;,,). 

(5) If {3; is a closed orbit then there is no y E M with limt--oo <l't(Y) = {3; 
and lim1-oo <l't(Y) = f3i • 

It can be shown that these five conditions are independent. I do not think it 
would be difficult to show that C is open in B. However the question as to 
whether C is dense in B seems to be very difficult. Work of Peixoto [7] implies 
this is true where Mis the 2 disk. The following theorem solves the corresponding 
approximation problem for gradient fields. (Detailed proofs of the theorems 
stated here will be given elsewhere.) 

THEOREM 1.1. If X = grad f, fa C"" function on M, then X can be C1 approxi
mated by a C"" field Yon M such that Y satisfies (1)-(5) with no closed orbits. 

Since there are a great variety of C"" functions on every closed manifold, 
Theorem 1.1 guarantees that for every M, C is far from being empty. The idea 
of the proof of 1.1 is as follows. 

Given f, a theorem of Morse [6] implies there is an approximating function g 
on M such that g has only non-degenerate critical points. Then Z = grad g is a 
C"" vector field on M satisfying conditions (1), (2) and (3) with no closed orbits. 
Furthermore any C1 approximation of Z will have the same properties. This last 
fact is not true for Z in general and uses strongly the fact that Z is a gradient 
field. It remains to show that Z can be C1 approximated by a field satisfying ( 4). 
To do this one changes Z using Sard's theorem [10] so that the stable and un
stable manifolds fall into general position with each other. 

Sections 2 and 3 contain evidence that C is amenable to classification. 

2. Morse relations for X in C 

For X in C let aq be the number of {3; , i ~ k with dim W; 
number of {3; , i > k with dim W; = q. 

q, and bq the 

THEOREM 2.1. Let X E C, K be any field, Rq be the rank of Hq(M; K) and 
Mq = aq + bq + bq+1 . Then M q and Rq satisfy the Morse relations, 

Mo~ Ro 

M1 - Mo ~ R1 - Ro 

n 

L (-l)'M; = (-l)nx 
j-0 

where dim M = n and x is the Euler characteristic of M with respect to K. 

Theorem 2.1 contains theorems of El'sgol'c [3] and Reeb [9] and by 1.1 the 
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classical theorem of Morse [6]. In dimension 2, Theorem 2.1 1s contained in 
Haas [4]. We give a short sketch of the proof of 2.1 now. 

Consider the sequence of closed sets L; of 1J!l defined by Lo = 0, and induc
tively L; = union of wj such that awj C Li-I. Then strongly using conditions 
(3)-(5) it can be proved there is an r such that L, = M. This is the hardest 
part of the proof, and we do not go into it here. The more obvious sequence 
KP = uwj' dim wj ~ p does not work. 

Next 1:; dim H"(L;, L;-1) is evaluated in Cech cohomology to be Mq. Then 
by a standard argument from Morse theory the theorem follows. 

A problem connected with the above is the following. Let X E C with no 
closed orbits. In this case one can use the sequence KP mentioned above in the 
proof of 2.1. Then KP is a union of cells. Does KP have a corresponding CW 
structure? If this could be shown, then probably it would lead to an intrinsic 
proof of the theorem that every differentiable manifold could be triangulated. 

3. On structural stability 

We say an equivalence is an €-equivalence if it is pointwise within E of the 
identity; let d denote a C1 metric on B. Then X E Bis structurally stable (ac
cording to Andronov-Pontriagen [1]) if given E > 0, there is a /3 > 0 such that 
if X' E B, d(X, X') < o, there is an €-equivalence between X and X'. Andronov 
and Pontriagen stated the theorem that if M = 2 disk, X is structurally stable 
if and only if X has 

(1') at most a finite number of criticalpoints all elementary and none a 
center, 

(2') at most a finite number of closed paths each a limit-cycle with a non
zero characteristic number, 

(3') no separatrix joining 2 saddle points. 
A proof was published by DeBaggis ( [2]; see also [5]). 
It is easy to see that for the 2-disk these conditions coincide with (1)-(5). 

Peixoto and Peixoto have extended this work to 2-manifolds and have corrected 
a mistake of DeBaggis. 

It seems likely to us that the n-dimensional structurally stable systems are 
exactly the elements of C. The following problem has been considered by several 
people without success. Does a structurally stable system have a finite number 
of closed orbits? If X has only a finite number of closed orbits and is structurally 
stable then it must satisfy (1)-(5). 

THEOREM 3.1 (L. Marcus). If Xis structurally stable and has a finite number 
of closed orbits then it satisfies ( 1) , ( 2) , and ( 3) . 

THEOREM 3.2. If Xis structurally stable and has a finite number of closed orbits 
then it satisfies ( 4) and ( 5) . 

The methods used to prove that X satisfies ( 4) do not differ very much from 
those used in the proof of 1.1. If X did not satisfy (4) then an arbitrarily small 
change of X could be made so that new intersections of stable and unstable 
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manifolds are introduced. This is used to show that X could not have been struc
turally stable. To prove that X satisfies ( 5) one shows that if ( 5) is violated one 
can introduce new closed orbits without changing the old closed orbits by arbi
trarily small changes in X. This of course is impossible if Xis structurally stable. 
. At this time we have made a little progress on the problem as to whether con-

ditions ( 1 )-( 5) are sufficient for structural stability. 

THEOREM 3.3. If X satisfies ( 1 )-( 5), there are no closed orbits, and dim M ~ 3, 
then X is structurally stable. 

The idea of the proof is to define a new structure on M depending on X. Each 
point of M belongs to exactly one stable manifold and one unstable manifold; 
hence the sub manifolds <T ij = w: n W j as i, j range from 1 to m give a decompo
sition of M. Let :zk = { <T i.i \ 1 ~ i, j ~ m, dim <T ii ~ k}. For X' sufficiently close 
to X the corresponding 1:,k' is related to 1:,k by an isomorphism preserving the 
boundary operation. Then the desired homeomorphism is defined first on 1:0, 

then "L1, etc., by induction. The induction step poses considerable difficulties 
however, especially as the dimension increases . 
. It is not known if there exist any structurally stable systems on a given mani

fold. There are however examples on 2-manifolds and then-spheres [8]. 

THEOREM 3.4. There exist structurally stable systems on every closed 3-manifold. 

This follows from 1.1 and 3.3. 
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