
ON LOCAL HOMEOMORPHISMS OF EUCLIDEAN SPACES* 

BY PHILIP HARTMAN 

Introduction 

Consider the system of (real) non-linear differential equations 

(1) x' = rx + F(x), where F(x) = o(I x I) as x-+ 0, 

x is an N-vector, x' = dx/dt, r a constant N by N matrix, and F(x) an N­
vector valued function of class C1 for small I x 1- Let the eigenvalues -y1 , • • • , 

'YN of r satisfy 

(2) Re 'Yk ~ 0 for k = 1, • • • , N. 

This paper is concerned with the existence of C1 maps 

(3) U = X + i,o(x), where i,o(x) = o(I x I) as x-+ 0 

defined for small I x I and transforming ( 1) into the linear system 

(4) R:u' = ru 

for small I u I-
In the analytic case, this problem has been considered by Poincare, Birkhoff, 

Siegel and others. When F is analytic and an analytic i,o is sought, a comparison 
of coefficients leads to the diophantine inequalities 

(5) for j = 1, • • • , N, 

where n1 , • • • , nN are non-negative integers with a sum n1 + • • • + nN > 1. 
In the case of a "contraction", 

(6) Re 'Yk < 0 fork= 1, • • ·, N 

( or, equivalently, a dilation Re 'Yk > 0) and where r has simple elementary 
divisors, Poincare ( [7], pp. xcix-cv), has shown that ( 5) is sufficient for the 
existence of an analytic, linearizing map ( 3) ( when F is analytic). For another 
proof, see Sternberg ([9]). By an example which is, essentially, 

(7) x' = -x, 

where a and y are scalars, Sternberg in [9], p. 812, shows that if ( 5) is violated, 
then there need not exist a linearizing map ( 3) of class C2 ( even though F is 
analytic). 

* This research was supported by the United States Air Force through the Air Force 
Office of Scientific Research of the Air Research and Development Command, under con­
tract No. AF 18(603)-41. Reproduction in whole or in part is permitted for any purpose of 
the United States Government. 
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The general, non-analytic case has been treated by Sternberg ( [9], [10]) and 
N agumo and lse ( [6]). The latter prove, for example, that there exists a positive 
number r ( depending only on Re 'Y1 , • • • , Re 'YN) with the properties that if ( 5) 
holds for all sets of non-negative integers n1 , • • • , nN subject to 

1 < n1 + · · · + nN < r 

and if Fis of class C1 and each component Fi of F has partial derivatives of the 
form: polynomial + 0 ( I x I') as x - 0, then there exists a linearizing map ( 3) 
of class c1. 

The question to be considered below is whether or not there exists a linearizing 
map (3) of class C1 when F(x) is assumed to be, say, of class C2, but no diophan­
tine inequalities (5) are assumed. It is shown that the answer is in the affirmative 
for contractions and for binary (N = 2) systems. (This case N = 2 can be 
generalized somewhat to the case when the positive numbers in the set Re 'Yi, 

• • • , Re 'YN are nearly equal and the negative numbers in the set are nearly 
equal.) These results cannot be extended without further restrictions on the 
'Yi, • • • , 'YN. For it is shown below that the analytic system of three (scalar) 
equations 

(8) x' = ax, y' = ( a - 'Y )y + xz, z' = -'Yz, 

where a > 'Y > 0, does not admit a linearizing map (3) of class C1 (for small 
I x I, I y I, I z I). In fact, there does not exist a local map ( 3) of class C1 with non­
vanishing Jacobian which carries trajectories of (8) into those of 

(9) u' = au, v' = (a - 'Y)v, 

This answers a question raised by M. M. Peixoto. 
Let x = Ht, xo) be the solution of (1) determined by the initial condition 

HO, Xo) = Xo. Then 

is a "group" of transformations of a neighborhood of x = 0 into a neighborhood 
of xt = 0. Also, 

Ht, x) = ertx + F(t, x), 

where F(t, x) = o(i x I) as x - 0. The problem of linearizing (1) is equivalent 
to the problem of finding a map R, say (3), such that RTt R- 1 is linear ut = 
ertu, that is, which linearizes Tt for every t. According to a lemma of Sternberg 
[9], p. 817, it is sufficient to find an R which linearizes T1. 

Correspondingly, instead of ( 1), the considerations below will deal with a local 
map 

(10) T: x1 =Ax+ X(x), where X(x) = o(i x I) as x - 0, 

of a vicinity of x = 0 in x-space into a vicinity of x1 = 0 in x1-space. The ques-
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tion is the existence of a map (3) such that 

(11) RTR- 1 : u1 = Au. 

Treatments of the analytic case of this problem when N = 1 go back to Abel, 
Schroder, Koenig ( cf. de Bruijn [11) and for contractions with arbitrary N to 
Leau; cf. [4] for references. (The early references were supplied to me by Profes­
sor L. Markus.) 

An advantage to treating (10), rather than (1), is that the results can be used 
to study a system of differential equations in the vicinity of a periodic solution 
as well as in the vicinity of a stationary point. 

Part 1. Contractions 

1. Main theorem. Let x, x1, u, u1, X, cp denote N-vectors and A a (real) 
constant, N by N matrix. 

(I) Let A be a constant matrix with eigenvalues a1 , • • • , aN satisfying 

(1.1) o < I aj I < i. 

Let X = X(x) be a function of class C1 for small\ x I satisfying X = aX/ax1 = 
• • • = aX/axN = 0 at x = 0 and having partial derivatives which are uniformly 
Lipschitz continuous. Then, for the map T: x ----, x1, 

(1.2) 

there exists a map 

(1.3) 

T: x1 = Ax+ X(x), 

R: u = x + cp(x), 

of class C1 for small X satisfying cp = acp/ax1 = 
such that RTR- 1 has the farm 

(1.4) 

for small I u \. 

acp/axN = O at x = o 

The uniform Lipschitz condition on the partial derivatives of X can be re­
placed by a uniform Holder condition of order a, where a > a 0 and a 0 is a num­
ber depending only on I a1 I, · · · , I aN I and satisfying O ~ ao < 1. It will re­
main undecided whether or not the uniform Lipschitz ( or suitable Holder) 
condition can be replaced by a Lipschitz ( or suitable Holder) condition at x = 0 
(as suggested by the conditions of Nagumo and Ise). 

From the proof of (I), it will be seen that cp in (1.3) has uniformly Holder 
continuous first derivatives (with a Holder order depending only on I a1 I, · · · , 
\aN \). 

