EXISTENCE THEOREMS FOR PERIODIC SOLUTIONS OF NONLINEAR
DIFFERENTIAL SYSTEMS

By LamBeErTO CESARI*

In the present paper I give the main idea underlying a recent approach to
existence theorems for periodic solutions of nonlinear differential systems, and I
summarize a number of applications and results. This approach has been de-
veloped by the author, J. K. Hale, R. A. Gambill, W. R. Fuller, et al. in a number
of years (see Bibliography).

A presentation of some of the results in the analytical case has appeared in
[4, §84.5 and 8.5]. Here a new presentation is given in a more general setting. All
applications and results under consideration belong to the class of the problems
of perturbation of linear differential systems. I shall deal elsewhere with straight-
forward nonlinear differential systems as well as with perturbation problems of
nonlinear differential systems.

§1. Schauder’s fixed point theorem and perturbation problems
Let us consider the differential system
(1) v =4y + ey, t,e), y= (0,50 ¢= (@, ", @)
where e is a small parameter, | ¢| < e, A a constant n X n matrix, and ¢ is
periodic in ¢ of some period T = 27/w, and L-integrable in [0, T'], (or alternatively
g is independent of ¢ and (1) is autonomous). For the sake of brevity we suppose

‘A = diag (p1, - -+, p») where the numbers p; may depend on ¢, are continuous
functions of ¢, and p;(0) = ir; = Za;0/b;, a; % 0, b; > 0, integers. Suppose that

(2) IQj(xyt;e)ISK(t)3 j='17"';n7f0ra‘11|yslsR) s =1,
) ',’ﬂ,{e[SeO; )

(3) There is a continuous monotone function ¢(n) > 0, n > 0,
£(0) = 0, such that

lgi(y' b &) — ¢ 6 €) | < s(n)K(8)
for all [yl |v:] < R, |€], |€] < &, |ya — va] < 1,

¢ — €| < ms= I; .-+, n, where K(¢) is a fixed function L-in-
tegrable in [0, T] (a constant if (1) is autonomous).
We may try to find a solution ‘“‘close” to a solution of the linear system

z' = A(0)z of the form
2(t) = (016irlt, ,cneir"t), ¢; # 0 constants.
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Let B = A(0) = diag (471, -+, irs). Let Q be the space of all continuous
vector functions ¢(¢) = (e1, -+, ¢a) of period 27bo/w, by = bibs - - bs, With
mle”'0;(t)] = ¢;,7 = 1, --- , n, where m denotes the usual mean value. Let us

take in @ a uniform topology. Let Qr be the subset of Q consisting of all ¢ with
le;j | < RBR,7=1,---,n Let y = Ty be the transformation of Q5 into Q@ defined
by

(4) ¥(t) = 2(t) + "' S ¢ {qle(u), u,  — Dlolp(u)} du,
where D = diag (d;, - -, d,) is defined by
(5) Cfd.’f = m{@_mt%[ﬂt): t; e]}l .7 = 17 R (2

By this definition, for each component ¢;, the integrand is periodic of mean
value zero and the integral denotes the unique primitive which is periodic and
of mean value zero. Finally, ¢ belongs to Q@ for ¢ belonging to Qz , i.e. TQr C Q.

If |¢;| < R,j =1, ---,n,and | €| sufficiently small there is a closed sphere
Qo about 2(¢) in Q& such that TQy < Q [7]. Also, as shown in [7], there is a com-
pact closed convex subset Q5 C Q, such that Qs < Qf. Thus, by Schauder’s
fixed point theorem, there is at least one fixed element y(t) in Qg , i.e., such that
Ly = y. The vector function y(¢) satisfies the integral equation

y(t) = 2(t) + e S ¢ "{gly(w), u,  — Dlyly(u)} du,
as well as the differential system
(6) y'(t) = (B — eD)y + eq(y, 8, ¢).
If the relation (determining system)
(7 B—eD =A, or aw;j/b; — ed;(a,b,c,w,¢) =p;, 7=1,--+,n,

is satisfied, then y(¢) is a periodic solution of the given system (1).

The analysis of the transformation T and of the determining system (7) lead
to actual existence theorems for periodic solutions and families of periodic solu-
tions of the given differential system (1) (§§3-6).

Under a Lipschitz condition of the type

(8) gy toe) — gt e) | S K2 |ys — vt |

the transformation T | Q is a contraction and into [7]. Hence, not only is there a
unique fixed point in @y , but such a fixed point can be approached uniformly by
the method of successive approximations

(9) y(O)(t) = Z(t), y(M)(t) = Iy(m—l)(t): m = 17 2) Tt

This method, together with some variants of it for the analytic case, has been
studied by the author, J. K. Hale, R. A. Gambill, W. R. Fuller, et al. in a series
of papers ([6], [9], [13], [15], [16], [25] and others in the bibliography. Its con-
vergence, which was proved directly in a number of cases, is now a corollary
([71) of the remark above under a Lipschitz condition (8).
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Note that the “terms’” subtracted in (4) have an interpretation. The so-called
secular terms are all among them. More terms are subtracted so as to assure that
the fixed element satisfies a system (6) of the same form of the original.

By application of this method, and various extensions of it, existence theorems
for periodic solutions of periodic or autonomous systems and theorems for their
stability have been proved.

