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INVARIANT MANIFOLDS* 

BY DANIEL C. LEWIS, JR. 

1. Introduction and summary 
A famous theorem of Poincare concerns the so-called perturbation of a periodic 

solution of the system, 

(I.I) dx 
dt = f(x, t, µ), 

where x and fare n-vectors, t is the real independent variable, and µ is a real 
parameter. f is regarded as defined and sufficiently smooth in a suitable region 
and is periodic with some period T > 0 in t. Poincare's theorem states that, if 
for a certain value of µ, say µo, the system (1.1) admits a periodic solution 
x = xo( t) = xo( t + T), then it will also admit a periodic solution for all values 
of µ sufficiently near to µo , at least if the so-called variational system, 

(1.2) d~ dt = A(t)~, A(t) = fx(Xo(t), t, µo), 

has no periodic solution, other than the trivial one = 0. 
We wish to obtain a similar theorem where, instead of dealing with a single 

solution describing the periodic motion of a single point, we shall deal with a set 
of many solutions describing the periodic motion of a finite manifold imbedded 
in our n-dimensional space. Such a manifold Mo is regarded as moving into a 
transformed manifold Mt after the lapse of time t in the following manner: Con-
sider the solution x = x(xo, t, µ) of (1.1) such that x(xo, 0, µ) = Xo. Then, fixing 
t andµ, and allowing Xo to vary over Mo, the locus of the point x = x(xo, t, µ) 
is, by definition, the manifold Mt referred to above. 

Now, if it happens that MT is the same as the initial manifold Mo, we shall 
say that Mo or Mt possesses a periodic motion, or, more briefly, that Mt is 
periodic. This can happen even though few or none of the individual solution 
curves along which the points of Mt move are periodic. For we, of course, do not 
require that x(xo, T, µ) = xo E Mo, but merely that (xo E Mo) 
(x(xo, T, µ) E Mo). 

The initial manifold Mo can be described, at least locally, by means of para-
metric equations x = x(s), wheres = (s1 , • • • , sk), k being the dimensionality 
of the manifold. It is hereby assumed that the x( s) 's are at least differentiable 
(whenµ = µo) and that the Jacobian matrix ax/as is of rank k. In this connec-
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tion, it should be noted that it is not necessary to have a uniform global repre-
sentation for either the manifolds which we discuss or for the differential equa-
tions, even though this is certainly possible in the simpler special cases. We can 
always use local representations valid in a finite number of overlapping neighbor-
hoods and the appropriate transformations in passing from one neighborhood to 
an overlapping neighborhood. 

In the sequel it will be convenient to choose the coordinates in each neighbor-
hood representation of the system (1.1) so that Xn-k+l = s1 , Xn-k+2 = s2, • • • , 
Xn = Sk . Thus the system ( 1. 1), in a somewhat different notation, appears in 
the form, 

(1.3) dx 
dt = f(x, s, t, µ) 

(1.4) ds 
dt = g(x, s, t, µ), 

where now x and fare m-vectors, m = n - k, whiles and g are k-vectors. Both 
f and g are periodic in t with period T. 

Perhaps a better way of interpreting equations (1.3) and (1.4) is to regards 
abstractly as representing a point on Mo , or any fixed k-manifold mi homeo-
morphic to Mo, while xis to be regarded abstractly as a point in some m dimen-
sional linear space CR. The equations (1.3) and (1.4) then determine the motion 
of the point ( s, x) in the Cartesian product space mi X CR. It is assumed that in 
a neighborhood of any point in mi X CR, the equations (1.3) and (1.4) can 
actually be written down in the usual way in terms of coordinates representing 
both s and x, and that only a finite number of such neighborhoods suffice for 
the study of all motions of interest. 

If the equation of the manifold Mt is written in the form, 

( 1.5) x = u(s, t, µ), 

where u is an m-vector, it means that, (s(t), x(t)) being any solution of (1.3) 
and (1.4) which starts from an initial point (so, xo) on Mo, we must have 
x(t) = u(s(t), t, µ). Differentiating this identity totally with respect to t and 
using (1.3) and (1.4) to eliminate the derivatives of x and s, we find that u 
must satisfy the partial differential equation 

au au 
- = f(u, s, t, µ) - a-g(u, s, t, µ). at s (1.6) 

Conversely the solution u(s, t, µ) of (1.6), such that x = u(s, 0, µ) is the 
equation of Mo , is seen to furnish .the manifold Mt via ( 1.5). The problem of 
finding a periodic manifold Mo of (1.3) and (1.4) is thus seen to be equivalent 
to the problem of finding a periodic solution u(s, t, µ) of (1.6), with period Tin 
t, at least under the assumption that u is of class C'. 