2. The induction. The following notation will be used below: For a rectangular 
matrix Q, let the norm IQ I be defined by max I Ql; I for Ii; I = 1, where l; is a 
vector of appropriate dimension and I i; I, I Qi; I denote Euclidean lengths in the 
corresponding spaces. 
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If x, y are vectors and W = W(x, y) is a vector function, let a.,W = 

(aWP/axq), auW = (aWp/ayq) denote the indicated (rectangular) Jacobian 
matrices. 

For the proof of (1), it will be convenient to change notation. Write the N­
vector x as (x, y, z), where x is an I-vector, y a J-vector, z a K-vector and 
I+ J + K = N. Let A, B, C be square matrices of order I, J, Kand with 
eigenvalues a1 , • • • , ar, b1, • • • , bJ, c1 , • • • , CK, respectively. 

Induction hypothesis. In the local map 

(2.1) T: x1 = Ax+ X(x, y, z), y1 = By+ Y(x, y, z), z1 = Cz, 

let the eigenvalues of A, B, C satisfy 

(2.2) 
0 < [ a1 [ ~ • • • ~ [ ar [ < [ b1 [ 

let X, Y satisfy 
(i) X, Y are defined, of class C1 for small Ix[, I y [, I z I and X, Y d 

o([ x I + I y I + I z [) as (x, y, z) - O; 
(ii) the Jacobian matrices a.,X, ayX and a.,Y, avY are uniformly Lipshitz 

continuous with respect to ( x, y, z) ; 
(iii) The Jacobian matrices a,X, a2 Y are uniformly Lipschitz continuous 

with respect to (x, y); finally 
(iv) The Jacobian matrices azX, a2 Y are uniformly Holder continuous with 

respect to z. 
It is clear that (I) will be proved if the following is verified. 
Induction assertion. There exists a local map R of the form 

(2.3) R: u = x - x(z), v = y - y(x, y, z), w = z, 

where x(z), y(x, y, z) are of class C1 for small \ x [, I y [, I z [, are o(\ z [), 

o([ x I + I y I + I z [) as z, (x, y, z) - 0, respectively, and R is such thatRTR- 1 

has the form 

(2.4) RTR- 1: u1 = Au+ U(u, v, w), v1 = Bv, w1 = Cw, 

where 
(i) U(u, v, w) is of class C1 for small [ u [, Iv[, I w \ and is o([ u I +Iv I+ 

I w I) as ( u, v, w) -+ 0; 
(ii) the Jacobian matrix auU is uniformly Lipschitz continuous with re~ 

spect to ( u, v, w); • • 

(iii) the Jacobian matrices a.U, awU are uniformly Lipschitz continuous 
with respect to u; finally, 

(iv) the Jacobian matrices a.U, awU are uniformly Holder continuous with 
respect to ( v, w). 

The "first" step of the usual induction proof can be omitted for "dummy" 
variables z, z1 can be added to the map (2.1), if such variables are not present. 
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3. An invariant manifold. The induction assertion wll be proved in two stages. 
The first depends on the existence of a certain invariant manifold. 

LEMMA. Assume the Induction Hypothesis for the local map (2.1). Then there 
exists a manifold M invariant under T of the form 

(3.1) M: x = x(z), y = y(z), 

where x(z), y(z) are of class C1 for small [ z \, are o(\ z \) as z - 0, and have uni­
formly Holder continuous partial derivatives. 

As to the existence of an invariant M of class C1, the assumptions (ii)-(iv) 
of the induction hypothesis can be replaced by the assumption that the partial 
derivatives of X, Y satisfy a Holder condition in (x, y, z) only at the point x = 
y = z = 0. In which case, the partial derivatives of x(z), y(z) satisfy a Holder 
condition at z = 0. If (iv) is suitably modified in both the induction hypothesis 
and assertion, then these properties of M would suffice for the proof of (I) . 
( But, of course, the assumptions (ii), (iii) concerning Lipschitz continuity will 
be used elsewhere below.) 

PROOF OF THE LEMMA. In view of the symmetry of the assumptions and asser­
tions in x and y, it will be convenient to change the notation again so that (x, y), 
(X, Y), (A, B), (a, b) become x, X, A, a respectively. Thus, (2.1) becomes 

(3.2) T: x1 = Ax+ X(x, z), z1 = Cz, 

and the assumptions on X are the same as in the induction hypothesis ( and X 
does not depend on y). A manifold 

(3.3) M: x = x(z) 

is invariant under (3.2) if and only if x(z) satisfies the functional equation x1 = 
x(z1), that is, 

(3.4) Ax(z) + X(x(z); z) = x(Cz) 

or, equivalently, 

(3.5) 

After preliminary (separate) linear changes of the independent variables 
x and z, it can be supposed that there exist numbers a, c, d satisfying 

(3.6) 

and 

(3.7) \A\~ a, \C\ ~ d, I c-1 I ~ 1/c. 

The number 1: > 0 will be fixed below. Let 

(3.8) Eo = {z: \ z \ ~ e} and Em= {Cz: z E Em-1} form 1, 2, • • • 
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so that Em = C(Em-1). Since\ Cz \ ~ d\ z \ and d < 1, it is clear that the ellip­
soid Em is a proper subset of Em-I and that Em shrinks to the origin as m - oo. 

Define x(z) to be O in a thin shell t - ri ~ \ z \ ~ t + 7/ containing [ z \ = t. 

Then ( 3 .5) defines x ( z) in a thin shell containing the set C ( \ z \ = t) as a func'" 
tion of class C1 with partial derivatives which are uniformly Holder continuous. 
The domain of x(z) can be extended (arbitrarily) so as to include Eo - E1 

in such a way that x(z) remains of class C1 and a,x(z) is uniformly Holder con­
tinuous. Then (3.5) defines x(z) successively on E1 - E2, E2 - E3, • • • 
so that x(z) is of class C1 on O < \ z \ ~ t. Finally, put x(O) = 0. 

(1) Estimates for \ x(z) \. Let L, a be positive constants such that 

(3.9) \ X(x, z) \ ~ L(\ X \Ha+ \ Z \Ha). 

Choose o so that 

(3.10) 

t > 0 so small that 

(3.11) 

0 < o ~ a and a/cl+• < 1, 

0 I 1+0 + L a(I+o); (l+a)(l+o) 1 =ac t c <, 
and L1 so as to satisfy 

(3.12) 

and, on Eo - E1 , 

(3.13) 

It will be verified that (3.13) holds for [ z \ ;;;; t. Assume that (3.13) holds on 
Em-1 - Em for some m ;?; 1. Let X E Em - Em+I, so that C-1z E Em-1 - Em·• 
By (3.5), (3.9), 

\ x(z) \ ~ \ Ax(C- 1z) \ + L(\ x(C- 1z) \H" + [ C-1z [Ha), 

and so, by (3.7) and the assumption of (3.13) on Em-1 - Em, 

\ x(z) \ ~ aL1(\ z \/c)1+0 + L[L1(\ z \/c)(I+a)(Ho) + ([ z \/c)H"]. 