§2. Some extensions and remarks
As a first extension of the approach mentioned in §1, I mention that we may
consider 7] a system analogous to (1)
(10) Yy = Ay + ey, t, ¢), A = diag (41, 42) = A(e),

wherey = (41, ** ,%2),q¢ = (@, *** , qz), A is an n X n-matrix whose elements
are constants or continuous functions of ¢, 4; = diag (p1, -- -, p), p;(0) =
ir; = 1a0/b;, a; % 0, b; > Ointegers,j = 1, -- -, », and A, has characteristic
roots, p;j(¢),7 = v + 1, -+ -, n (continuous functions of € for | ¢| < &) with
p;(0) = tm w/bo,bo=bby -+ b, , forallj=v+1, -+ ,n,m=0, &1, £2, ---.
Of course, it is enough to know that A admits of a canonical form A4, as above
(I7]). In these conditions 2z(¢) and D(t) of §1 are replaced by

2(t) = (ce™, -+, ce™' 0, -+ ,0), c;constants,

D(t) = (d17 7d",0, )0)7
and the corresponding determining system (7) becomes [7]

1a;0/b; — edi(a, b, e, w,€) = p;, F=1,-+-,
Note that the condition concerning A is satisfied if either «;(0) £ 0, or o;(0) = 0
and ¢;(0) #Fimw/by,j=v+1,-+-,n,m=0,£1,42 ---.
Instead of (10) we could consider ({7]) a system

(11) Yy =Ay +F@) +q(y, ¢ ¢

where F(t) = (F1, --- , F) is a periodic vector function of period 27/w whose
components are L-integrable in [0, 27/w] satisfying

27/ w .
f eEF@)dt =0, i=1,---,».
0

Under these conditions the system
y = By + F(3),

B = diag (B, A2), By = diag (¢ry, -+, i7,), has a periodic solution Y (¢) and
the transformation y = Y (#) 4 z reduces (11) to a system (10).

Instead of (10) we could consider ([7]) a system
(12) y, = Ay + Q(yy ¢, E),
y= (W, ", Y),q= (@1, ", @), with A and ¢ as in system (10) and
Q(yi ¢, 0) = 0.
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Analogously, we could consider ([7]) a system

(13) Yy = Ay + q(y, t, ) +g(y, t, €,
y=(, ", ¥) ¢= (@1, ", q), g = (g1, -, 0s), with A and ¢ as in
system (12) and [gi(y, t, &) | < |y|¢(ly DK(t), where |y| = || +

-+ + |ya|, and () as in §1. Analogously, we could suppose, for instance
ngO,j= 1) ,V,and

(14) 05t | S 1FIE(TDEW, j=r+ 1, ,n,

with || = |yen |+ - - + [ ya| (see §3).

The case of system (10) with » = 0 is rather trivial, since no characteristic
root has real part zero for ¢ = 0. There are on determining equations and the
existence of a periodic solution is immediate. On the other hand, for » = 0, an
extension in another direction is possible. Namely, we may suppose that the
functions ¢;(y, t, €) are almost periodic in ¢ for every y and E. More precisely
we may suppose ([7]) that each q;(y, ¢, ) has a development

Z Cse“‘t; Z | ¢ ]2 <M,

where M can be taken independently of y and e for |y;| < R, |¢| < e,

j=1--,n
If we suppose that the elements of the matrix A and vector ¢ are analytic
functions of ¢ and ¢, y1, -+, ¥a , respectively, then Lipschitz condition (8) is

satisfied and we may ask whether the series whose sums are the periodic func-
tions y; (%)

(15)  w() = ¥°0 + > BP0 — ¥, G=1,0,m,

are power series in e, i.e., whether y{” (¢) is independent of ¢, and each successive
bracket contains only terms of degree < m in e. This is not the case even in
particular situations (the functions ¢; linear in y1, - - -, ¥, with coefficients in-
dependent of ¢). J. K. Hale has modified the method of successive approxima-
tions (9) in such a way that each successive bracket in (15) contains only terms
of degree <m.

The restriction ¢; = 0 of §1 can be weakened (see [7] for a preliminary discus-
sion).

3. First existence theorems for periodic solutions of real systems
Consider the real system of order N = u + n
&j + 2005 + diw; = fi(x, &yt e), F=1,-", 8
zi + B = efi(z, @, b, e), j=n+1,-,mn,

where —o0 <t < 4w, (") =d/d,0 < p < n, 2= (X1, ", Tu), & =
(m1, -+, 2), 0; > 0, aj, B; real constants or continuous functions of ¢, e real,

(16)
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le] < &, and where f;(z, 2, ¢, €), 7 = 1, --+, n, are real functions of the
n-vector z, of the u-vector 2/, oftand € forl:cj | <R,j=1, n,|z;| <R,
j=1,--,9 —wo <1< +wo,]|e| < e. We shall suppose that the functions
f; satisfy the same conditions of the ¢’s in §1 with respect to the vector
(21, ", Tn, 21, -, xe). In particular we suppose that condition (8) is satis-
fied and the functions f; are periodic of period 7 = 27/w. We shall denote by
pi1, piz the roots of the equation p* + 2a;p + o7 = 0. By reordering equations
and unknowns, if needed, we may suppose that for convenient integers », r,
0<y»<u<r<n,we have a;(0) =0, ¢;(0) = 7; = a;w/b;,a; > 0,b; >0
integers, 7 = 1, -+« , v, p1(0), p(0) # tmw/bo, m = 0,1,2, --- , by = biby

) bl'yj= v+ 17 ;/"’7181(0) #07.7 = F’+1: erﬁi(o) = 07.7 =r+ ]‘J

, 1. Note that we have p;;1(0) = ¢7;, pﬂ(O) = —ir, ,j =1, -+ v and that,
for ] ¢ | sufficiently small we certainly have a;(e) < aJ(e) j= 1 -, », hence
piL, piz = —aj ==y, v; > 0, withy; = (‘71 - aJ) J=1 -, The “zero
characteristic roots’” of (16) with e = 0 are those correspondlng to the equations
(16) with j = r 4+ 1, -+, n. Note that the extreme cases above, ie., » = 0,
v=pu,7r=pr=mn a8 wellas p = 0, u = n are not excluded. It will be con-
venient to suppose that the functions a;(¢), o;(e),7 =1, -+ , v, Bj(e) j=r -I— 1,

, n, have finite derivatives at ¢ = 0, i.e., a;(0), o,(O) j=1 -, 61(0),
J =r—i—1, -+, n, exist.

