
EXISTENCE THEOREMS FOR PERIODIC SOLUTIONS OF NONLINEAR 
DIFFERENTIAL SYSTEMS 

BY LAMBERTO CESARI* 

In the present paper I give the main idea underlying a recent approach to 
existence theorems for periodic solutions of nonlinear differential systems, and I 
summarize a number of applications and results. This approach has been de
veloped by the author, J. K. Hale, R. A. Gambill, W.R. Fuller, et al. in a number 
of years (see Bibliography). 

A presentation of some of the results in the analytical case has appeared in 
[4, §§4.5 and 8.5]. Here a new presentation is given in a more general setting. All 
applications and results under consideration belong to the class of the problems 
of perturbation of linear differential systems. I shall deal elsewhere with straight
forward nonlinear differential systems as well as with perturbation problems of 
nonlinear differential systems. 

§1. Schauder's fixed point theorem and perturbation problems 

Let us consider the differential system 

(1) y' = Ay + Eq(y, t, E), Y = (Yi, • • • , Yn), q = (q1, • • • , qn) 

where Eis a small parameter, I EI ~ Eo, A a constant n X n matrix, and q is 
periodic int of some period T = 2'1!' / w, and £-integrable in [O, T], ( or alternatively 
q is independent oft and (1) is autonomous). For the sake of brevity we suppose 
A = diag (p1 , • • • , Pn) where the numbers p; may depend on E, are continuous 
functions of E, and p;(0) = fr; = ia;w/b;, a; ~ 0, b; > 0, integers. Suppose that 

(2) I qi(x, t, E) I ~ K(t), J = 1, .. • , n, for all I y, I ~ R, s = 1, 
• • • , n, I E I ~ Eo ; 

(3) There is a continuous monotone function t(71) > 0, 71 > 0, 
t(O) = 0, such that 

1 q/y\ t, i) - q;(y2, t, i) 1 ~ re 71)KCt) 

for all I y! I, I y; I ~ R, I i I, I i I ~ Eo, I y! - y; I ~ 71, 
I i - i I ~ 71, s = 1, • • • , n, where K(t) is a fixed function £-in
tegrable in [O, T] (a constant if (1) is autonomous). 

We may try to find a solution "close" to a solution of the linear system 
z' = A(0)z of the form 

z(t) = (c1ei"t, • • • , CneiTnt), Cj ~ 0 constants. 
-------
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Let B = A(O) = diag (i-r1, • • • , irn). Let n be the space of all continuous 
vector functions <P ( t) = ( <P1 , • • • , <Pn) of period 21rbo/ w, bo = b1b2 • • • bn , with 
m[eiT;t<P;(t)] = c;, j = 1, • • • , n, where m denotes the usual mean value. Let us 
take in n a uniform topology. Let nR be the subset of n consisting of all <P with 
I <P; I :::; R, j = 1, • • • , n. Let VI = st<P be the transformation of nR into n defined 
by 

(4) V1(t) = z(t) + EeBtf e-Bu{q[<P(u), u, E] - D[<P]<P(u)} du, 

where D = diag (d1, • • • , dn) is defined by 

(5) 

By this definition, for each component VI; , the integrand is periodic of mean 
value zero and the integral denotes the unique primitive which is periodic and 
of mean value zero. Finally, VI belongs ton for <P belonging to nR, i.e. stnR c n. 

If I c; I < R, j = 1, • • • , n, and I E I sufficiently small there is a closed sphere 
!.10 about z(t) in QR such that '.it!.10 c !.10 [7]. Also, as shown in [7], there is a com
pact closed convex subset Ori c Oo such that stnt c Ori. Thus, by Schauder's 
fixed point theorem, there is at least one fixed element y(t) in Ori', i.e., such that 
sty = y. The vector function y(t) satisfies the integral equation 

y(t) = z(t) + EeBtf e-n"{q[y(u), u, e] - D[y]y(u)} du, 

as well as the differential system 

(6) y'(t) = (B - eD)y + Eq(y, t, e). 