Since I z \ ~ t, this can be written as 

] x(z) \ ~ L1\ z \1+00 + L\ z \Ho ta-•;cH\ 

by virtue of (3.11). Hence (3.12) implies (3.13). 
(2) Estimates for \ a,x(z) \. By assumption, there exist positive constants 

L, a satisfying 

\axX(x,z) \ ~ L(\x\ + \z\), 

I a.X(x, z) I ~ L([ XI + I z n. (3.14) 

Leto satisfy (3.10), so that (3.13) holds for I z \ ~ t. Choose t > 0 so small that 

(3.15) 
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Let L2 be chosen so that 

(3.16) 

and that, on Eo - E1 , 

(3.17) 

It will be verified that (3.17) holds for \ z \ ~ e. By (3.5), 

a.x(z) = {A(a.x 0

) + (a,,.¥0 )(a.x 0

) + (a.x 0 )Jc- 1

, 

where the superscript O on x, X means that the argument is c-1z, (x(C-1(z)), 
c-1z), respectively. Since tp.e norm of a matrix product Q1Q2 satisfies \ Q1Q2 \ ~ 
I Q1 \ • \ Q2 \, (3.7) implies that 

\ a.x \ ~{a+ I a"'x0 Ill a.x0 \le+\ a.x 0 \/c. 
Thus, by (3.14), 

\ a.x \ ~{a+ L(\ x0 

\ + \ z \/c)}[ a.x0 \/c + L{[ x0 \ + (\ z \/c)")/c. 

Assume (3.17) for z E Eo - Em-1. Then, for z E E1 - Em , (3.13) implies that 

I a.x \ ~ {a+ L(L1([ z [/c)H• + I z \/c)}L2\ z \0/c1+o 

+ L{L1([ z \/c)H• + (\ z \/c)"}/c. 

This gives 

\ a.x \ ~ L2\ z \00 + \ z \0 L(L1 e/cH• + e"-0/c"}/c, 

since\z\ ~ eand0isgivenby(3.15).Hence(3.16)implies(3.17)onE 1 - Em. 
Consequently, (3.17) holds for O < \ z \ ~ e. 

It follows that a.x(z) exists and is O at z = 0. 
(3) Holder continuity of a.x. The argument just used to prove (3.3) can 

be modified to show that there exists a constant La satisfying 

(3.18) \ a.x(z + Az) - a.x(z) I ~ La\ Az \0 

for z, z + Az E Em-i - Em and m = 1, 2, • • • . Also, by (3.17), 

\ a.x(z + Az) - a.x(z)\ ~ L2(\ z \0 + \ z + Az \0). 

In view of (3.7) and (3.8), it is seen that\ z \, \ z + Az \ ~ d"'- 1e. Hence if 
0 < rJ < 1, the last two formula lines give 

(3.19) 

if L 4 = (2L2e/d) 1-~ Li and 0 = d1-~. By continuity, (3.19) is valid if z, z + Az 
are in the closure of Em - Em-I. 

Consequently, for arbitrary \ z \ , \ z + Az \ ~ e, 
00 

\ a.x(z + Az) - a.x(z)\ ~ L4( I:: 0"')\ Az \0~; 
m=l 
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that is, (3.18) is valid for arbitrary z, z + Az in I z I ~ t if £ 3 is replaced by 
L48/(1 - 8) and o by O'TJ. This completes the proof of the Lemma. 

4. Preliminary change of variables. Consider a map (3.2) as in the proof of 
the Lemma and a change of variables R of the form 

(4.1) R:u = x - x(z), w = z; R- 1 :x = u + x(w), z = w. 

A simple calculation shows that RTR-I is of the form 

uI = Au+ Ax(w) + X(u + x(w), w) - x(Cw), wI = Cw. 

If x = x(z) is an invariant manifold M, then (3.4) shows that 

(4.2) 

where 

(4.3) 

RTR-I:uI = Au+ X*(u, w), wI = Cw, 

X*(u, w) = X(u + x(w), w) - X(x(w), w). 

Since a,.X is uniformly Lipschitz continuous in (x, z), it follows that a,,X* is 
uniformly Lipschitz continuous in ( u, w). Also, 

awX* = [a,.X(u + x(w), w) - a,.X(x(w), w)]a.x(w) 

+ [a.X(u + x(w), w) - a.X(x(w), w)] 

shows that awX* is uniformly Lipschitz continuous in u and uniformly Holder 
continuous in w. Furthermore, 

(4.4) I a,,X* I ~ Const. ( I u I + I w I) , I awX* I ~ Const. I u I . 

Since X*(O, w) = 0 by (4.3), the first relation in (4.4) implies that 

(4.5) I X*(u, w)! ~ Const.(! u I+ I w !)! u 1-

If awX* is Holder continuous of order o, then the last part of ( 4.4) gives 

(4.6) I awX*(u, w + AW) - awX*(u, w)I ~ Const. I u r I AW ,,(I-~) 

for all 'T/, 0 ~ 'T/ ~ 1. 

5. Proof of the Induction Assertion. If u, v are renamed (x, y), z, respectively, 
it is seen that the assumption (i) in the Induction: Hypothesis can be supple­
mented by 

(5.1) I V(x, Y, z)I ~ L(! x I+ I YI+ I z !)(! x I+ I Y !), 

where V = X, Y (cf. (4.5)); and (iv) by 

(5.2) I a.V(x, y, z + Llz) - a.V(x, y, z)I ~ L(I x I+ I y If I Az 1•<I-~l 

for some o > 0 and all,,,, 0 ~ 'T/ ~ 1 (cf. (4.6)) and by 

(5.3) I a.V(x, Y, z)I ~ L(I x I+ I Y l) 
( cf. the second part of ( 4.4)). 
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It will be shown that there is a local map R 

(5.4) 
R:u = x, v = y - <p(x, y, z), w = z, 

R- 1 :x = u, y = v + if;(u, v, w), z = w, 

transforming (2.1) into the form (2.4) with the desired properties. 
Note that 'P, if; in (5.4) satisfy 

(5.5) 'P(x, y, z) = if;(u, v, w). 