Suppose such a periodic solution u 0( s, t) is known for a certain value µo of µ. 
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Relative to this known periodic solution, we write down a system of linear par-
tial differential equations which bear the same relation to (1.6) that the varia-
tional equations (1.2) bear to (1.1). We therefore call them the variational 
system for our manifold problem. They are 

(1.7) aw aw - = A (s t)w - - G(s t) at ' as ' 

where 

auo ( s, t) ( ( ) ) (1.8) A(s, t) = fiuo(s, t), s, t, µo) - as g,, uo s, t , s, t, µo . 

and 

(1.9) G(s, t) = g(v(s; t), s, t, µ). 

Here, of course, f., is an m X m matrix, auo/ as an m X k matrix, and g,, a k X rn 
matrix. v(s, t) is an arbitrary m-vector function of sufficient,regularity close to 
u0( s, t), and µ - µo is also to be regarded as sufficiently small. 

It is to be noticed that the problem treated by Poincare may be regarded as 
a special case of the present problem with k = 0. Hence one might, by extrapo-
lating from Poincare's result, hazard the conjecture that, if (1.6) possesses a 
periodic solution for a particular value µ0 ofµ, it will continue to have a periodic 
solution for µ µo but sufficiently close to µo , at least provided that the system 
(1.7) has no periodic solution other than the trivial one w = 0. We would in this 
way obtain a sufficient condition for the existence of periodic manifolds which 
is a direct generalization of Poincare's classical theorem on the perturbation of 
periodic solutions. The purpose of this paper was to investigate the possibility 
of obtaining such a theorem. Our main result is to the effect that such a theorem 
is indeed true if we modify the italicized proviso to read as follows: at least pro-
vided that the system (1.7) does not "come close" to having a non-trivial periodic 
solution and provided that a certain linear transformation Tv defined in certain 
Banach spaces should have a sufficiently extensive range. The meaning of the 
phrase "come close" will be explained in detail later on. It is introduced to in-
sure that Tv should have a bounded inverse. 

In some recently published work, Walter T. Kyner also has pointed out the 
importance of assuming the boundedness of the inverse of a somewhat similar 
transformation. This work of Kyner was invaluable in giving insight as to what 
should reasonably be expected in the present more general situation. 

Suppose we begin by noting (with the proof deferred to Section 2) that the 
equation (1.6) can be written in the form 

(1.10) aw aw - = A(s, t)w - --;- g(u 0 + w, s, t, µ) + cf>(uo + w, s, t, µ), at us 

where u = u 0 + w, and where cf> vanishes to the second order in wand (µ - µ0)112, 
and where u0 = u0 ( s, t) is, of course, the known solution of ( 1.6), when µ = µo , 
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as previously mentioned. This suggests that, for purposes of successive approxi-
mations, we study the non-homogeneous linear system 

(1.11) aw aw -a = A(s, t)w - - g(v(s, t), s, t, µ) + cp(s, t), 
t as 

where v(s, t) and cp(s, t) are known m-vector functions, periodic int with period 
T and of class C'; If cp(x, t) = 0, this is the variational equation (1.7) previously 
introduced. 

Suppose thats = S.(so, to, t) be the solution of the system, 

(1.12) ds 
dt = g(v(s, t), s, t, µ), 

of order k, which satisfies the initial conditions, 

(1.13) Sv(so,to,to) = so. 

In case v(s, t) = uo(s, t), which gives the known periodic manifold whenµ = µo, 
we know that forµ = µo, the solution S.(so, to, t) is defined for all t. Hence if 
\ µ - µo \ and max \ v( s, t) - Uo( s, t) I are sufficiently small, S.( so, to , t) will 
be defined for I t - to \ < 2T. 

From the theory of linear homogeneous ordinary differential equations, we 
know that there exists an m X m matrix n.(s 0 , t0, t) such that 

(1.14) 

and 

( 1.15) n.(so, to, to) = I, 

the identity matrix. We are now in a position to state the 

THEOREM. The (unique) solution of (1.11) which satisfies the condition 

(1.16) w(s, 0) = a(s) 

may be written in the form 

w(s, t) = n.[S.(s, t, 0), 0, t]a[S.(s, t, O)] 

(1.17) t 
+ 1 n.[S.(s, t, r), r,t]cp[S.(s, t, T), r] dr. 