If the relation ( determining system) 

(7) B - eD = A, or iaw;/b; - EdiCa, b, c, w, E) = p;, j = 1, • • ·, n, 

is satisfied, then y(t) is a periodic solution of the given system (1). 
The analysis of the transformation st and of the determining system (7) lead 

to actual existence theorems for periodic solutions and families of periodic solu
tions of the given differential system ( 1) ( § §3-6). 

Under a Lipschitz condition of the type 

(8) I q;(y1, i, E) - q;(y2, i, E) I =::; K(i)Ls I y! - y; I 
the transformation st I !.10 is a contraction and into [7]. Hence, not only is there a 
unique fixed point in !.10 , but such a fixed point can be approached uniformly by 
the method of successive approximations 

(9) y(O)(t) = z(t), y(m\t) = sty(m-l)(t), m = 1, 2, ''' . 

This method, together with some variants of it for the analytic case, has been 
studied by the author, J. K. Hale, R. A. Gambill, W. R. Fuller, et al. in a series 
of papers ([6], [9], [13], [15], [16], [25] and others in the bibliography. Its con
vergence, which was proved directly in a number of cases, is now a corollary 
([7]) of the remark above under a Lipschitz condition (8). 
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Note that the "terms" subtracted in ( 4) have an interpretation. The so-called 
secular terms are all among them. More terms are subtracted so as to assure that 
the fixed element satisfies a system ( 6) of the same form of the original. 

By application of this method, and various extensions of it, existence theorems 
for periodic solutions of periodic or autonomous systems and theorems for their 
stability have been proved. 

§2. Some extensions and remarks 

As a first extension of the approach mentioned in §1, I mention that we may 
consider [7] a system analogous to (1) 

(10) y' = Ay + eq(y, t, e), A = diag (Ai, A2) = A(e), 

wherey =(Yi,·· ,Yn),q =(qi, ... ,qn),Aisann X n-matrixwhoseelements 
are constants or continuous functions of e, Ai = diag (pi, • • • , p,), pJ(0) = 
ir; = ia;w/b;, a; ~ 0, b1 > 0 integers, j = 1, • • • , v, and A 2 has characteristic 
roots, pJ(e), j = v + 1, • • • , n (continuous functions of e for I e I ::::; eo) with 
p1(0) ~ im w/bo, bo = bib2 • • • b,, for allj = v + 1, • • • , n, m = 0, ±1, ±2, • • •. 
Of course, it is enough to know that A admits of a canonical form Ao as above 
([7]). In these conditions z(t) and D(t) of §1 are replaced by 

z(t) 

D(t) 

( iT1t iTpt 0 0) cie , • • • , c,e , , • • • , , 

( di , • • • , d, , 0, • • • , 0), 

c1 constants, 

and the corresponding determining system ( 7) becomes [7] 

ia1w/b1 - E d1(a, b, c, w, e) = Pi, j = 1, • • • , v. 

Note that the condition concerning A2 is satisfied if eithei: a 1(0) ~ 0, or a/0) = 0 
and a-J(0) ~ imw/bo,j = v + 1, • • ·, n,m = 0, ±1, ±2, • ••. 

Instead of ( 10) we could consider ( [7)) a system 

(11) y' = Ay + F(t) + q(y, t, e) 

where F(t) (Fi, • • • , Fn) is a periodic vector function of period 21r/w whose 
components are £-integrable in [0, 211/w] satisfying 

2,r/w 1 eiritF(t) dt = 0, i = 1, • • • , v. 

Under these conditions the system 

y' = By+ F(t), 

B = diag (Bi, A 2), Bi= diag (ir 1 , • • • , ir,), has a periodic solution Y(t) and 
the transformation y = Y(t) + z reduces (11) to a system (10). 