A simple calculation shows that (2.1) and (5.4) give 

u1 = Au+ X(u, v + if;, w), 

RTR- 1: v1 = B(v + if;) + Y(u, v + if;, w) 

- 'P(Au + X, B(v + if;) + Y, Cw), 

w1 = Cw, 

where the argument of if; is (u, v, w) and that of X, Yin 'P(Au + X, • • • ) is 
( u, v + if;, w). Thus, the relations 

(5.6) RTR- 1:u 1 = Au+ X(u, v + if;(u, v, w), w), v1 = Bv, w1 = Cw, 

hold if 'P, if; satisfy 

Bif; = 'P(Au + X, B(v + if;) + Y, Cw) - Y(u, v + if;, w). 

By (5.4) and (5.5), this means that 

(5.7) B<p(x, y, z) = 'P(Ax + X, By+ Y, Cz) - Y, 

where the argument of X and Y is (x, y, z). 
The functional equation (5.7) for 'P will be solved by successive approxima­

tions. It can be supposed, after suitable (separate) linear transformations of the 
variables x, y, z, that the matrices A, B, C satisfy 

(5.8) I A I~ a, IB I~ b1, I Cl~ C 

where a, b1, b2, c are constants satisfying 

(5.9) a < b1 < c < 1 and b1c/b 2 < 1. 

Define a sequence of successive approximations <po, cp1, • • • as follows: 

cpo(x, Y, z) = 0, q;1(x, y, z) = -B- 1Y(x, y, z) 

and, for n ~ 1, 

(5.10) 

Put 

(5.11) 

B'Pn(x, y, z) = 'Pn-i(Ax + X, By + Y, Cz) - Y(x, y, z). 

for n = 1, 2, • • • , 



HOMEOMORPHISMS OF EUCLIDEAN SPACES 229 

so that 

(5.12) 

and 

(5.13) for n > 1. 

Since A, B, C are contractions, it is clear that if e > 0 is sufficiently small, 
the relations (5.10) define functions 'Pn of class C1 for Ix I , I y I, I z I ~ e. 

It will first be shown that there exist positive constants L1 , () such that () < 1 
and 

(5.14) I cp"(x, Y, z)! ~ L10"-1(! x I + I YI+ I z !)(! x I + I YI). 

In view of (5.1) and (5.12), L1 can be chosen so as to satisfy (5.14) for n = 1 
and I x I , I y I , I z I ~ e. 

Note that I Ax+ XI ~ a Ix I+ L(! x I+ I y I+ I z !)(! x I+ I y I) and an 
analogous relation is valid for I By + Y I . Hence 

I Ax + X I + I By + Y I + I Cz I ~ ( a + r) I x I 
+ (b1 + r)! y I+ c I z I ~ c(! x I + I YI+ I z I), 

where r > 0 is arbitrarily small if I x t , I y I , I z I ~ e and e is sufficiently small. 
Also, 

I Ax + X I + I By + Y I ~ ( a + r) I x I 
+ ( b1 + r) I y I ~ (b1 + r) ( I x I + I Y I)• 

If (5.14) holds when n is replaced by n - 1, then (5.13) shows that 

I cp"(x, Y, z)! ~ L10"-2[c(b1 + r)/b 2] [! x I+ I YI+ I z ll [! x I+ I YI]. 
This implies (5.14) if e > 0 is so small that 

(5.15) 0 = c(b1 + r)/b 2 < 1; 

(cf. (5.8)). 
It will now be shown that if e, L1 and () are appropriately chosen ( with L1 > 0, 

0 < () < 1), then 

(5.16) I a#" I, I a"cp" I ~ L10"-1(! x I+ I y I+ I z !). 

In order to see this, note that 

a#" = B- 1[(a#"- 1•0)(A + a.X) + (au'Pn-l,O)(a.,Y)], 

aucp" = B- 1[(a#"- 1•0)(auX) + (au'l'"-1•0)(B + auY)], 

where the superscript O signifies that the argument of cp"-1 is (Ax+ X, By+ Y, 
Cz). If (5.16) is assumed when n is replaced by n - 1, then 
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I a,,rpn I ~ L1(8[- 2/b2)c(\ XI+ I y I + I z \)(a+ r), 

\ dy({Jn \ ~ L1(8[- 2/b 2 )c(\ X \ + \ Y \+I z l)(b1 + r). 

Thus, (5.16) follows if (5.15) holds. 
In the same way, itis shown that 

(5.17) I AiJ,,rp" I, I Ady({Jn I ~ L18n-l(I AX I+ I Ay I + I AZ I), 

if, e.g., AiJ,,rp"' = iJ,,rpn(x + Ax, y + Ay, z + Az) - iJ,,rpn(x, y, z). 
Next, it will be verified that 

(5.18) 

In fact, 

( 5.19) a.rpn = B- 1[( dx({Jn-l,O)( a.X) + ( dy({Jn-l,O)( a.Y) + ( a.rp"-1•0) C]. 

If (5.18) is assumed when n is replaced by n - 1, then (5.16) and (5.3) show 
that 

I iJ,rpn \ ~ L1(8"- 2/b 2 )(b1 + r)(\ x I+ I Y l)(c + r) 

and ( 5.18) holds for n if 0 = (b1 + r) ( c + r) /b 2• If e > 0 is sufficiently small, 
then 8 < 1. 

In the same way, it is shown that 

(5.20) I a.rpn(x + Ax, y + Ay, z) - a.rpn(x, Y, z)i 

~ L10n-lcI Ax I+ I Ay \). 

Finally, it will be shown that for all n( <1) near 1, 

(5.21) I a.rp"(x, y, z + Az) - a.rp"(x, y, z)I 

~ L10n-l(I XI+ I YI/ I AZ l(l-~H. 

If (5.21) holds when n is replaced by n - 1, then (5.19) shows that the left side 
of (5.21) is majorized by 

L1(8n- 2/b 2 )[(b 1 + r)(I x I+ I y l)f(c + r)[(c + r)I Az 1](1-~) 6• 

This gives (5.21) if 0 = (b1 + rf(c + r)1+(1-~)6/b2. Also, if e > 0, 1 - 1/ > O 
are sufficiently small, then 8 < 1. 

It follows from (5.14), (5.16), (5.17), (5.19), (5.20), (5.21) that the func­
tional equation (5.7) has a solution rp of class 01 on a set Ix I, I y \, I z I ~ e 
satisfying I rp I ~ L1(I x \+I y I+ I z 1)(1 x I+\ y I), iJ,,rp, dyrp are uniformly 
Lipschitz continuous in (x, y, z); finally, a.rp satisfies I a.rp \ ~ L1(\ x \ + \ y I), is 
uniformly Lipschitz continuous in ( x, y) and uniformly Holder continuous in z. 