The determining system (7) is now made up of 2v + (n — u) equations, and
in these equations certainly the sets of integers ¢ = (a1, -+, @), b =
(by, ---, b)), and the 2» + (n —. u) complex indeterminates ¢; should appear.
It is actually convenient to replace the latter by real indeterminates

= (>‘1: ) >‘1')7 amplitudes 0= (61 y "t 01’)7 phases, n = (771 y T 77"—7‘):
amplitudes [7, 13]. Then equations (7) assume the form

éPj = af(é)7 GQJ' = ajbylw - 7]‘(6)5 .7 = 1; Tty Y
(17) GRJ' = BT+J'(€)J .7 = 17 L, — T,

where P;i(a, b, \, 8, 1, », €), @;(--+), B;(---) are continuous functions of the
parameters \, 6, 7, ¢ (and w if (16) is autonomous), depending upon the func-
tions f; . Under a Lipschitz condition (6) the same P;, @;, R; are determined
by the inherent method of successive approximations. The same functions, for
e = 0, are given at the first step of the process, but it is useful to know that
they are given also by simple quadratures:

Pj(ay b }‘a 6; 7, W, O)
Thg Thg
= (); Tbg_l)l:cos ij fi cos a; b7 w udu — sin 6; fisin a; b7" wudu:l ,
o 0
(18) Q;(a,b,N,8,7,0,0)

Thg Thg
=\ Theh) [ — sin ij f; cos a; b7" wudu — cos ij fisina; b3 wu:l du,
0 0

Tho
Rf(ay b) >\J 07 7, W, 0) = (771' Tbﬂ)_l j(; f7'+i du:
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where the arguments of the f’s are z; = b;r; sin (vt + 6;), 5 = 1,---, »,
xf:();j: v+1,--- ;M;a'ndj:”+17 e, T, Xy = nj—r:j =r—+ 1; e, N

(i) For | €| sufficiently small, and any solution XA, 8, 5 of system (17) there
is a periodic solution of system (16) of the form

xj(t, 6) = >\jaz_71bjw sin(ajb?lwt + 01) + O(e), .7 = 1, cee L,
(19) zj(t, ) =0(e), j=v+1,--,1 |
zi(t,€) = njr +0(e), j=r+1,---,m

For | ¢| small the terms Ao 'bjw sin(ab 'wt + 6;) are predominant. If all
a; = b; = 1 we say that (19) is a harmonic solution, otherwise (19) is said to
be a subharmonic (a; = 1, b; > 1), or ultraharmonie solution, ete.

Since aj(O) = 0, ’Yj(O) = G'j(O) = T1; = ajbflw, ﬁr+]'(0> = 0, system (17),
dividing each equation by € and taking the limit as e — 0, yields:

Pj(]:tx}(()), j=1,"‘,V,
(20> QjO 7;(0)7 .7 = 17 L, Y
RJ'U = 6:'-%-.7"(0): .7 = 1: N T

where Py = Pj(a, b, \, 8, 7, , 0), Qo = Q;(--+), Bp = R;(---), are given
by (18).

By the use of Brouwer’s fixed point theorem the following theorem ([7]) is
proved:

(i1) If system (20) has a solution Ao, 6y, 70, if we can find an interval
I=N<SNSN,6LSGL0Gj=1,nn<n<n,j=1--,
n — r, of center (Ao, 6o, 7), and an ordering of the 2» + (n — r) functions
FJ' = PJ'O - a;(O),] =1, V’Fl‘+i = QJ'O_’Y;'(O)JJ. =1,-- 7V7F2V+J'=
Rjo— Br4j,j =1,---,n — r, such that F, has opposite constant signs on the
corresponding opposite two faces of I, s = 1, --- ,2v + n — r, then (17) has a
solution (A, 6, ) € I for every | e | sufficiently small, and, by force of (i), system
(16) has a periodic solution of the form (19) for all | ¢ | sufficiently small.

Finally, by the use of properties of the topological index, the following state-
ment ([7]) is proved under differentiability conditions of the functions Pj,
Qn, Rjo only:

(iil) If system (20) has a solution Ag, 6, n0 , if the functions Pj , @z, Bjo
have continuous first partial derivatives with respect to Ay, --+ , \,, 61, - -+,
6,,m, ", T, in a neighborhood of (A, 6, 70) with Jacobian = 0 at (Ao,
6o, m0), then for all | e | sufficiently small system (17) has at least one solution
N, 6, 7, and (16) has at least one periodic solution of the form (19) for all | €|
sufficiently small.

In [13] the following examples, among others, are discussed without difficulties:
the nonlinear Mathieu equation with large forcing terms

(21) 2" + o'z = A cos 2wt + e(Az cos 2wt + Bz');
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the van der Pol equation

(22) 2" + iz = e(1 — 2°)2’ + epw cos (wf + a);
the generalized van der Pol equation

(23) 2" + o' = (1 — ™2’ + epw cos (of + a),

with m integer and large (‘“‘almost square’ characteristic function); the system
of two nonlinear Mathieu equations

&’ + oz = e(Az + Bz cos t + Cz’* + Day?)
y" + oty = e(By 4+ Fy cos t + Gy’ + Hz'y);

§4. Existence theorems for cycles of autonomous systems

(24)

Let us consider now system (16) where the functions f’s do not depend on
t, i.e. the autonomous real system