The proof of this theorem is straightforward and will be given in Section 2. 
However, instead of the initial problem posed by (1.16), we wish to get a periodic 
solution. This means that w(s, T) = a(s). Hence we find that a(s) is to satisfy 
the condition 

a(s) - n.[S.(s, T, 0), 0, T]a[S.(s, T, O)] = 1T n.(S.(s, T, r), r, T)cp(*) d'r. 
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Thus to solve for a we need to invert the linear transformation Tv defined as 
follows: 

( 1.18) T.a(s) = a(s) - Q.[S.(s, T, 0), 0, T]a[S.(s, T, 0)]. 

The mere existence of T;;i is insured if we assume that (1.11) has no nontrivial 
periodic solution in the homogeneous case cp = 0. But this would be ineffective 
if the domain of T;;1, that is, the range of T., did not contain the right hand 
member {3 of the equation T.a = {3 to be solved for a. Moreover, in order to 
employ our projected system of successive approximations or, what in this case 
amounts to almost the same thing, the Schauder fixed point theorem, we have 
found it necessary (under the general situation here considered) to assume that 
T;;i is uniformly bounded for I v - uo I sufficiently small. That is, there exists a 
constant C such that 

(1.19) 

The question now arises as to the definition of II a II and as to the particular 
Banach space to be considered. Under the general conditions here considered, it 
seems necessary to consider two Banach spaces Bo and Bi, in both of which T. 
is defined, namely: Bo = space of m-vector functions a(s) continuous over :)'Tl 

and with norm II a [[ii0 = max I a;(s) 1-Bi = space of m-vector functions a(s) 

of class C' over :)'Tl and wi{~ norm II a llii1 = max {I a;(s)i, I a:i(s)i} • a:i(s) = 
s,i,i 

(da;(s)/dsi). (1.19) is then to be interpreted as meaning that both II r;;ia lliio 
C II a 1/iio if a E Bo and also II T;;ia l/ii1 C 11 a llii1 if a is also E Bi. This means 
that the linear "variational" equation 

(1.20) aw aw at = A(s, t)w - as g(v(s, t), s, t, µ) 

does not "come close" to having a periodic solution in the following sense: 
There exists a number e > 0, such that there is no solution of (1.20), normalized 
by the condition, 

II w(s, 0)II = 1, such that II w(s, 0) - w(s, T)I/ < e. 
Here the norms are to be taken in both senses, and we may take e = c-i. 

Finally it should be mentioned that the conditions here imposed seem to be 
satisfied in all the specialized cases previously treated. 

2. Proofs of some of the more elementary statements made in section 1 
In establishing that (1.6) can be written in the form (1.10), we recall the 

supposition that equations (1.3) and (1.4) have a known periodic manifold, 
x = uo(s, t). In other words, uo is a periodic solution of (1.6) whenµ = µo; 
so that we have 

auo ( ) auo ( ) at = f Uo , 8, t, µo - i)s g Uo , 8, t, µo . 
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Subtracting this identity from (1.6) and writing w = u - u0 , we find that 

~: = [j(u, s, t, µ) - j(uo, s, t, µo)l - aa:o [g(u, s, t, µ) - g(uo, s, t, µo)l 
(2.1) 

aw 
- as g(u, s, t, µ). 

Define cp(u, s, t, µ) and if;(u, s, t, µ) as follows: 

cp(u, s, t, µ) = f(u, s, t, µ) - f(uo, s, t, µo) - f,,,(uo, s, t, µo)(u - uo) 

if;(u, s, t, µ) = g(u, s, t, µ) - g(uo, s, t, µo) - g,,,(uo, s, t, µo)(u - uo), 

so that cp and if; together with their derivatives with respect to u vanish when 
u = uo and µ = µo. Making the appropriate substitution in (2.1), we easily 
find that the latter appears in the form 

aw auo at = cp( U, S, t, µ) + j,,,( Uo, S, t, µo)W - as [if;( u, s, t, µ) 
(2.2) 

aw + gu( Uo, s, t, µo)w] - as g( u, s, t, µ). 

Finally, introducing the matrix A(s, t) defined by (1.8) and also the vector 
<l>(u, s, t, µ) = cp(u, s, t, µ) - (auo/as)if;(u, s, t, µ), we find at once that the 
equation (2.2) may be written in the form (1.10), as we wished to prove. <I>, of 
course, has the property that it vanishes together with its derivatives with 
respect to u when u = uo and µ = µo . In verifying these statements the reader 
should note that the f,, and gx of (1.8) mean the same thing as the f,,, and g,,, of 
(2.2). 