The map (5.4) changes Tinto (5.6). If (2.4) is identified with (5.6) it follows 
tl).at 

U(u, v, w) = X(x, y, z) by virtue of (5.4). 
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It remains to check (i)-(iv) of the Induction Assertion. First, (i) is obvious. 
In order to verify (ii), note that auU = a,,X + (ayX)(auif;). Also, by (5.5) 
auif; = a,,cp + (aycp)(auif;), so that auif; = (I - aycp)-1(a,,cp). It is then clear that 
auUis uniformly Lipschitz continuous in (x, y, z), hence in (u, v, w). Thus (ii) 
holds. 

Note that a.U = (auX)(I + a.if;) and that a.if;= (I - avcp)-\aucp). Hence 
a. U is uniformly Lipschitz continuous in ( u, v, w). This proves the parts of (iii), 
(iv) concerning iJ.U. 

Similarly, aw U = ( ayX)( awif;) + azX and awif; = (I - avcp )- 1 azcp, Hence, 
awU is uniformly Lipschitz continuous in (x, y) and uniformly Holder con­
tinuous in z. Since changes i::,.u, i::,.v, i::,.w in u, v, w produce changes i::,.x, t:,.y, f:,.z in 
x, y, z satisfying i::,.u = l::,.x, I i::,.y I ~ Const. (I l::,.u I + i t:,,,v I + J t:,.w I), i::,.w = l::,.z, 
it follows that aw U is uniformly Lipschitz in ( u, v) and uniformly Holder con­
tinuous in w. This gives that parts of (iii), (iv) concerning awU and completes 
the proof of the induction and of (I). 

Part 2. A theorem on the general case 

6. Statement of results. If (I) is combined with a procedure of Sternberg 
([10], pp. 627-628), one obtains the following: 

(II) In the map 

(6.1) T:x 1 = Ax+ X(x, z), z1 = Cx + Z(x, z), 

let x be an I-vector and z a K-vector; A, C constant square matrices with eigenvalues 
a1 , • • • , ar, c1 , • • • , cx satisfying 

(6.2) 0 < I a1 I ~ .. · ~ I ar I < 1 < I C1 I ~ .. · ~ I Cx I ; 
X, Z are functions of class C1 for small Ix I and I z I, are o(I x I + I z I) as (x, z) 
......... 0 and have uniformly Lipschitz continuous partial derivatives. Then there exists a 
map 

(6.3) R:u = x - cp(x, z), w = z - x(x, z) 

of class C1 for small I x I , I z I in which 

(6.4) <P, X = o( I x I + I z I) as (x,z)--------,0, 

cp, x possess uniformly Holder continuous partial derivatives and (6.3) transforms 
(6.1) into the form 

(6.5) RTR- 1 :u1 = Au+ U(u, w), w1 = Cw+ W(u, w), 

where 

(6.6) 

and 

(6.7) 

U(O, w) = W(u, O) = 0 

U(u, O) = W(O, w) = 0. 
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The relations (6.6) mean that the manifolds u = 0 and w = 0 are invariant 
under (6.5). The relations (6.7) mean that (6.5) is a linear map on each of 
these invariant manifolds. 

The proof of (II) depends on a variant of the following theorem. This theorem 
is stated and its proof is indicated in only a few lines by Sternberg ( [9], Theorem 
9, pp. 822-823) form ~ 2. 

(III) In the map T given by (6.1), let x, z, A, C be as in (II). Let X, Z be 
defined for small Ix I and I z I, satisfy X, Z = o(I x I+ I z I) as (x, z) .......... 0, and 
be of class cm, m ~ 1 ( or analytic). Then there exists a map ( 6.3) of class cm ( or 
analytic) for small Ix I and I z I, satisfying (6.4) and such that if RTR- 1 is given 
by ( 6.5), then U, W satisfy ( 6.6). 

For the sake of completeness, a proof of (III) will be given below. This proof 
will make the following remark clear: 

Remark. In (III), replace the assumption that X, Z is of class cm, m ~ 1 (or 
analytic) by either (a) X, Z is uniformly Lipschitz continuous with a Lipschitz 
constant c = c(e) on Ix I, I z I ~ e satisfying c(e) .......... 0 as e .......... 0 or (/3) X, Z is 
of class cm, m ~ 1, with uniformly Lipschitz continuous mth order partial 
derivatives. Then (III) remains valid if the assertion that (6.3) is of class cm ( or 
analytic) is replaced by the analogue of (a) or (/3) in which ip, x replace X, Z. 

When x, z are scalars, (III) is a theorem of Poincare ([7], pp. 202-204) in the 
analytic case and of Hadamard ([3]) in the C1 case. The binary case of (III) 
and the Remark is given by Sternberg in [8]. The analogue of (III) for autono­
mous differential systems, in the analytic case, is due to Liapounoff ( [5], p. 291); 
for the non-analytic case, cf. Coddington and Levinson ([2], p. 333). The results 
on differential systems can be deduced from (III) and the Remark. 

(II) follows by first applying the case m = 1 of (/3) in the Remark, then 
applying (I) first to RTR- 1 on the manifold w = 0 and then to the inverse of 
the resulting map on the manifold u = 0. 

7. Proof of (III). We first seek a map R of the form 

(7.1) R:u = x, w = z - x(x); R- 1 :x = u, z = w + x(u), 

such that RTR- 1 is given by (6.4) with 

(7.2) W(u, 0) = 0. 

From (6.1) and (7.1), RTR- 1 is given by 

u1 = Au + X( u, w + x) 

w1 =Cw+ Cx + Z(u, w + x) - x(Au + X(u, w + x)), 

where the argument of xis u unless otherwise indicated. Thus (7.2) is equivalent 
to the functional equation 

(7.3) 

for X· 

Cx(u) + Z(u, x(u)) = x(Au + X(u, x(u)) 
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After preliminary (separate) linear transformations of the variables x and z, 
it can be supposed that the matrices A, C satisfy 

(7.4) I A I= a< l, I c-1 I = 1/c < 1. 

The functional equation (7.3) will be solved by the successive approximations 
xo(u) = 0, x1(u) = -c- 1Z(u, 0) and, more generally, for n ~ l, 

(7.5) x,.(u) = C-1{xn-1(Au + X(u, Xn-1(u)) - Z(u, Xn-1(u))}. 

(The existence of Xn on some sphere I u I ~ E, where E > 0 does not depend on 
n, will follow from the considerations below.) 