Instead of (10) we could consider ([7]) a system 

(12) y' = Ay + q(y, t, e), 

y = (Yi, • • • , Yn), q = (qi, • • • , qn), with A and q as in system (10) and 
q(y, t, 0) = 0. 
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Analogously, we could consider ( [7]) a system 

(13) y' = Ay + q(y, t, e) + g(y, t, e), 

y = (Yi, • • • , Yn), q = (qi, • • • , qn), g = (gi, • • • , g,.), with A and q as in 
system (12) and I g;(y, t, e) I S I y I t(I Y l)K(t), where I YI = I Y1 I + 
· · · + I y,. I, and t( 'II) as in §1. Analogously, we could suppose, for instance 
gj = 0, j = 1, • • • , P, and 

(14) gj(y, t, e) I S I y I HI y l)K(t), j = P + 1, • • • , n, 

with I YI I Y,+1 I + · · · + I Yn I (see §3). 
The case of system (10) with P = 0 is rather trivial, since no characteristic 

root has real part zero for e = 0. There are on determining equations and the 
existence of a periodic solution is immediate. On the other hand, for v = 0, an 
extension in another direction is possible. Namely, we may suppose that the 
functions q;(y, t, e) are almost periodic in t for every y and E. More precisely 
we may suppose ([7]) that each q1(y, t, e) has a development 

L c,ei'!.•1, L I c, 12 S M, 

where M can be taken independently of y and e for I y i I S R, I e I s eo , 

j = 1, • • ·, n. 
If we suppose that the elements of the matrix A and vector q are analytic 

functions of e and e, Yi , • • • , y,., respectively, then Lipschitz condition (8) is 
satisfied and we may ask whether the series whose sums are the periodic func
tions yj(t) 

00 

(15) y;(t) = y}0)(t) + L [y}m'(t) - Yim-l)(t)], j = 1, · · ·, n, 
m=l 

are power series in e, i.e., whether y]°\t) is independent of e, and each successive 
bracket contains only terms of degree s m in e. This is not the case even in 
particular situations (the functions q; linear in Yi, • • • , y,. with coefficients in
dependent of e). J. K. Hale has modified the method of successive approxima
tions (9) in such a way that each successive bracket in (15) contains only terms 
of degree s m. 

The restriction Cj ~ 0 of §1 can be weakened (see [7] for a preliminary discus
sion). 

3. First existence theorems for periodic solutions of real systems 

Consider the real system of order N = µ + n 

(16) 
x'J + 2a1x; + u;x; = efi(x, x', t, e), j = 1, • • • , µ, 

x; + {J;x; = efi(x, x', t, e), j = µ + 1, • • • , n, 

where -oo < t < +oo, (') = d/dt, 0 s µSn, x = (xi,···, x,.), x' = 
(x~, • • • , x;), u; > 0, a;, (31 real constants or continuous functions of e, e real, 