The problem of solving (1.11) under the initial conditions w(s, 0) = a(s) is 
the same as that of determining the manifold of trajectories of the system 

(2.3) 

(2.4) 

x = A(s, t)x + cp(s, t) 

s = g(v(s, t), s, t, µ) = g[s, t] 

issuing from the manifold x = a(s) when t = 0. In fact, the relationship between 
(2.3), (2.4), and (1.11) is precisely the same as the relationship, in the more 
general case, between (1.3), (1.4), and (1.6), except that we now write win-
stead of u. In order to prove our theorem we begin by considering the general 
system x = f(x, s, t), s = g(x, s, t) and its general solution, 

(2.5) x = X (xo , so , to , t), s = S(xo, so, to, t), 

taking on the initial values xo, so, when t = to. Evidently, since (x, s) and 
(xo, s0) in (2.5) represent a pair of points on the same trajectory of the system 
at "times" t and to respectively, there is complete symmetry between (x, s, t) 
and (x 0 , s0 , t0). Hence (2.5) is easily solved for xo and so in terms of x, s, t, and 
to in the form, 



(2.6) 

(2.7) 
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Xo = X(x, s, t, ta) 

so = S(x, s, t, ta). 

Suppose now that xo = a(so). Then from (2.5) and (2.7) we obtain 

x = X(xa, so, to, t) = X(a(so), so, to, t) 

x = X(a(S(x, s, t, to)), S(x, s, t, to), t0 , t). 

With to = 0, x = w(s, t), this becomes 

(2.8) w(s, t) = X(a(S(x, s, t, O) ), S(x, s, t, O), 0, t), 

and, of course when t = 0 also, we get 

(2.9) w(s, O) = X(a(S(x, s, 0, O)), S(x, s, 0, O), 0, O) 

= a(S(x, s, 0, O)) = a(s), 

211 

as we should. In obtaining these last reductions we use the identities X(x, s, t, t) = 
x and S(x, s, t, t) = s which are implicit in the definition of X and S. 

We next consider the special case with which we are primarily concerned. 
That is, we now assume that f(x, s, t) = A(s, t)x + cp(s, t) while g(x, s, t) = 
g[s, t]. Thus, in accordance with (1.12) we may write S(x 0 , so, ta, t) = 
S.(so, to, t), obtaining a simplification from the fact that Sin this special case 
is independent of Xo. We also get an explicit expression for X(x 0 , so, to, t) in 
terms of the matrix n.(so, to, t) and the Lagrange "variation-of-parameters" 
formula. Namely, 

X(xo, So, ta, t) =Q.(so, to, t)xo 
(2.10) t ' 

+ 1 n.(so, to, t)Q.(so, to, r )- 1 cp[S.(so, to, r ),r] dr. 
to 

In order to simplify this formula, we shall first prove some properties of S. 
and n. , namely 

(2.11) 

and 

(2.12) 

S.(so, to, t) = S.(S.(so, to, r), r, t) 

n.(so, to, t)Q.(so, to, r)- 1 = n.(S.(so, to, r), r, t). 

We obtain (2.11) by considering three points so, u, ands on the same trajec-
tory of the system s = g[s, t] at times to, r, and t respectively. Evidently, we 
must have s = S.( so , to , t) = S.( u, r, t), while u = S.( so , to , r). Inserting this 
value of u in the previous equation, we get (2.11) immediately. 

We next notice from (2.11) that the equation 

(2.13) dQ 
dt = A[S.(sa, to, t), t] Q 
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can also be written in the form, 

(2.14) drl 
dt = A[S.(u,r,t),t]rl, 

where u = S.(so, to, r) as before. Now, if we let fl= n.(so, to, t)n.(so, to, r)- 1, 

we see from (1.14) that (2.13) is satisfied, and hence (2.14) is also satisfied. 
Furthermore, when t = r, the second factor in the expression for fl is the inverse 
of the first factor, and so fl reduces to I. From the uniqueness property of the 
system (2.14) together with the definition of n.(u, r, t) (cf. (1.14) and (1.15) 
with so, to replaced by u, r), we see therefore that fl = n.(u, r, t), which es-
tablishes (2.12). 

Evidently with the help of (2.12), we may write (2.10) in the form 

X(xo, so, to, t) = n.(so, to, t)xo 

+ 11 n.(S.(so, to, r ), r, t)q,[S.(so, to, r ), r] dr. 
to 

(2.15) 

This is the particular expression for X, which we wish to use with (2.8), wherein 
we must replace xo by a(S.(s, t, 0)), so by S.(s, t, 0), and to by 0. We thus ob-
tain 

x = n.(S.(s, t, 0), 0, t)a(S.(s, t, 0)) 
(2.16) + { n.(S.(S.(s, t, 0), 0, r), r, t)rp[S.(S.(s, t, 0), 0, r), r] dr. 