(It is clear that if X, Z E cm, m ~ 2, then the successive approxima­
tions and their partial derivatives of order ~ m - 1 are uniformly convergent 
for small I u I . But the difficulty in appraising the mth order partials of Xn is 
that there is nothing like a Lipschitz condition available on the mth order 
partials of X, Z.) 

It will first be shown that if E > 0 is sufficiently small, then 

(7.6) I Xn(u)I ~ E for I u I ~ E 

and n = 0, l, • • · . To this end, note that the assumptions on X, Z and A show 
that if E > 0 is sufficiently small, then 

(7.7) I Z(x, w)I ~ (c - l)E, I Ax+ X(x, w)I ~ E if Ix I, I w I ~ E. 

Assume that (7.6) holds if n is replaced by n - l, then (7.4), (7.5) and (7.7) 
show that, for I u I ~ E, I xn(u)I ~ (1/c)[E + (c - l)E] ~ E. This proves (7.6) 
for n = 0, l, • • • . 

It is clear that Xn is of class C1 (since X, Z are). Its Jacobian matrix dXn is 
given by 

(7.8) dXn(u) = C-1{(ax~-1)[A + a,,X0 + (azX0)(axn-1)] 

- [a.,Z0 + (azZ0) (axn-1)]}, 

where the superscript 0 on Xn-i and on X, Z indicates that their arguments are 
Au + X 0 and ( u, Xn-1 ( u) ) , respectively. 

It will be shown that if E > 0 is sufficiently small, then there exists a o. > 0 
such that 

(7.9) 

for n = 0, l, • • • . To this end, note that if 11 > 0, then there exists a o = o ( 11) > 0 
such that 

(7.10) I a,,x I , I a.x I , I axz I , I a.z I ~ 11 if I x I , I z I ~ o( 11) ~ 11. 

Choose E and 11 = 11( E) so that 

11 < (c - a)E, a + 11! E + 211 + 11E ~ C. 
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Leto, = 0(77(E)). Assume (7.9) if n is replaced by n - 1. Then (7.4), (7.6), 
(7.7), (7.8), (7.10) show that 

I axn(u)I ~ (1/c)[E(a + 77 + 77E) + 7/ + 7JE] ~ E, 

so that (7.9) holds for n = 0, 1, • • • . 
It will now be shown that the Jacobian matrices axo, ax1, • • • are equicon­

tinuous, that is, that there exists a function h(o) defined for small o > 0 satisfy­
ing h(o) -. 0 as o-. 0 and 

(7.11) if I u - u' I ~ o 

for n = 0, 1, • • • . 
For any function g = g(u), g = g(x, z), etc., let Ag = g(u') - g(u), Ag = 

g(x', z') - g(x, z), etc. Let h1(0) be defined for small o > 0, satisfy h1(0) -. 0 as 
o-. 0 and 

(7.12) I Aa,,x I, I M,X I, I M,,Z I, I AazZ I ~ h1(0) 

for I x - x' I , I z - z' I ~ o. Note that if Ix I , Ix' I , I z I , I z' I are sufficiently 
small, then 

(7.13) 
I AZ I ~ ½ I x - x' I + ½ I z - z' I , 

I A(Ax + X(x, z) I ~ ½(a+ 1) Ix - x' I + ½(1 - a) I z - z' I . 

Since Xn-l ( u) is uniformly Lipschitz continuous with an arbitrarily small Lip­
schitz constant on I u I~ e for sufficiently small E (cf. (7.9)), the last part of 
(7.13) implies that 

(7.14) [ A(Au + X(u, Xn-1(u))I ~ I u - u' [. 

Using the analogue of A(g1(u)g2(u)) = g1(u')Ag2 + g2(u)Ag1, it follows that 
if (7.11) holds when n is replaced by n - 1 and if I u I, I u' I ~ o, and 

I u - u' I ~ s, 
then I Aaxn I is majorized by 1/c times the sum of h(o)[a + 7/ + 7/E], E[h1(o) + 
1Jh(o) + h1(o)E], h1(0) and 1Jh(o) + h1(o)E. This gives (7.11) if e, 7/ are so small 
small that c > a + 27] + 27/E and 

h(o) ~ h1(0) (1 + 2e + i)/(c - a - 27/ - 27JE). 

It will now be verified that the sequence xo , x1 , • • • is uniformly convergent 
for small I u I ; in fact, it will be shown that 

(7.15) 

for some constant L and n = 1, 2, • • • . 
The difference I Xn(Au + X(u, Xn(u)) - Xn-1(Au + X(u, Xn-1(u))j is 

majorized by the sum of I Xn(Au + X(u, Xn(u))) - Xn-1(Au + X(u, Xn(u)))I 
and I Xn-1(Au + X(u, Xn(u))) - Xn-1(Au + X(u, Xn-1(u)))I. If (7.15) holds, 
the first of these differences is at most Lrn. An appraisal for the second difference 
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follows from the fact that Xn-1 and X are uniformly Lipschitz continuous with 
the respective Lipschitz constants t and 7/ if \ u \ and I x \ , \ z \ do not exceed 
o = o •. Thus the second difference is at most f7/ \ Xn(u) - Xn-1(u)\ ~ Lan. 
Then (7.5) shows that 

I Xn+1(u) - Xn(u)\ ~ (1/c){Lrn + Lt71r" + 71Lrn} 

which is at most Lrn+i if r = ( 1 + t71 + 7/) / c. Also r < 1 if t, 7/ are small enough. 
Hence (7.15) holds for n = 2, 3, • • • if Lis chosen so that it holds for n = 1. 

This proves that xo, x1, · • • converge uniformly to a (continuous) solution 
x of (7.3) satisfying x(u) = o(\ u \) as u - O; cf. (7.9). Since axo, ax1, · • · are 
uniformly bounded and equicontinuous, a subsequence is uniformly convergent. 
This implies that x is of class C1. 

A similar proof shows that if X, Z are analytic, so is x. Also, if X, Z E cm, then 
the sequences of partial derivatives of Xn of order ~m can be shown to be uni­
formly bounded and equicontinuous, so that x E cm. 

(III) now follows by applying the procedure just completed for T to the 
inverse of RTR- 1 in order to obtain a map for which the analogue of U(O, w) = 0 
holds. 