28 LAMBERTO CESARI 

I € I S €0, and where fi(x, x', t, €), j = 1, • • • , n, are real functions of the 
n-vector x, of the µ-vector x', oft and€, for I Xi I S R,j = 1, • • • , n, Ix; I SR, 
j = 1, • • • , v, - oo < t < + oo, I € I S €0. We shall suppose that the functions 
fi satisfy the same conditions of the q's in §1 with respect to the vector 
(x1 , • • • , Xn, x~, • • • , x~). In particular we suppose that condition (8) is satis
fied and the functions Ji are periodic of period T = 211-/w. We shall denote by 
Pit, Pi2 the roots of the equation/ + 2a;p + er] = 0. By reordering equations 
and unknowns, if needed, we may suppose that for convenient integers v, r, 
0 S v S µSr Sn, we have a;(O) = 0, er;(O) = r; = a;w/bi,ai > 0, bi> 0 
integers, j = 1, • • • , v, P;1(0), Pi2(0) ~ im w/bo, m = 0, 1, 2, • • • , bo = b1b2 
• • • b,, j = v + l, • • • , µ, {1;(0) ~ 0, j = µ + l, • • • , r, {1;(0) = 0, j = r + l, 
• • • , n. Note that we have p;1(0) = ir;, P12(0) = -ir; ,j = 1, • • • , v, and that, 
for I€ I sufficiently small we certainly have a](€) < er;(€),j = 1, • • ·, v, hence 
PiI, Pi2 = -a;± i'Yi, 'Yi > 0, with 'Yi = (er;-- a})\ j = 1, • • • , v. The "zero 
characteristic roots" of (16) with€ = 0 are those corresponding to the equations 
(16) with j = r + l, • • • , n. Note that the extreme cases above, i.e., v = 0, 
v = µ, r = µ, r = n, as well as µ = 0, µ = n are not excluded. It will be con
venient to suppose that the functions a;(€), er;( €),j = 1, • • • , v, f1i( €),j = r + l, 
• • • , n, have finite derivatives at€ = 0, i.e., a~(0), er;·(O), j = 1, • · • , v, [j;(o), 

j = r + 1, • • • , n, exist. 
The determining system (7) is now made up of 2v + (n - µ) equations, and 

in these equations certainly the sets of integers a = ( a1 , • • • , a,), b = 
(b1 , • • • , bP), and the 2v + (n - µ) complex indeterminates Cj should appear. 
It is actually convenient to replace the latter by real indeterminates 
A= (A1, ···,A,), amplitudes 0 = (01, • • ·, 0,), phases, 'Y/ = (TJ1, • • ·, 'Y/n-r), 

amplitudes [7, 13]. Then equations (7) assume the form 

(17) 
€PJ = a1(€), €Qi= a;b"';1w - 'Yi(€), j = 1, • • • , v, 

€Rj = f1r+/€), j = 1, • • ·, n - r, 

where P 1(a, b, A, 0, 'Y/, w, €), Q;( • • • ), Ri( ···)are continuous functions of the 
parameters A, 0, 'Y/, € (and w if (16) is autonomous), depending upon the func
tions J;. Under a Lipschitz condition (6) the same P;, Q1, Ri are determined 
by the inherent method of successive approximations. The same functions, for 
€ = 0, are given at the first step of the process, but it is useful to know that 
they are given also by simple quadratures: 

P;(a, b A, 0, 'Y/, w, 0) 

= (Aj Tb;;-1 { COS0j 1Tbofj cos a; b-;1 w udu - sin0j 1Tbo J;sina1b1 1 wudu]' 

(18) Q;(a, b, A, 0, 17, w, 0) 

[ 1
Tbo 1Tbo ] 

= (Aj Tbo1) - sin 0i O Ji cos aj b-;1 wudu - cos 01 0 J; sin a; b-;1 WU du, 

Tbo 

R/a, b, A, 0, 'Y/, w, 0) = (TJ; Tbo)-1 1 fr+i du, 
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where the arguments of the f's are Xj = bj'r7"1 sin ( rjl + Bi), j = l, • • • , 11, 

Xj = 0,j = 11 + l, • • • , µ, andj = µ + l, • • • , r, Xj = 1/i-r ,j = r + l, • • • , n. 
(i) For I EI sufficiently small, and any solution A, 8, 1/ of system (17) there 

is a periodic solution of system (16) of the form 

x;(t, E) = Aja-;-1b;w sin(aib-;-1wt + 8;) + 0(E), j = l, • • • , 11, 

(19) xi(t, E) = 0(E), j = 11 + l, • • • , r, 

Xj(t, E) = T/i-r + 0(E), j = r + l, • • • , n. 

For I EI small the terms Aja- 1biw sin(a;b- 1wt + Bi) are predominant. If all 
ai = bi = l we say that (19) is a harmonic solution, otherwise (19) is said to 
be a subharmonic (ai = l, bi> l), or ultraharmonic solution, etc. 