From (2.11), it is seen that the right hand side of (2.16) reduces to the right 
hand side of ( 1.17). 

In this proof of the theorem of Section 1, the reader should notice that no use 
was made of the partial differential equation (1.11) except for the statement 
concerning the general equivalence between the solution of the partial differen-
tial equation (1.6) and the determination of the k-manifolds of solutions of 
( 1.3) and ( 1 .4). This equivalence is, in fact, not entirely valid unless the k-
manifolds in question are assumed to be differentiable. Moreover, the function 
w(s, t) given by (1.17) is not, in general, a solution of (1.11) in the ordinary 
sense unless a(s) is differentiable. If a(s) is merely required to be continuous, 
w(s, t) can, however, still be regarded as a solution of (1.11) in various familiar 
generalized senses, some detailed references to which will be found in the bibli-
ography. Furthermore, the partial differential equations are actually bypassed 
( as in the above proof) in all of our really essential considerations. They are 
introduced for heuristic and interpretive reasons. Hence we shall sometimes and 
without further comment not require a(s) and w(s, t) to be differentiable. 

3. The existence proof 
We have already defined the linear transformation T. by (1.18). The domain 

Bo of this transformation T. is the set of continuous functions defined on the 
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k-manifold ;)fl with values in the m-dimensional space CR, and its range is also 
in Bo . We must also introduce four other linear transformations Lv , D;;1, Kv , 
and Hv. The domains of these four transformations are all the same, namely the 
set Bo of continuous functions defined on the product space ;)fl X [0, T] with 
values in CR. Here [0, T] is the closed interval from 0 to T. The ranges of Lv , 
D;;1, Kv are also in Bo, but the range of Hv is to be C Bo. With these under-
standings, our four transformations are defined by the following formulas: 

(3.1) [Lvw](s, t) = Ov[Sv(s, t, 0), 0, t]w[Sv(s, t, 0), t] 

(3.2) [L; 1w](s, t) = Ov[Sv(s, 0, t), t, O]w[Sv(s, 0, t), t] 
t 

(3.3) [Kvcp](s,t) = 1 O.[S.(,st,r),r,t]cp[Sv(s,t,r),r]dr 

(3.4) [Hvcp](s) = [Kvcp](s, T). 

The fact that Lv and L; 1 are inverses of each other is easily established from 
(2.11) and (2.12). 

Bo may be thought of as a subset of Bo . Hence any of the above four trans-
formations make sense when applied to an element w in Bo , that is, when w is 
independent of t. When we wish to emphasize or specify this restricted use of a 
transformation, we will use a superscript bar. Thus Lv, for example, has do-
main Bo but its range is a subset of Bo which, in general, is quite distinct from 
Bo. 

It is clear from (1.18) and (3.1) that Tv and Lv are somewhat related to each 
other. Namely, 

(3.5) [Tva](s) = a(s) - (Lva)(s, T). 

We may now write (1.17) in the condensed form 

(3.6) 

Since w(s, 0) = a(s) by the theorem of Section 1, the condition for periodicity 
is a(s) = w(s, T); that is, with the help of (3.5), (3.6) and (3.4), Tva = Hv<P• 
Assuming that T; 1 exists, we may solve this equation for a and insert its value 
in (3.6), thus obtaining 
(3.7) 

as the formula for the (unique) periodic solution of ( 1.11), which must, of course, 
exist if T; 1 exists. 

Comparing (1.10) with (1.11) and remembering that the periodic solution of 
the latter is given by (3.7), it is clear that for w(s, t) to be a periodic solution of 
(1.10) it is necessary and sufficient for 
(3.8) w(s, t) = (LuT-;;1H,, + K,..)P(uo(s, t) + w(s, t), s, t, µ), 
where, of course, the right hand member depends on w(s, t) not only because w 
appears as an argument of cp but also because the subscript u is an abbreviation 
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for uo(s, t) + w(s, t). It should also be remembered that L, T, H, and Kall 
depend upon µ even though, for simplicity in notation, this is not indicated in 
(3.8). 

The right hand member of (3.8) defines a non-linear operator G,,,, depending 
upon µ, so that the solution of (3.8) amounts to finding a fixed point of the 
transformation, 

(3.8') 

where w and w are suitable elements of Bo and ii>( w) is written as an abbrevia-
tion for il>(uo + w, s, t, µ). We propose to show that a fixed point always exists 
for sufficiently small I µ - µo I by appealing to the Schauder fixed point theorem. 