LU;l + 2“]'55;' + ‘T?xj = efj(x, SC’, E): .7 =1 ,u

x], + Bz = ef]'(x;x’; e); J=w+1,--,n
The hypotheses listed at the beginning of §3 reduce now to the following ones:
(1) the functions f] yi=1, n, are Lipschitzian in (z, #/, ¢€) for |z, | < R,
j=1,,m|z| <Rj=1-,ule| < e;(2) For some w > 0, and
integers 0 < v S p < r < m, we have a;j(0) = 0,0;(0) = a;wy/b;, a;,b; >0
integers;j =1, le(O), pﬂ(o) #= imwo/bo,bo =by - b 7j =v+ 1: e ;I-‘;

(28)

m=0, %1, ";61(0);50.7—‘:”"1‘1 'TBJ(O)*O:]—T—F:[
As usual all ¢; > 0, o, B ; are continuous functions of e, or constants, and o (O),
a,(O) J=1 -, Bi 0),7j=r+1, , M, exist, In thepresent situation

w = w(e) can be thought of as an undetermined continuous function of € to be
added to the unknowns in system (17). On the other hand, we must expect that
one of the phases, say 6; , remains arbitrary, since (28) is autonomous. In other
words, we may try, for instance, to solve system (17) for the 2v 4+ (n — r)
unknowns Ay, ccc, N, b2y o0, 6, M, 00, e, w, leaving 6; arbitrary. But
A=, M), 0 =(6,-,8),n= (m, -, 7u—). The corresponding
periodic solutions of system (28) (cycles) have still the form (19), but now w
depends on e. Instead of system (20) it is convenient to consider the analogous
system obtained by (17) by first dividing all but one equation (17) by e and
taking the limit as e — 0, say the system

Fi=Pjp—aj(0) =0, j=1,---,7
Fop = aw/by — v1(0) =
Frri= Qo —vi(0), j =2,
Foyj=Rjo— Bi14(0), j=1,---,n—r

The statements corresponding to (i), (ii), (iii) read as follows (see {7, 25]
for the present hypotheses, and [13, 16] for the analytic case).
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(iv) For | €| sufficiently small, and any solution A, 8, 5, w of system (17),
w(0) = wqg, there is a periodic solution (cycle) of system (28) of the form (19).

(v) If system (29) has a solution N\o, 6o, 70, wo, if we can find an interval

I=DNSNSN =1L, 5n6<6, <67 ,j=2",vn5<1 <0,
J=1 - n—ro <w< "] of center (N, 6o, 70, wo), and an ordering of
tllle 2y + (n — r) functions F; = Pj — a;(0), j =1, -, », Foyj = Qjo —
vi(0),7 =1, -, », Foyj = Rjo — Brtj,J = 1, -+, n — 1, such that F, has

opposite constant signs on the corresponding opposite two facesof I, s =1, -+,
2v + n — r, then (17) has a solution (), 6, 1, w) € I for every | e | sufficiently
small and system (28) has a cycle of the form (19).

(vi) If system (29) has a solution Ao, 6, m0, wo, if the functions P,
Qi, Rj have continuous partial derivatives with respect to Ay, ---, A,
G2, - ,0,,m, ", M, win aneighborhood of (No, 6, 10, we) With Jacobian
#0 at (Mo, 6o, Mo, wo), then for all | € | sufficiently small system (17) has a solu-
tion A, 6, 7, w and (28) has a cycle of the form (19).

For v = 1,7 = n, we may well take a; = b; = 1, and then a;,(0) = 0, w; =
01(0) = 71(0)7 pil(0)7 pjz(O) = 1m wo :j = 27 ey mm =0, :l:]-7 T BJ(O) &
0,7 = w4+ 1, - -, n In this situation there are only two functions P = P,
@ = @, and there is only one amplitude A = A, and one phase § = 6;, which
must remain arbitrary. Finally (29) becomes

(30) Fi=PNwe) =0, Fo=0— Q(\ 0, ¢) — vi(e) =0,
with

(31) P\ «,0) = (TN fonl cos wt dt, Q(\, ,0) = (TA)! fonl sin wt dt,

with T = 27 /w, and where the arguments of f; are Ao ™ sin wt, 0, - - - , 0, A cos wt,
0,---,0,0. For ¢ = 0 the second equation is identically satisfied by w = wo,
and if o', »” are any two numbers o’ < wy < «” we certainly have F; < 0 for
w =o', Fs > 0for w = w”, ¢ = 0. Then (as a corollary of the 2-dim. Brouwer
fixed point theorem) we have, instead of (v),

(vii) If » = 1, » = n, and we can find a pair N’ < A" such that P(N\, w, 0)
< 0, P(N", @, 0) > 0, then there is a solution (A, w) of (17), X' < X < )\,
o' < w < w” forall | €| sufficiently small and system (28) has a cycle of the form

1 = Awsin (ot + 0) +0(e),z; =0(¢), j=2,---,n, 0 arbitrary,
o = wy + 0(e).
Note that Fa(X, 0, 0) = w, 0F,/0w = 1, d0F>/0N = 0. Hence (vi) reduces to
(viii) If v = 1, » = m, if Ao is a root of the equation P(\, wo, 0) = 0, if
P(\, w, 0) has continuous first partial derivatives in a neighborhood of (o, wo)
and OP/ON = 0 there, then the Jacobian of system (30) is =0P/0\ = 0, system

(17) has a solution (A, @) for all | e | sufficiently small, and (28) has a cycle
as in (vii).

