SUR CERTAINS PROBLÈMES DE TOPOLOGIE ALGÉBRIQUE ET DE TOPOLOGIE GÉNÉRALE EN DYNAMIQUE

PAR GEORGES REEB

Introduction

Mon exposé du colloque de Mexico était de nature générale, je n'en approfondirai ici qu'un point particulier. Je résumerai d'abord les quatre parties de l'exposé:

Une première partie donnait, de façon fort subjective, un tableau des principales théories de topologie générale et de topologie algébrique intervenant dans certains types de recherches classiques ou récentes relatives à l'étude des propriétés qualitatives des trajectoires d'un système différentiel.

La suite de la conférence développait plus spécialement trois problèmes particuliers. Le premier [1] de ces problèmes concernait l'étude dans le cadre de la topologie générale d'une structure généralisant convenablement la notion de famille régulière de courbes et la notion de structure feuilletée. On a montré, répondant à une question posée par Nemyckii [2], comment développer dans ce cadre les propriétés classiques qui se rattachent aux notions suivantes: ensemble minimal, ensemble indécomposable, centre, mouvement errant, récurrence, stabilité au sens de Poisson, etc...

Le deuxième problème concernait une structure, appelée souvent structure de contact que possèdent en particulier les systèmes différentiels de la mécanique analytique classique et certaines propriétés de topologie algébrique liées à ces structures [3]. Ces recherches sont étroitement liés aux noms suivants: E. Cartan, Lewis, Lichnérowicz, Gallissot, Gray, . . .

La dernière partie a été consacrée au développement d'une question qui n'est pas sans rapports avec certains travaux de M. Ważewsky. A ce propos j'ai donné un exemple d'un champ de vecteurs X défini dans la boule creuse B de R^3

$$1 \le x^2 + y^2 + z^2 \le 2$$

vérifiant les propriétés suivantes:

- (a) $X(x) \neq 0$ en tout point x de B et X est de classe C_1
- (b) En tout point x du bord de B le vecteur X(x) est du même côté du plan tangent en x que l'origine 0.
 - (c) Aucune trajectoire de X ne traverse B.

Cet exemple est instructif parce que des considérations fort simples (de la théorie des points fixes de Lefschetz) montrent que l'ensemble des trajectoires asymptotiques de X (c'est à dire des trajectoires de X qui ne rencontrent pas le bord de B) est compact mais ne saurait être homéomorphe à un complexe simplicial ou à un rétract de voisinage.

Une description explicite d'un tel exemple paraît au tome IV des "Contributions to the theory of non linear equations." J'ai indiqué, sans en donner les raisons, qu'il était possible de construire un tel champ X de telle sorte que la propriété (c) soit stable, c. à d. de sorte que tout champ X', ϵ -voisin de X (au sens de la norme dans R^3) pour un ϵ ($\epsilon > 0$) convenable, possède également la propriété c). Diverses conversations m'ont amené à expliciter ici cette possibilité. Je le ferai néanmoins sur un ton descriptif sans m'astreindre à donner de formules détaillées.

1. Construction d'un champ X_0 sur $S_2 \times I$

Voici quelques définitions qui nous seront utiles:

 S_2 désignera la sphère d'équations $x^2 + y^2 + z^2 = 1$, le plan z = 0 est le plan équatorial de cette sphère.

E désignera la zone équatoriale compacte de cette sphere limitée par les plans $z = \pm 0$, 9.

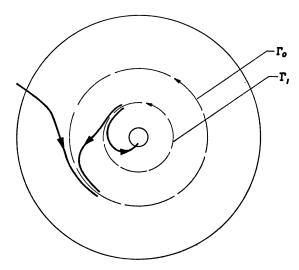
Z désignera l'adhérence du complémentaire de E dans S_2 . Donc Z est la réunion de deux calottes sphériques Z_1 et Z_2 qui contiennent respectivement les pôles (0, 0, 1) et (0, 0, -1).

 P_t désigne le parallèle de S_2 découpé par le plan z=t où $-0, 9 \le t \le 0, 9$. Dans la boule creuse $S_2 \times I$ (où I est le segment $[0\ 1]$) on considère les sous-ensembles $E \times I, Z \times I, P_t \times I$.

On appellera X_1 un champ de vecteurs de classe C_2 choisi une fois pour toutes dans $P_0 \times I$ et qui vérifie les propriétés suivantes:

- (i) $X_1(x) \neq 0$ en tout point $x \operatorname{de} P_0 \times I$.
- (ii) $X_1(x)$ a pour composantes (0, -1) en tout point de $P_0 \times \{0\} \cup P_0 \times \{1\}$.
- (iii) $X_1(x)$ admet exactement deux cycles limites Γ_0 et Γ_1 , le cycle Γ_0 est stable et Γ_1 est instable.

L'allure des trajectoires du champ de vecteurs X_1 est caractérisée par le croquis suivant:



Il existe un homéomorphisme naturel et analytique de P_0 sur P_t , à savoir celui qui conserve les longitudes; cet homéomorphisme s'étend en un homéomorphisme naturel h_t de $P_0 \times I$ sur $P_t \times I$. On désignera par X_t le champ de vecteur défini dans $P_t \times I$ image de X_1 par h_t . Enfin on désignera par X_E le champ de vecteurs dans E dont la restriction à $P_t \times I$ est X_t . Il est clair que X_E est de classe C_1 . De même $\Gamma_t = h_t(\Gamma_1)$ et Γ sera la réunion des Γ_t .