The Banach spaces Bo and B1 have already been introduced together with the 
appropriate norms 11 a //n0 and 11 a //n1 • We have also already introduced Bo as 
the set of continuous m-vector functions defined on~ X [O, T]. We now intro-
duce B1 as the subset of Bo possessing continuous derivatives, and we then 
introduce suitable norms for both Bo and B1 , thus allowing us to consider them 
as Banach spaces. These norms are analogous to those introduced in Section 1 
for Bo and B1 and are defined as follows: 

I\ w l\s0 = max I wi(s,t)/ 
s,i,t 

f I awi I} II w \\s, = ~a_x 1 I w;(s, t) /, -. 
s,,,J,t as, 

The linear transformations Lv , D;;1, Kv, Lv , Hv, Tv are of sufficiently simple 
form so that the reader may readily verify that they are all bounded with re-
spect to either appropriate norm, at least if I µ - µo I and II v - Uo 11 are suf-
ficiently small. More precisely, we assert that there exist positive numbers o and 
C such that Iµ - µo I < o, II v - Uo //si < o (whether i O or 1) imply that 

(3.9) 

// Lvw //s; C // W //s, 

11 r;1w 1/s; c II w /Is; 

// K.w //s; C // W //s; 

// Lva //s; C // a //n; 

// Hvw //n; C /I W [/s; 

// Tva /In; C // a //n, 
We need to add to this list the additional inequality 

(3.10) 

for every w E B; 

for every w E Bi 

for every w E B; 

for every a E Bi 

for every w E B; 

for every a E Bi 

for every a E B;. 

Unlike (3.9), it is not possible to prove (3.10). As already indicated in Section 
1 (cf. (1.19) et seq.), we introduce (3.10) as our major hypothesis. 

Another property of our transformations to be needed in the sequel is formu-
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lated in the following 

LEMMA. Let w* be any fixed element of Bo and let a* be any fixed element of Bo . 
Let II wh //Bo < o for h = 1, 2, • • • and let wh ........., w uniformly (in other words, 
// wh - w //Bo........., O) and let us write uh = Uo + wh, u = Uo + w. Then, in the 
sense of uniform convergence, the fallowing limiting relationships are valid: 

L-;;!Kuhw* - L-;;1Kuw*, 

Huhw* - Huw*, 

The proof of this lemma is left to the reader, but we remark that the proof 
involves the uniform continuity of w* on ;JJt X [O, T] and of a* on ;JJt. This is 
justified, since it has been assumed from the outset that ;JJt (or Mo) is a finite 
manifold and is therefore compact. 

We next choose a positive number 8 o so small that 

(3.11) i = 0, 1, 

whenever w E Bi and II w IIB, 8 and Iµ - µo /112 < 8. We can do this because 
cf> vanishes to the second order in wand (µ - µ 0)112. Hence from (3.8') and the 
triangle inequality we find that 

// W //B, // LuT-;;1Hucf>(w) //Bi+ // Kucf>(w) //B, 

and thus from (3.9), (3.10) and (3.11) we find further that 

II w 1/B; C38(C3 + C)- 1 + C8(C3 + C)- 1 = 8. 

Hence our transformation G,,,, for any fixed value of µ differing from µ0 by less 
than 8, sends the convex set S = ( II w //Bo 8) n ( II w //B, 8) into itself. 
This set is not compact or even conditionally compact in the norm for B1 . It is, 
however, conditionally compact in the norm for Bo, a fact which is an immediate 
consequence of Ascoli's theorem and the fact that the derivatives of w exist 
and are bounded throughout the set // w //B, ~. 8. All functions belonging to the 
closure S of S relative to Bo thus satisfy a Lipschitz condition with Lipschitz 
constant equal to 8. 

We next prove that G,,, sends any element of S into S. In the first place it is 
obvious that G,,,w is well defined for w E S, since S c Bo . Assuming then that 
w E S, there exists a sequence wh E S(h = 1, 2, • • ·) such that // wh - w [/Bo........., 0. 
If then we write wh = Gwh, we know from the compactness of S that there 
exists an element w E S 3 II wh - w //Bo ........., 0, at least, if we confine attention 
to a suitable subsequence. We also note that II cf>(wh) - cf>(w) //Bo --+ 0. We wish 
to prove that w = G,,,(w). 

By definition of G,,, we evidently have 
where uh = Uo + wh . 