(32)
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Furthermore, the determination of P(\, w, 0) by means of (31) may be simpli-
fied by the following remarks. If we put Z(z, , 21) = fi(21,0, -, 0,27,0, -+ -,
0,0), g(z, «/, ¢) = f(z, &', ¢) — Z(zy, z1) and we decompose

Z(xy,21) = Zo(m,x1) + Zolar, 21) + Zs(an, @1) + Za(zy, 21)
into its odd and even parts, say Z; even in z; and odd in z , etc., we have
g(xlyoy )07'7:1;0; JOJ O) = O;f(xax’y 6) = g(x,x’, 5) + Zl(xlyx;) +
Zs(zy, 1) + Zy(xy x{) + Z(z1, x{), and only Z,(x, z1) has any bearing on
P\, w, 0), ie.

T
(33) P\ w,0) = (Tx)“lf Zu(\w ' sin wf, \ cos wt) cos wt di.
0
In case Zy; is a polynomial in z; , z ,i.e.,Zy = ahkxihx{%‘l, h>0,k > 1, then
- (2h)1 (2k)! (A >2h+w
(34) P()\y , O) =2 Z Ak m‘ —2}—1

with wy = o1 = ¢1(0). If, for instance au and the coefficient of maximal power
of X in Zy; are (£0) and of opposite signs, then certainly there is at least one
root A of odd order for the equation P(A, wy) = 0.

As an example one may well consider the system ([7], [19])

x’{ + oy = elZ1(z; x;) + Zo(z1, xi) + Zs(2y, xi) + Zy(21, xi) + g(z, 2/, )],
7 + 2am; + ooy = iz, 75 €), =2,

o+ Bs = ofi(z, 2, €), j=p+1 - ,n,
with Z, , Z, , Zy, Z, , g as above, with 0:(0) = wy > 0,0;(0) > 0,7 =2, --- , 5,
B;(0) #0,7=»+4+1, --- ,n,and either a;(0) # 0, or a;(0) = 0, ¢;(0) # mw,,

m=0,1,2,---,5 =2, -+, u If wetake Zy; = (1 — z1)z1 then, by (34),
P = (3)(1 — N/40}) and (35) has a cycle of the form

(36) 1 = Mol sin (wf + 0) + 0(e), 2 = 0(e). j =2, -+, m,

with A = 201(0) 4 0(¢), w = a1(0) + 0(e). For Zyy = Zyz = Z1u=¢g = 0,
p =mn = 1, (35) reduces to the autonomous van der Pol equation z; + 2, =
e(1 — 2d)z1. If we take Zy = (1 — 2} — a12)z1, then P = (2)(1 — N*/o?) and
(35) has a cycle of the form (36) with A = 41(0) + 0(¢), @ = a1.(0) + 0(e).
If we take Zy = (1 — |1 |)a1, then by using (33) we have P = (TA)™
S0 (1 =A™ | sinwt|) cos’wt dft = (3)(1 — N/7o1) and (35) has acycle (36)
with A = 761(0) 4+ 0(¢), w = 01(0) + 0(¢). Note that no hypotheses are made
on the functions fo, -+« , fu, Z2, Zs, Zs, g, but the standard ones above and
continuity as in §1.
As another example we may consider the system

z" + r — 6(1 - xZ - y2>x’ = 6f1(x, Y, y,) + Egl(xy Zl, Y, y’)yy
v 42y — (1 — 2" — ")y = efula, @, y) + el 2, y, V)7,

(35)

(37)
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where f1<_x> Y, y,) = _fl(x’ Y, y,)y f2(xa x,, _y) = f2(x) x,; y) By pUtt]ng
either x = 21,y = 22, 0r y = =, = z», and applying the considerations
above we find that (37) has two cycles ([16]) given by

2 =Asin (ot + 8) +0(e), y=0(e), N =24 0(e), w =14 0(e),
z=0(e), y=NAsin(wt+60) +0(), N =2" 4+ 0(e), w =2"+ 0(e).

Both cycles are asymptotically orbitally stable.

All theorems of the present section have been extended in [25] to the case
where the second members of equations (28) are finite sums of functions of
the type

s;fiﬂ[x(t - >\s); .’L"(t - )\5)7 5]

where Ay, - -+, My > 0 are arbitrary numbers (lags). For instance the van der
Pol equation with a small parameter ¢ and a lag ),

2" (1) + z(t) = €[l — 22(1)]2' () + epll — &7(¢t — N2/ (£ — \),

has a periodic solution similar to the one of the usual van der Pol equation
(p=0).

§5. Systems presenting symmetries

We shall now consider systems (16) with0 < v < pu=r < n,a; =0,
j=1 - p5,8;=0,7=u+1, -+, n In other words, we consider systems
(38) x;, + a-.;%xj = éfj(]?, x,7 t; 5); .7 = 17 oy
x; = Efj(I,JJ',t, e); .7. = ,u-|— 1J R ()
with ¢;(0) = a;0/b;, w > 0,a;,b; > Ointegers,j =1, ---, »,0 < ¢;(0) #
mw/bg, bg = bibg---b,,m =0,1,2,--- ,j=»+1,---, u. Then we have
2v + (m - F«) quCtiOHSP]',Q]’,j = 17 oy Y RAH—J';J' = 17 L, — o, and
parameters A = (M, -+, M), 8 = (61, -, 8), 1 = (m,  , Muy). We
suppose that, for somem,0 < m < v,andallu = (z1, -+ ,2n), 0 = (Tmyz, ",
xﬂ)’ w = (xu+1, Tty iEn), we have
( 9) fj(u: -0, w, _u/, Ul; —t) = fj(u7v:w) u,7v’7t)1 .7 = 17 o, m,

3
fj(u) -V, w, _u,; Uly _t) = —fj(u) v, w, ulJv,Jt)7 .7 =m + 17 T, N
In other words, all f;,7 = 1, -- -, m, are even in the vector (v, v/, t), and all
others f;,7 =m + 1, -+, n, are odd in the same vector. Thus, for m = 0, all
f7 are odd in the same vector. Under these hypotheses it was shown (7, 19] that,
by taking 0; = x/2,j =1,--- ,m, 0, =0,7=m+1,---,»,all P;, R, are
identically zero. Thus the determining system (17) reduces to only » equations