Enfin on désignera par X_0 un champ de vecteurs de classe C_1 défini sur $S_2 \times I$ vérifiant les propriétés suivantes:

- (i) $X_0(x) \neq 0$ en tout point de $S_2 \times I$
- (ii) Les composantes de $X_0(x)$ en un point a de $S_2 \times \{0\}$ U $S_2 \times \{1\}$ sur S_1 et I sont (0, -1).
- (iii) La restriction de X_0 à $E \times I$ est X_E Il est bien clair qu'un tel champ existe.

On remarquera que les seules trajectoires de X_0 qui traversent $S_2 \times I$ sont celles qui rencontrent la calotte $Z \times \{0\}$. L'ensemble $\Gamma = \mathsf{U}_t\Gamma_t$ est "l'obstacle au franchissement" Cet obstacle n'est pas détruit par une légère modification de X'.

2. Les champs stabilisateurs δ et ϵ

La calotte Z_1 ou Z_2 est homéomorphe par un homéomorphisme naturel (projection) k_1 ou k_2 à un disque $D\colon x^2+y^2\leqq 1$. On désignera par r le champ de vecteurs sur D dont les composantes dans un système de coordonnées polaires ρ , θ (d'origine (0,0)) sont $(-\rho,0)$. Les champs appliqués par k_1 et k_2 sur r sont appelés r_1 et r_2 , on désigne par s un champ de vecteur de classe C_1 défini sur S_2 de classe C_1 , qui sur C_1 et C_2 se réduit à C_1 et C_2 ; un tel champ existe. On appelle C_2 te champ image de C_3 sur C_4 et C_4 defini sur C_5 et enfin C_6 désigne le champ de vecteurs de classe C_6 défini sur C_6 et C_7 dont la restriction à C_8 and C_8 est C_8 , pour C_8 est C_8

Le rôle du champ stabilisateur δ sera le suivant: si nous remplaçons le champ X_0 défini au 1° par un champ voisin X'', il se peut qu'une trajectoire de X'' issue de la calotte $Z_1 \times \{1\}$ traverse $S_2 \times I$ et rencontre $Z_1 \times \{0\}$, et ceci pour tout $\eta > 0$, malgré l'obstacle au franchissement Γ examiné en §1. (En effet cet obstacle peut être contourné par une trajectoire). Le champ $X_0 + \delta = Y$ ne présente plus cet inconvénient, d'une façon précise:

- (i) Les trajectoires de Y issues de $Z_1 \times \{1\}$ ou $Z_2 \times \{1\}$ ne rencontrent pas $Z_1 \times \{0\}$ ou $Z_2 \times \{0\}$.
- (ii) Il existe $\eta > 0$ tel que pour tout champ Y', où Y' est η -voisin de Y, la propriété énoncée en (i) soit conservées: c. à d. les trajectoires de Y' issues de $Z_1 \times \{1\}$ ou $Z_2 \times \{1\}$ ne rencontrent pas $Z_1 \times \{0\}$ ou $Z_2 \times \{0\}$.

L'effet du champ stabilisateur ϵ sera en quelque sorte opposé. Soit $T = X_0 + \epsilon$, aucune trajectoire de T qui rencontre $Z_1 \times \{1\}$ ne quitte et ne traverse $Z_1 \times I$ et cette dernière propriété est vraie pour un choix convenable de $\eta > 0$, pour tous les champs T'' qui sont η -voisins de T.

En résumé les champs stabilisateurs δ et ϵ empèchent selon le cas les trajectoires indésirables de rentrer dans $Z \times I$ ou de quitter $Z \times I$.

3. L'exemple annoncé

La construction du champ X annoncée à la fin de l'introduction est maintenant facile. Dans un premier exemplaire Δ_1 de $S_2 \times I$ on construit le champ Y comme ci-dessus. Dans un deuxième exemplaire Δ_2 de $S_2 \times I$ on construit le champ T comme ci-dessus.

Ces deux exemplaires Δ_1 et Δ_2 sont supposés des cylindres solides et droits de l'expace euclidien R^4 . On les place de telle sorte que la section droite $S_2 \times \{0\}$ dans Δ_1 soit confondue avec $S_2 \times \{1\}$ dans Δ_2 et que cette sphère soit l'intersection commune de Δ_1 et Δ_2 ; on prend soin néanmoins que l'axe polaire de $S_2 \times \{0\}$ dans Δ_1 fasse un angle de $\pi/2$ avec l'axe des poles de $S_2 \times \{1\}$ dans Δ_2 .

Les champs T et X se raccordent ainsi en un champ X_1 les calottes $Z_1 \times \{0\}$ et $Z_2 \times \{0\}$ de Δ_1 sont à l'intérieur de la zone équatoriale $E \times \{1\}$ de Δ_2 , et c'est cette disposition qui assure l'impossibilité pour une trajectoire d'un champ X' qui est assez voisin de X_1 traverser le solide $\Delta = \Delta_1 \cup \Delta_2$.

Il est maintenant clair qu'on peut choisir pour X un champ analytique.

INSTITUT FOURIER, GRENOBLE AND RIAS, BALTIMORE, MARYLAND

BIBLIOGRAPHIE

- G. Reeb, Sur la théorie générale des systèmes dynamiques, Annales de l'Institut Fourier, vol. 6, 1955-56, 89-112.
- [2] V. Nemyckii, La théorie générale des systèmes dynamiques, Uspechi Math. Nauk 5.3 vol. 37 (1950) 128-135.
- [3] G. Reeb, Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques, Mémoires Académie Royale Belgique 1635, 64 pages.