Hence 
(3.12) 
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Also, from the triangle inequality, we have 

II L-;;,!wh - L-;;,1w IIBo ;;i; II L-;;,!wh - L-;;,!w IIBo + II L-;;,!w - L-;;,1w IIBo . 
The second term on the right tends to O as h ---;-oo in accordance with our Lemma 
(taking w = w*). The first term on the right, in accordance with (3.9), does 
not exceed C II wh - w IIBo which also tends to 0. Hence L-;;,! wh---;-L-;;,1w. In a 
similar way, we use our Lemma to prove that L-;;,!Ku/P( w,.) ---;-L-;;,1KiP( w). Ob-
serving that the left member of (3.12) E Bo (i.e., it is independent of t), the 
same is true of the right member and of the limit of the right member, namely 
L-;;,1w - L-;;,1Kuct;,( w) even though the individual terms are not in general ele-
ments of Bo but only of Bo . It follows that there exists th E Bo 3 th ---;-0 and 
T-;;,!Huhct;,(wh) = L-;;,1w - L-;;,1Kuct;,(w) +th. From this we obtain Huhct;,(wh) = 
Tuh[L-;;,1w - L-;;,1Ku<I>(w)] + Tuhtu. Again with the help of our Lemma we prove 
that Huhif,(wh)---;-Huct;,(w) and that 

Tuh[L-;;,1w - L-;;,1Kuct;,(w)] - Tu[L-;;,1w - L-;;,1K,.,ct;,(w)]. 

Moreover by (3.9) II Tuhth lle0 ;;i; C II th lliio ---;, 0. It follows that Hu<I>(w) 
Tu[L-;;,1w - L-;;,1Kuct;,(w)]. From this we easily prove the desired result, namely 
w = L,.T-;;,1Huct;,(w) + Kuct;,(w) = G,,,w. Since G,,,w is single valued, it is clear that 
w is the only limit point of the original sequence wh introduced above; so that, 
a posteriori, we find that it would have been unnecessary to confine attention to 
a subsequence. By taking wh E S instead of in S, the same argument shows that 
G,,, is continuous in S. 

Thus we have proved that for\µ - µo I < 0 the transformation w = G,,.(w) 
takes the convex compact set S C Bo into itself and moreover is continuous. 
Hence, by the Schauder fixed point theorem, for each such fixed value of µ, 
there exists w = w(s, t; µ) E S c Bo, such that w = G,,(w). This w(s, t; µ) 
must then furnish a solution to the problem proposed in Section 1 of finding an 
invariant or periodic manifold for the system ( 1.3), ( 1.4). We thus have es-
tablished the following 

THEOREM. Let f(x, s, t; µ) and g(x, s, t; µ) be of class C' and suppose that the 
system (1.3), (1.4), admits a periodic manifold x = uo(s, t) of class C' when 
µ = µ0 • Suppose furthermore that the variational equation (1.20) does not "come 
close" (uniformly in v) to having a periodic solution, in the sense that II T-;;1 a II ii, ;;i; 
C II a lie, for every a E Bi, for some constant C and any v E B; such that 
II v - uo IIB, < li, for i = 0 and for i = 1. ( This implies the assumption that the 
range of Tv is Bi,) Then there exists a positive number 0 ;;i; li, such that the system 
(1.3), (1.4), possesses a periodic manifold for each value ofµ satisfying the in-
equality I µ - µ0 I < 0. More over this man if old is given by an equation of the form 
x = Uo + w(s, t; µ) where w is continuous in s and t and II w(s, t; µ) II Bo ;;i; 0. 
Furthermore w satisfies Lipschitz conditions with respect to s and t with Lipschitz 
constant = 0. 



PERTURBATION OF INVARIANT MANIFOLDS 217 

4. Uniqueness and continuity with respect to µ, 
Suppose we have two periodic solutions of (1.10), wand w, corresponding 1 to 

µ, and fl, such that II w IIBo, II W IIBo 0 and Iµ, - µ,o I, I fl - µ,o I < 0; w, W E S. 
We shall use the abbreviations 

g(uo + w, s, t, µ,) = g(w, µ,) and <f>(u0 + w, s, t, µ,) = <f>(w, µ,). 

Then, if we write down (1.10) with w replaced by w, andµ, by fl, if we subtract 
the resulting equation from the unmodified ( 1.10), and if we carry out certain 
other obvious algebraic manipulations, we find that 

(4.1) a _(_w_-_w_) -A(s,t)(w-w) +_a(_w_-_w_) g(w,µ,) = <P(w,w,µ,,fl) 
at as 

where 

(4.2) aw <P(w,w,µ,,fl) = <f>(w,µ,) - <f>(w,fl) + as (g(w,fl) - g(w,µ,)). 