Since a;(0) = 0, 'Yi(0) = D"j(0) = r; = aib-;1w, /Jr+/0) = 0, system (17), 
dividing each equation by E and taking the limit as E - 0, yields: 

(20) 

P 1o = a;(o), 

Qjo = 'Y;(o), 

j = l, • • ·, 11, 

j = 1, • • ·, 11, 

Rjo = /3:+1(0), j = 1, • • • , n - r, 

where Pio = Pi(a, b, A, 8, 1/, w, O), Qio = Q;( • • • ), R;o = Ri( • • • ), are given 
by (18). 

By the use of Brouwer's fixed point theorem the following theorem ( [7]) is 
proved: 

(ii) If system (20) has a solution Ao, 80 , 1/o, if we can find an interval 
I = [A1• < A. < "\ '~ e'-< e. < e'~ 1· = l . . • 11 ,,,~ < 1/ . < 1/1~ 1· = l ... J - 3 - 1\3 , J - 3 - J > , , J - 3 - 3 , , 7 

n - r, of center (Ao, Bo, TJo), and an ordering of the 211 + (n - r) functions 
Fi = P;o - a;(o), j = 1, • • • , 11, F,+i = Qjo - ,y;(o), j = 1, • • • , 11, F2v+i = 

R;o - f3r+i, j = 1, • • • , n - r, such that F. has opposite constant signs on the 
corresponding opposite two faces of I, s = l, • • • , 211 + n - r, then (17) has a 
solution (A, 8, TJ) EI for every I E I sufficiently small, and, by force of (i), system 
(16) has a periodic solution of the form (19) for all I EI sufficiently small. 

Finally, by the use of properties of the topological index, the following state
ment ( [7]) is proved under differentiability conditions of the functions P ;o , 

Q;o, R;o only: 

(iii) If system (20) has a solution Ao, Bo, 1/o, if the functions P;o, Q1o, R;o 
have continuous first partial derivatives with respect to A1 , • • • , A, , 81 , • • • , 

8, , 'f/1 , • • • , 1/n-,· , in a neighborhood of (Ao , 80 , TJo) with Jacobian "iF-0 at (Ao , 
80 , TJo), then for all I E I sufficiently small system ( 17) has at least one solution 
A, e, 1/, and (16) has at least one periodic solution of the form (19) for all I EI 
sufficiently small. 

In [13] the following examples, among others, are discussed without difficulties: 
the nonlinear Mathieu equation with large forcing terms 

(21) x" +ix= A cos 2wt + E(Ax cos 2wt + Bx 3); 
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the van der Pol equation 

(22) x" + ix = tc(l - x2)x' + Epw cos (wt + a); 

the generalized van der Pol equation 

(23) x" + <ix = E(l - x2m)x' + Epw cos (wt+ a), 

with m integer and large ("almost square" characteristic function); the system 
of two nonlinear Mathieu equations 

(24) 
x" + u~x = 1:(Ax + Bx cos t + Cx3 + Dxy2) 

y" + u:y = E(Ey + Fy cost+ Gy3 + Hx 2y); 

§4. Existence theorems for cycles of autonomous systems 

Let us consider now system (16) where the functions f's do not depend on 
t, i.e. the autonomous real system 

x7 + 2aix; + u}xi = Ef;(x, x', E), j = 1, • • • , µ,, 

x; + /3iXi = Ef;(x, x', E), j = µ, + 1, • • • , n. 
(28) 