Part 3. A special case 

8. Cases related to N = 2. The object of this part of the paper is to prove 
the possibility of linearizing a binary (N = 2) map which is not a contraction. 
A somewhat more general result will be proved. In order to state this result, the 
following notation will be used: Let A be a (real) N by N matrix with eigen­
values a1, • • • , aN satisfying O < \ a; \ < 1. According to (I) and the remarks 
following it, there exists a number A = A(\ a1 \, • • • , \ aN \), 0 < A ~ 1, with 
the property that if T:x 1 =Ax+ X(x) isalocalmapinwhichX(x) = o(\ x\) 
as x - 0 and X(x) has uniformly Lipschitz continuous partial derivatives, then 
there is a C1 local map R:u = x + ip(x) linearizing T, ip(u) = o(\ u \) as u - 0 
and ip( u) has partial derivatives which are uniformly Holder continuous of 
order A. 

The arguments in Sternberg [9] or in the last part of the proof of (I) show, 
for example, that A(\ a1 \, • • • , \ aN \) = 1 if\ aN \2 < \ a1 \. 

(IV) Let the map T, given by (6.1), be as in (II). Let 

A= A(\ a1 \,···,\a,\), µ, = A(l/\ ex\,···, 1/\ C1 \) 

and let the eigenvalues of A, C satisfy 

(8.1) \ ar I>.\ Cx \/\ C1 \ < 1 and \ c1 \i, \ a1 \/\a,\ > 1. 

Then there exists a C1 map R of the form ( 6.3) which satisfies ( 6.4) and linearizes T, 

(8.2) 

The condition (8.1) is redundant if, for example, 

(8.3) \ a1 \ = • • • = \ ar \ and \ C1 I = • • • = \ Cx \ • 
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In particular, ( 8 .1 ) holds if x, z are scalars (I = K = l and N == 2) . Actually, 
in the latter case, the smoothness assumptions on X, Z can be relaxed somewhat. 

The proof of (IV) can be modified to show that R can be chosen so that cp, x 
have uniformly Holder continuous partial derivatives. 

9. Proof of (IV). In view of (III), it can be supposed that 

(9.1) X(O, z) = Z(x, O) = O; 

hence 

(9.2) I a,X(x, z)I ~LI x I and I a,,Z(x, z)I ~LI z I -
By the proof of (II), there is a local map of the form R:u = x - cp1(x), w = z 
- cp2(z) and R- 1:x = u + 1/;i(u), z = w + if;2(w), such that cp1, if;1 and cp2, V/2 
have uniformly Holder continuous partial derivatives vanishing at x = z = 0 of 
order}.., µ, respectively, and such that if RTR- 1 is given by (6.5), then (6.6) 
and (6.7) hold. It is readily verified that 

U = Aif;1 + X(u + Y11, w + if;2) - cp1(Au + Aif;1 + X(u + if;1, w + if;2)), 

W = Cif;2 + Z(u + Y11, w + if;2) - cp2(Cu + Cif;2 + Z(u + if;1, w + if;2)), 

where the argument of if;1, y;2 is u, w, respectively. The conditions (6.7) show 
that 

U = [X(u + if;1, w + if;2) - cp1(Au + Air1 + X(u + if;1, w + f2))]::~, 

W = [Z(u + if;1, w + if;2) - cp2(Cw + Cif;2 + Z(u + if;1, w + if;2) )]::;. 

It follows from (9.2) that 

I awU I ~ L I u I and I auW I ~ L I w I ; 
also the uniform Lipschitz continuity of the partials of X, Z and the uniform 
Holder continuity of those of cp1 , cp2 , V/1 , V/2 show that 

I auU I ~ L I w I µ and I <1wW I ~ L I u I ". 
Let u, w, RTR- 1 be renamed x, z, T, then it can be supposed that X, Z are 

of class C1 and that (9.1), (9.2), and 

(9.3) 

(9.4) 

X(x, O) = Z(z, O) = 0, 

hold; finally, (9.2) and (9.3) give 

(9.5) I X(x, z)I ~LI x II z I and I Z(x, z)I ~LI x II z I -
The inverse map T- 1 is of the form 

(9.6) T-1 A-1 1 + X ( 1 1) :x = X 1 X, Z , C-1 1 z ( 1 1) z= z+ 1x,z 

where X 1 , Z1 satisfy the analogues (9.1)-(9.5). Also, by virtue of (6.1) or (9.6), 

(9.7) -X(x, z) = AX1(x1, z1), -Z(x, z) = CZ1(x1, z1). 
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The condition (8.1) implies that if the variables x, z are subjected to separate, 
suitable, linear transformations, then it can be assumed that the matrices A, C 
satisfy 

(9.8) I A I' I c-J I IC I < 1 and I C' 1 1/L I A-I I I A I <1. 
Consider a map R of the form ( 6.3). Then (8.2) holds if and only if x satisfies 

the functional equation 

(9.9) Cx(x, z) = x(Ax + X(x, z), Cx + Z(x, z)) - Z(x, z) 

and 'P satisfies an analogous equation. In view of (6.1) and the first part of 
(9.7), the latter can be written in terms of (x1, z1)-variables as 

(9.10)A- 1({)(x1, z1) 

= 'P(A- 1x1 + X 1(x1, z1), c-1z1 + Zr(x1, z1)) - Xr(x1, z1). 

Since the relation (9.9), (9.10) are completely analogous, only (9.10) will be 
considered and x, z, X, Z will be written in place of x1, z1, X 1 , Z 1. 

Without loss of generality, it can be supposed that X, Z are defined for all 
x, z (and not only small Ix I, I z I), satisfy (9.1)-(9.5), and X = Z = 0 if 
Ix 12 + I z 12 ~ r2, where r > 0 is a preassigned number. If this is not the case, 
replace X, Z by X(x, z)X(I x I 2 + I z \ 2), Z(x, z)X(\ x I 2 + \ z \ 2), where X(p) 
is a smooth function of the single variable p satisfying X(p) = 1 for O ~ p ~ ½r2, 
X(p) = 0 for p > r2 and O ~ X ~ 1 for all p. 

Note that this procedure leaves a factor Lin (9.2), (9.4), (9.5) which does 
not depend on r. This is clear for the factor in (9.5). In (9.4), consider, for 
example, a.,(XX) = (a,,X)X+ X(a,,X). But X can be chosen so that 

I dX(p)/ dp I ~ 3/r 2 

and so, I a,,X( Ix I 2 + \ z I 2 ) I ~ 6/r. Also IX\ ~ L \ x II z I ~ Lr\ z I" for 
Ix I ~ r. Hence I a,,(XX)\ ~ 7L I z l"-

The inequalities (9.2) and (9.4) show that the partial derivatives of X, Y 
have bounds of the form Lr, Lr' or Lr". Thus, if r is sufficiently small, Tis one­
to-one for all ( x, z). 