(40) a’jb]le - EQ]'(G,, b7 )‘) n, W, E) - ‘TJ'(E) = 0: .7 = 17 N )

in the » + (n — ) unknown amplitudes A = (A1, -, N), 7 = (m, -,
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Nn—). Thus system (40) may present some degree of indetermination, and, in
correspondence, (38) will have a family of periodic solutions of the form (de-
duced from (19)):

I

2; = Njay bw cos abiwt +0(e), j=1,+--,m,

T; = )\ja?b,w sin ajbflwt —|— O(e)’ .7 = m + 1, RIS

(40)
z; = 0(e), F=v41, -,
z; = i + 0(e), i=p+1, -, 0
By division by e and limit as € — 0 equations (40) become
(41) Qio — 05(0) =0, j=1,---,»

For Q; we have here, instead of (18), the expressions

T
Qo = (T)\j)_lf fi(--+) cosa; b5  wtdt, j=1,---,m,
0

T
Qi = (Tx,)*‘f L( ) sina; bl etdt, j=m41, -,
0

where the arguments of f; are the z; s given in (40) for e = 0,7 = 1, -+, n,
the corresponding derivatives 5 ,j=1,-++,v and t and e = 0. We give here
only a statement corresponding to (iii) (see [19]):

(ix) If system (41) has a solution A(n) for every » in a compact set @,
if for every 7 in @ the functions @ ; have continuous first partial derivatives with
respect to A, - - - , A, with Jacobian > 0, then for all | ¢ | sufficiently small and
all 5 in G, equations (40) have a solution A(7, €), and then system (38) has a
family of periodic solutions (40) with A = A(#, ¢) depending upon 7 in @, for
all | e| sufficiently small.

Obviously under these conditions the Jacobian of order 2» + (n — u) con-
sidered in §3 is identically zero. A good example for (ix) is the third order equa-
tion ([19])

(42) y"' 4+ Yy =y, v, Yt €)

with f periodic in ¢ of period T = 27/w, @ > 0, with f(y, —y’, 4", —t, ¢) =
—f(y, ¥, y", 1, ¢€),a(0) = aw/b,a, b > 0 integers. Then (42) has a one parameter
family of periodic solutions of the form y = ciawb ‘¢ cos a b wt + ¢, + 0(e),
a = afe, €, for all | €| sufficiently small provided there is a solution ¢ =
cw(ce) of the equation H = 0 with 0H/d¢; # 0 and

T
H = (clT)“‘f fly(t,0),9'(t,0),y"(t,0),t 0] sin ab™ wt dt.
Q

The autonomous case leads to analogous results. Nevertheless we mention
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here only the following one which is an explicit existence theorem of families of
periodic solutions ([7], [19]).

(x) Consider an autonomous system

(4:3) x;’ + Uﬁxj = ij(x, x’y E)) .7 = 1: Tty M
x; = ef,-(x,x’, 5)7 j= w+1 - ,m,

where the functlons fi, j = 1, .-, n, are Lipschitzian in the n 4+ p variables
Xi, e ,xn,xl, ---,x,,,and contmuousm e for |z, | < R, s = 1, , m,
|z | < Ry s =1, ,u and l e| < & . In addition suppose for f; only, that
fi(0, 20, <+, 2y ,O Ty, e ,x,, , €) = 0. Suppose that either allf;,j = 1, , M,
areoddin (z;, --- ,x.),0rfiisevenand fs, - - ,fnareodd in (z,, - - - ,x“,x{).
Suppose oj(e) > 0,7 = 1, -+, p, are continuous functions of e [or constants]

and ¢;(0) &% m o, (0),m =0,1,2,--- ,7 =2, -+, u. Put 0o = 01(0) and let
7o < R. Then there exists an ¢ ,0 < & < e, such that for all real ¢, Ay, 91, -+,

Moy | €] < &, [ M I, o, | taeu | < 1o, system (43) hasa (real) cycle of
the form

zi(t, €) = Mo Tcoswt 4 0(e), or zi(t, €) = Mw  sin wf + 0(e),
(44) xJ'<t: G) = O(G), .7 = 27 RPN 21

xi<t7 e) = ni—n+0(€), .7= M+ 17 e, N,
where z; is even (or odd) in ¢, ., + -+ , x, are odd, Zut1, * - * , T, and even, where
w = w(e M, M, ", M) 18 a8 continuous function of these parameters, and

@ = w for € = 0. Also t can be replaced by ¢ + 6, 6 arbitrary. Thus (43) has
a (n — p + 2)-parameter family of cycles.

As a first example we may consider the simple equation z” + z = ¢f(z, 2')
with f(0, 0) = 0 and either f(x, —2') = f(z, 2'), or f(—=z, 2') = —f(z, 2').
This equation has a family of cycles of the form z = Ao cos (wt + ) + 0(e),
orz = Ao " sin (wt 4+ 8) + 0(e), with @ = w(\, €) = 1 + 0(€), \, 6 arbitrary,
| €| sufficiently small. We may take for instance, f = z + 2* + 2%, or f = |z | +
|z’ |,orf=|z|z.

As another example we may consider the system

o +az=el—|yDa, v +2=¢1~-]|z|)y
which has two families of cycles respectively of the forms
z =N cos (ot +8) = 0(e), y=0(e), w=u0c(\e =10(c)
= 0(e), ¥ = Ao cos (ot + 6) + 0(e), =} e =2+ 0(e)

\, 8 arbitrary, | €| sufficiently small.
As a further example let us consider the third order equation ([19])

(45) "+ o = of(z, o, @ €)
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where f(z, —2/, 2", ¢) = —f(x,a’, 2", €). It is proved [19] that (45) has a family
of cycles of the form

- x = —co " cos ot + ¢+ 0(e),

with z(c1, ¢, ¢, —t) = z(c1, ¢z, € t), where ot can be replaced by ot + 6, ¢,
¢z, 0 are arbitrary, | ¢1 |, | c2 | < r» < R, and | €| is sufficiently small. Thus (45)
has a 3-parameter family of cycles.