The hypotheses listed at the beginning of §3 reduce now to the following ones: 
(1) the functions fi, j = 1, • • • , n, are Lipschitzian in (x, x', e) for I Xi I s R, 
j = 1, • • • , n, I x; I S R, j = 1, • • • , µ,, I E I S Eo ; (2) For some wo > 0, and 
integers OS 11 S µ,Sr Sn, we have a;(0) = 0, ui(0) = aiwo/b;, ai, bi> 0 
integers,j = 1, • • • , 11, Pi1(0), Pi2(0) ~ imwo/bo, bo = b1 • • • b, ,j = 11 + 1, • • • , µ,, 
m = 0, ± 1, • • • , (3;(0) ~ 0, j = µ, + 1, • • • , r, (3;(0) = 0, j = r + 1, • • • , n. 
As usual all u; > 0, a; , (3 i are continuous functions of e, or constants, and a; ( 0), 
u;(O), j = 1, • • ·, v, (3;(0), j = r + 1, • • ·, n, exist. In the present situation 
w = w( e) can be thought of as an undetermined continuous function of e to be 
added to the unknowns in system (17). On the other hand, we must expect that 
one of the phases, say 81 , remains arbitrary, since (28) is autonomous. In other 
words, we may try, for instance, to solve system (17) for the 2v + (n - r) 
unknowns A1, • • • , A, , 82, • • • , 8,, '111, • • • , '17n-r, w, leaving 81 arbitrary. But 
A = (A1 , • • • , A,), 8 = ( 82 , • • • , 8,), '17 = ( '111 , • • • , '17n-r). The corresponding 
periodic solutions of system (28) (cycles) have still the form (19), but now w 
depends on E. Instead of system (20) it is convenient to consider the analogous 
system obtained by (17) by first _dividing all but one equation (17) by E and 
taking the limit as E --+ 0, say the system 

Fi= Pio - a;(o) = 0, j = 1, • • • , 11, 

F,+1 = a1w/b1 - 1'1(0) = 0, 

F'.+; = Qio - 'Y;co), j = 2, ••• , v, 

F2,+i = R;o - /3;+iC0), j = 1, • • • , n - r. 

The statements corresponding to (i), (ii), (iii) read as follows (see [7, 25] 
for the present hypotheses, and [13, 16] for the analytic case). 
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(iv) For I e I sufficiently small, and any solution 'A, 0, 11, w of system (17), 
w(O) = wo, there is a periodic solution (cycle) of system (28) of the form (19). 

(v) If system (29) has a solution 'Ao, 0o, 110, wo, if we can find an interval 
I = ['A; ~ Aj ~ 'Ar , j = 1, • • • , v, 0; ~ 0i ~ 0; , j = 2, '· • • , 11, 11; ~ 11i ~ n; , 
j = 1, • • • , n - r, w' ~ w ~ w"] of center ('Ao, 0o, 110, wo), and an ordering of 
the 2v + (n - r) functions Fi = P;o - a;o(O), j = 1, • • • , v, Fv+i = Qio -
-y;(o), j = 1, • • • , v, F2v+i = R;o - /3,+i, j = 1, • • • , n - r, such that F. has 
opposite constant signs on the corresponding opposite two faces of I, s = 1, • • • , 
2v + n - r, then (17) has a solution ('A, 0, 11, w) E J for every I e I sufficiently 
small and system (28) has a cycle of the form (19). 

(vi) If system ( 29) has a solution 'Ao , 0o , 110 , wo , if the functions P iO , 

Q;o , R;o have continuous partial derivatives with respect to 'A1 , • • • , >-.., 
02, • • • , 0,, 111, • • • , 11n-r, win a neighborhood of ('Ao, 80, 110, wo) with Jacobian 
?"'0 at ('Ao , 0o , 110 , wo), then for all I e I sufficiently small system (17) has a solu
tion 'A, 0, 11, wand (28) has a cycle of the form (19). 