Since cf> vanishes to the second order in w and (µ, - µ,0) 112 and since g is of 
class C', we could find a positive number P such that 

(4.3) II <P(W, W, µ,, fl)IIBo PO II W - W IIBo +PIµ, - fl I, 
if we only knew that aw/as were bounded by 0. Actually (1.10) may be satisfied 
only in a generalized sense so that aw/as may not even exist. However, our 
solutions w and w both belong to the closure of the set ( II w II Bo < 0) n 
(II w IIB1 < 0), and so, even if aw/as and aw/as did not exist, we could find solu-
tions of (1.10) w* and w* whose derivatives did exist and would be bounded by 
0 and such that 

(4.4) II W - w* IIBo < CT, II w - w* IIBo < CT, 

where CT is any preassigned positive number. 
Hence we may at least assume that ( 4.1) and ( 4.3) are satisfied when w and 

w are replaced by w* and w* respectively. This approximation may be effected 
by modifying slightly the initial values a(s) = w(s, O) and a(s) = w(s, O), 
replacing them by slightly different but smoother functions a* ( s) and a* ( s). 
But, of course, in doing this, we may sacrifice periodicity. The periodicity con-
dition for the solution of (4.1), (cf. derivation of (3.7)), which can be written 
Tu(a - a) = Hu<P(w, w, µ,, fl), is replaced by the following inequality, which 
is a consequence of the fact that w* and w* approximate uniformly two solu-
tions which were periodic from the outset: 

(4.5) fl [[no < 4CT, 

where 

(4.6) 
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and where u* = u0 + w*. From the Theorem of Section 1, or the compact sum-
marization embodied in (3.6), we have 

w* - w* = Lu•(a* - a*) + K,..cp(w*, w*, µ, ;z). 
Hence, from (3.9) and (4.3) 

( 4.7) II w* - w* lleo C II a* - a* lliio + 0CP II w* - w* lleo + CP \ µ - ;z \ 
From (4.6), (3.9), (3.10), (4.3), and (4.5), we have 

II a* - a* lliio = II r-;;,!H,,,.cp(w*, w*, µ, ;z) + T:;;-!~ lliio 
II T:;;-!H,..cp(w*, w*, µ, ;z)lliio + II T:;;-!~ lliio 
C20P II w* - w* lleo + c2P-I µ - jl I+ 4Cu. 

Combining this result with (4.7), we find that 

II w* - w* lle0 (C30P + C0P)II w* - w* lleo + (C3P + CP)I µ - jl I + 4c'~u. 
We now choose 0 so small that C30P + COP < ½-This is possible since both C 
and P are independent of 0; at least so long as 0 < 5, as we have been assuming 
all along. Hence II w* - w* lleo < 2(C3P + CP)I µ - ;z I + 8C2u, while from 
( 4.4) we obtain 

II w - w lleo II w* - w* lleo + II w - w* lleo + II w* - w lleo 
< 2(C3P + CP)I µ - ;z\ + (8C2 + 2)u. 

But u can be taken arbitrarily small, while II w - w Ilea is independent of u. 
Hence II w - w lleo 2(C 3P + CP) ·Iµ - ;z 1- This proves simultaneously 
that for a given µ the solution is unique and that, considered as a function of µ, 
it satisfies a Lipschitz condition in µ and, hence, a fortiori, it is continuous, at 
least if the 0 of the Theorem of Section 3 is taken sufficiently small. 

The above technique can also be used to obtain the existence theorem of the 
previous section by a method of successive approximations, without using the 
Schauder fixed point theorem. As in so many other instances of the application 
of the Schauder theorem, the latter turns out to be a convenience rather than 
an essentiality. 

Concluding comment 
In this paper we have obtained periodic manifolds defined by continuous 

(Lipschitzian) functions, but not necessarily differentiable. It is highly prob-
able, however, that we could have obtained manifolds of class C\ if we had 
suitably sharpened our hypotheses on the smoothness of uo , f, and g, using also, 
instead of the spaces Bo and B1, the spaces Bq and Bq+1, where BP is defined as 
the space of functions of class CP from mi to CR with II w IIBp defined as the maxi-
mum of the absolute values of the derivatives of the w's with respect to the .~'s 
and t of all orders from O to p, inclusive. 

RIAS, BALTIMORE, MA.RYLAND 
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