§6. The linear case. Theorems of boundedness

Let us consider linear differential systems of the form
(46) ¥ = Az + Bz, = (21, -+, Tn),

where ¢ is a parameter, | ¢ | small, A an n X m-constant matrix, B(¢) ann X n
matrix whose elements are periodic in ¢ of period 27/w, L-integrable in [0, T1.
By Floquet’s theory system (46) has a number of solutions of the form 2 = €"'p(%),
for convenient numbers r (characteristic exponents) and periodic vector func-
tions p(t) of period T'. A substitution z = ¢"*u with r indeterminate maps (46)
into the system

(47) W = (A4 — tDu+ eB(tu, u= (U, *+, U),

I the unit matrix, and thus the particular values of r for which (47) has a periodic
solution w = p(t) of period T are the characteristic exponents. If we apply the
approach of §§1, 2, 3 to the determination of these periodic solutions u = p(t)
of (47) (and corresponding values 7), we have a natural process for the deter-
mination of the solutions of the form e™p(¢) of (46) for | ¢ | sufficiently small.
Note that, if Y (¢, €) is a fundamental system of solutions of (46), then the

roots pj,j = 1, -+, n, of the equation det[Y (T, ¢) — pI] = 0 are the char-
acteristic multipliers of (46) and the characteristic exponents 7;,7 =1, --- , n,
are then determined up to multiples of wi by the relations p; = "%, =1, --- , n.

The n numbers p;(0) coincide with the characteristic roots of the matrix e*’
and the functions p;(¢) are continuous in ¢, even analytic with at most branch
points algebraic in character [2]. If some p,(0) is a characteristic root of A of
multiplicity %, then there is a group of exactly k multipliers p;(¢) approaching
ps(0) as € — 0. The approach of §§1, 2, 3 applied to (47) makes it possible to
determine these groups of multipliers, namely, matrices of order &k can be given
explicitly whose characteristic roots are the k& multipliers p;(e) (| ¢| sufficiently
small) [21, 23]. The present approach has led to the following theorem
of boundedness under conditions of symmetry, which is similar in form and proof
to (ix) and (x) (see [18]):

(xi) Consider the linear real system
27;, + a';z'xj = €fj(£€, CE,, ¢, 6)7 .7 = 1) BRI 2}

(49) ,
Ty = ef(x,x’,t, 6)7 .7 = p+ 1: MR (7}
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where all f;, 5 = 1, -+, n, are linear functions of x;, --- , z,, x;, s x;,
with coefficients which are functions of ¢, periodic of period T' = 2r/w, L-in-
tegrable in [0, T (and in absolute value < K (¢) for some fixed L-integrable func-

tion K(1)). Suppose ¢ > 0, ¢; & o &= mw, J £ b, h =1, -, u,m = 0,
&+ 1, --- .Suppose that forsome 0 < m < u <n,and all uw = (21, -+, Tm),
v = (Tmy1, "+, Tu), W = (Tyy1, -, Zn), relations (39) hold. Then for all

| €| sufficiently small all solutions of (49) are bounded in (— =, +=).

For n > u no other proof is known of this statement besides the one given in
18 by the present approach. However, the particular casesn = pandn = u + 1,
could be proved independently. A very elementary proof forn = pandn = u + 1
was given in [20]. (See also [4], §4.5.) For n = u another proof has been given by
V. A. Yacubovich by the use of properties of the matrix Y (T, €¢) already ob-
served by A. Lyapunov. (See [23] for this type of elementary proof.) For n = u
system (49) can be written in the form

(50) " 4+ Az = eBt)x + ()2, z = (21, -, Ta),
A = diag (o1, -+ , 0%), and conditions (z7) mean:
(51) B(—t) = B(t), C(=t) = —C().

Another theorem of the same nature was proved since 1940 in [6] by the same
method, namely supposing, instead of (51), that

(51%) B_i(t) = B(1), C(t) =0.

Under these conditions system (50) is “canonic”, and an improved form of the
same statement has been recently reproved in the frame of the theory of canonic
systems by J. Moser, and by properties of the matrix Y (T, ¢) by V. A. Yacu-
bovich.

The results above have the following interpretation. Let us consider an
auxiliary we-plane. For every pair (w, €), 1.e., point of the we-plane, we may ask
whether system (50) has solutions z(¢) all bounded in (— o, + ), or not.
Accordingly, as the former or the latter occurs, we may divide the we-plane into
zones, which usually are called of stability or instability respectively. Note that
forw > 0, e = 0 the solutions of (50) are all bounded in (— e, 4 ) but it
may occur that points (w, 0) are on the boundary of zones of instability, and then
the corresponding frequencies w are called critical. The results above assure that
for system (50) with B even and C odd, or B symmetric and C = 0, at most the
frequencies w = 2¢;/m, or w = (¢; &= on)/m, m = 1, 2, --- , may be critical.
For systems (50) with n = 1 the same holds under no condition on B or C ([8]).