Since X, Z are defined for all ( x, z), it is possible to define a sequence of suc­
cessive approximations by 'Po(x, z) = 0, 'P1(x, z) = -AX(x, z) and, for n ;;,,;: 1, 

Let ({)n = 'Pn - 'Pn-1 for n = 1, 2, ••• ' so that l = -AX(x, z) and 

(9.12) 

for n = 2, 3, • • • . 
If r > 0 above is sufficiently small, there exist positive constants 0( < 1), Lr 

such that 

(9.13) 
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for n = 1, 2, • · · and all (x, z). For, if the first inequality in (9.13) is assumed 
when n is replaced by n - 1, then (9.12) implies that 

I cpn(x, z) I ~ L10n-lI A I· I A- 1x + X(x, z) I· I c-1z + Z(x, z) I-
But by (9.5), I X(x, z) I ~ Lrl x I and I Z(x, z) I ~ Lrl z I since X = Z = 0 
if I x I > r or I z I > r. Thus 

I cpn(x, z) I ~ L10n-ll A 1(1 A-1 I+ Lr)(I 0- 1 I+ Lr)I XII z I­
By (9.8), it can be supposed that r > 0 is fixed so small that 

0 = I A I ( I A-l I + Lr) ( I c-l I + Lr) < 1. 

This gives the first part of (9.13) for n = 2, 3, · · · if it holds for n = 1. The 
other parts of (9.13) are proved similarly. 

The inequalities (9.13) imply the uniform convergence of the successive 
approximations (9.11) on compact (x, z)-sets to a 0 1-solution of (9.10). 

Part 4. Counter-example 

10. The example. The object of this part of the paper is to show that (I) is 
false if the restriction (1.1) that the linear part of (I) is a contraction is re­
placed merely by O < I ai I ~ 1, even if X(x) is analytic. The example T arises 
from the system of three scalar differential equations 

(10.1) x' = ax, y' = (a - 'Y)Y + EXZ, z' = -"/Z, 

where E ~ 0 and a > 'Y > 0. The solution of this system starting at (x, y, z) 
fort = 0 is 

(10.2) x(t) = xe"'\ y(t) = (y + EXZt)/a--y)\ 

If t = 1, the map T:x-----'>-x(l) is 

(10.3) T:x 1 = ax, y1 = ac(y + EXZ), z1 = cz, 

where a > 1 > c > 0 (in fact, a = e"', c = e- 7 ) and E ~ 0. 
It will be shown that there is no map R of class 0 1 of the type described in (I) 

which linearizes (10.3); hence, none which linearizes (10.1). Actually it will be 
shown that there is no map R of the type specified such that if 

(10.4) 

then 

(10.5) 

RTR- 1 :u 1 = U(u, v, w), v1 = V(u, v, w), w1 = W(u, v, w), 

V(u, 0, w) = 0. 

In particular, there is no such map R of class C1 which transforms (10.1) into 
the diagonal form 

(10.6) u' = A(u, v, w)au, v' = ")...(u, v, w)(a - 'Y)v, w' = -A(u, v, w)'Yw, 

where )l.(u, v, w) is a continuous function and 

(10.7) A(0, 0, 0) = 1. 
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In this connection, there is, of course, no loss of generality in supposing that the 
linear part of R is the identity map. 

The negative assertion concerning ( 10.6) means that there is no C1 map ( with 
non-vanishing Jacobian) mapping a neighborhood of (x, y, z) = 0 into a vicinity 
of (u, v, w) = 0 and transforming trajectories of (10.1) into those of (10.6). 

11. The functional equations. Suppose that the map R given by 

(11.1) R- 1 :x = u + f(u, v, w), y = v + g(u, v, w), z = w + h(u, v, w) 

transforms (10.3) into (10.4). Let Q = RTR- 1, so that TR- 1 = R- 1Q. Then 

(11.2) a(u+J) = U+f(U, V, W), c(w+h) = W+h(U, V, W), 

(11.3) ac[v + g + e(u + f)(w + h)] = V + g(U, V, W), 

where the argument off, g, h on the left is ( u, v, w). 
Suppose that (10.5) holds and let v = 0 in (11.2), (11.3). In order to shorten 

notation, writej(u, w) in place ofj(u, 0, w) for j = f, g, h, U, V, W. Then 

(11.4) a(u + f(u, w)) = U + f(U, W), c(w + h(u, w)) = W + h(U, W), 

and 

(11.5) ac[g(u, w) + e(u + f(u, w)(w + h(u, w))] = g(U, W). 

The C1 map ( u, w) -+ ( x, z) given by 

(11.6) x=u+J(u,w), z = w + h(u, w) 

has a (local) C1 inverse, say 

(11.7) u = p(x, z), w = q(x, z). 

Then (11.4) implies, for U = U(u, w), W = W(u, w), 

(11.8) U = p(ax, cz), W = q(ax, cz). 

Substitute (11.6), (11.7), (11.8) into (11.5), after introducing the abbrevia­
tion 

(11.9 

to obtain 

(11.10) 

e(x, z) = g(u, w) = g(p(x, z), q(x, z)), 

ac[e(x, z) + exz] = e(ax, cz). 

It will be shown that this functional equation has no solution e = e(x, z) of 
class C1 for small I x I, I z I satisfying 

(11.11) 

if 

(11.12) 

e = e., = e. = 0 

E ~ 0, a> 1 > C > 0. 

at x=z=0 
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12. Proof. Assume the existence of such an e(x, z). Let n be a positive integer 
and put 

(12.1) for j = 0, l, • • • , n. 

In view of (11.12), ej is defined for small \ x \, \ z \ and j = 0, • • • , n. The func­
tional equation (11.10) gives 

(12.2) 

This implies acej = ej-1 if x = 0 or z = 0; hence, (ac)nen = e0 if x = 0 or 
z = 0. This means 

(12.3) (ac)"e(0, z) = e(0, cnz). 

The first of these relations and (11.11) show that e(x, O) = (ac)no(\ x \/a") 
o(l) as n - oo. This implies the first of the two relations 

( 12.4) e(x, 0) = 0 and e(0, z) = 0. 

The second is obtained similarly. 
By the last part of (12.4), en = e(x/a", z) satisfies 

e(x/an, z) = e(x/an, z) - e(0, z) r,..; (x/a")e,,(0, z), as n - oo, 

uniformly for small \ x \, \ z \. This gives the first of the two assertions: 

(12.5) an en and c -n eo are uniformly bounded, 

for small \ x \, \ z \. The second follows similarly. 
Multiply (12.2) by aj-lc-n+i-1 to obtain 

Adding these relations for j = l, • • • , n gives 

(12.6) 

But if EXZ ¢ 0, this contradicts ( 12 .5) when n - oo . 
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