For instance, the system ’

2" + oz = eycost + ez cos 2t
y' = exsint + ez sin 2¢
2 = exsin2t — eysint
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with ¢ 7 m, m = 1, 2, --- , has solutions all bounded in (—», +«) for all

| €| sufficiently small because of (x2) withn = 3, u = 1, m = 1. The system
" 4 oix = excost + eycos 2t + ey sin ¢

Y 4 o3y = excos 3t + eycost + ez’ sin 2t

with a1, 02 > 0, 201, 203, |01 + 2| # m, m = 1,2, .-+ | has solutions all
bounded in (— o, 4 =) for | ¢ | sufficiently small because of (xz) with n = 2,
p = m = 2. The same holds for the system

2’ + oix = ersin 2t + €y cos ¢
y" 4+ o3y = excost — eycost

with oy, o2 as above, because of (51*). The same holds for the second order
equation

2" + o’z = exsint + e’ (sint + cost),

with 20 = m, m = 1,2, -- - , because of [8].

The independent research mentioned above (J. Moser, V. A. Yacubovich, and
also M. G. Krein, I. M. Gelfand and V. B. Lidsky) have reduced the set of pos-
sible critical points. For instance the points (¢; — ¢4)/m are not critical under
conditions (51) or (51%).

The study of single frequencies w for a given system to establish whether they
are critical or not has been initiated in [21] by the present approach and by the
authors mentioned above by canonical systems or Lyapunov’s arguments (see
[23] for a summary of results). Other results by the present approach have been
anouncned ([24]). '

For systems (50) when » > 1 and no symmetry prevails the situation is quite
different as it was proved since 1940 in [6] by the present approach as well as
later in [11]. Then every frequency is likely to be critical. Namely, in [11] suffi-
cient conditions for this occurrence are proved by the present approach for
given systems (50). In other words, if the numbers ¢; are known, as well the
matrices B(t), C(t), i.e., the coefficients of the Fourier series of their elements,
and ¢, w are considered as parameters, then a frequency w is not critical, or criti-
cal, according as a certain infinite set of expressions M, N, - -+ , are all zero, or at
least one is #0 [11]. For instance, for the system

€Tz Sin wl

Il

” 2
1 + o
” 2
o + 09Ty = €I1 COS wi

every frequency w is critical in the sense that every point (w, 0) is point of ac-
cumulation of points (', €) for which the same system has unbounded solutions
in (0, 4+ ). The general result just mentioned is similar to a weaker one of
V. A. Yacubovich who proved that, for all given o1, - -+ , o, , w it is possible to
choose matrices B(z), C(¢) in such a way that the solutions of (50) are not all
bounded in (— =, =) for | ¢ | # 0 sufficiently small.
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§7. Stability of periodic solutions of nonlinear systems

Given a periodic solution x = X(f) of period T = 27/w of a periodic or

autonomous system z’ = f(z,¢),z = (x1, - - - , Zx), then the stability of X (¢) is
related to the characteristic exponents of the linear variational system with
periodic coefficients
(52) y = H(t)y, H(t) = of/0x |a=x -
If f(x, t) is actually periodic in ¢ of period 7' (not constant) and all character-
istic exponents of (52) have negative real parts, then z = X () is asymptotically
stable. If f is independent of ¢, then one of the characteristic exponents is zero
(=0 mod wi), and, if all remaining » — 1 ones have real parts negative then
xz = X(¢) is asymptotically orbitally stable (A. Lyapunov). If f(z, t) =
Az + eg(z, t, €), where €is a small parameter, then the same parameter appears
in (52) and the results mentioned in §6 and others obtained by the same present
approach can be applied.

In [3] periodic systems (16) are considered with v = u = n. This is actually
the most difficult case (for n > 1) since then the characteristic exponents form a
unique group of 7 elements as explained in the first lines of §6. In [3], by using
the present approach, explicit expressions are given of the elements of the ma-
trix of order 2n whose characteristic roots are the characteristic exponents for
| €| small. The results have been applied, for instance, to the system of two
van der Pol-type equations

" 4+ 2 = (A — By')a' + pcost
Yy 4y = «(C — D2y’ + qcos 2t

(i.e., system (23) with oy = 0y = 1l,and a; = by = as = by = 1).

In general the grouping of the characteristic multipliers (§6) is not so bad, and
in this most usual situation explicit results have been obtained straightforwardly
by the present approach in [22]. We mention here only the following two state-
ments, of which in [23] an idea of the proof is given.

(xi1) Let us consider a periodic system (16) withp =n,¢; =0,7 = 1, -+,
g, v = 1, functions f; of class C’, and corresponding periodic solution z = (%, €)
given by (19), | ¢ | sufficiently small. Then o; = a;b7'w, To = 27by/(aw)). Sup-
pose 20; # mw, | o; = on | # mw,j #Z h,j,h=2,---,v,m=1,2 ---.Then
(19) is asymptotically stable as ¢t — -+« provided4; < 0,B >0, j =1,2, -+,
and A; # B, Al # B, where

Ty
Ajzf Fioy [20(t,0), 25(4,0), 8,01 dt, 7 =1,2,---,»,
0
B = (2To}) 7 [} A} + C* — D* — B,
To Te . .
c = f frundl, D= [ fi cos20tdt —a f fre! sin 201 ¢ dt,
0 o A

Ty

Ty
E= [ fusin2otdi+ o [ fifcos 2ot dt
0 0
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Except for the condition A, > B, A1 # B this generalizes a result of L. Mandel-
stan and N. Papalexi. This is also a corollary of the result of [3] for n = 1.

(xiii) Let us consider an autonomous system (28) with » = 1, r = n,
a;j(0) = 0,7 =1, -, », functions f; of class C’, and corresponding cycle (32),
| €| sufliciently small. (Then a; = b, = 1, 61 = 01(0) = wo, T = 27/wo). Suppose
20; # mwo, |o; £ on| & mwo,j = hJ,h=2+,p,m=12 ---, Then
(32) is asymptotically orbitally stable as ¢t — + « provided

T
4, = f Jiey [0(2,0), 25(£,0),01dt < 0, j=1,2,-,».
(]
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