For v = 1, r = n, we may well take a1 = b1 = 1, and then a1(O) = 0, wo = 
u1(O) = 'Y1(O), P;1(O), p;2(0) 7" im wo, j = 2, • • ·, µ,, m = 0, ±1, · · ·, /3;(0) ?"' 
0, j = µ, + 1, • • • , n. In this situation there are only two functions P = Pi, 
Q = Q1 , and there is only one amplitude 'A = A1 , and one phase 0 = 01 , which 
must remain arbitrary. Finally (29) becomes 

(30) F1 = P(>-., w, e) = 0, F2 = w - eQ(>-., w, e) - 'Yr(e) = 0, 

with 

(31) P(>-.,w,0) = (T:\)- 1 1T frcoswtdt,Q('A,w,0) = (TA)- 11T frsinwtdt, 

with T = 21r/w, and where the arguments of j 1 are Aw -i sin wt, 0, • • • , 0, ;\ cos wt, 
0, • • • , 0, 0. For e = 0 the second equation is identically satisfied by w = w0 , 

and if w', w" are any two numbers w' < w0 < w" we certainly have F2 < 0 for 
w = w', F2 > 0 for w = w", e = 0. Then (as a corollary of the 2-dim. Brouwer 
fixed point theorem) we have, instead of (v), 

(vii) If v = 1, r = n, and we can find a pair A1 < 'A" such that P(A', wo, 0) 
< 0, P(>-.11, wo, O) > 0, then there is a solution (A, w) of (17), A1 < :\ < A", 
w' < w < w", for all I e I sufficiently small and system ( 28) has a cycle of the form 

(32) X1 = 'Aw sin (wt+ 0) + 0( e), x; = 0( e), j = 2, • • • , n, 0 arbitrary, 
w=wo+O(e). 

Note that F2(A, w, O) = w, oFdow = 1, oFdoA = 0. Hence (vi) reduces to 

(viii) If v = 1, r = n, if Ao is a root of the equation P('A, w0 , O) = 0, if 
P('A, w, O) has continuous first partial derivatives in a neighborhood of ('Ao, wo) 
and oP /a>-. >"' 0 there, then the Jacobian of system ( 30) is = oP /oA >"' 0, system 
( 17) has a solution ('A, w) for all I e I sufficiently small, and (28) has a cycle 
as in (vii). 
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Furthermore, the determination of P(A, w, 0) by means of (31) may be simpli
fied by the following remarks. If we put Z(z1, x~) = j 1(x1 , 0, • • • , 0, x~, 0, • • • , 
0, 0), g(x, x', e) = f(x, x', e) - Z(x 1 , x~) and we decompose 

Z(x1, x~) = Z1(x1, x~) + Z2(x1, x~) + Zix1, x~) + Z/x1 , x~) 

into its odd and even parts, say Z1 even in x1 and odd in x~, etc., we have 
g(x1, 0, • • • , 0, x~, 0, • • • , 0, 0) = 0, f(x, x', e) = g(x, x', e) + Z1(x1, x~) + 
Z2(x1, x~) + Za(x1, x~) + Z4(x1 , x~), and only Z1(x1, x~) has any bearing on 
P(}.., w, 0), i.e. 

T 

(33) P(A,w,0) = (TA)- 1 1 Z11(Aw-1sinwt, }..cos wt) coswtdt. 

In case Zn is a polynomial in X1, x~, i.e., Zn = I: ahkxihx?k-i, h 2'.: 0, k ~ 1, then 

(34) P(A 0) = T2" (2h) ! (2k) ! (~)2h+2k-2 
'w, ~ ahk h! kl (h + k)! 2cr1 

with wo = cr1 = cr1(0). If, for instance ao1 and the coefficient of maximal power 
of A in Zn are ( ~0) and of opposite signs, then certainly there is at least one 
root A of odd order for the equation P(A, wo) = 0. 

As an example one may well consider the system ( [7], [19]) 

xf + crix1 = e[Z1(x1, x~) + Z2(x1, x~) + Za(x1, x~) + Z4(X1, x~) + g(x, x', e)], 

"+2 '+ 2 f( ' ) • 2 Xj CijXj cTjXj = E j X, X , E , J = , • • • , µ, 

x; + f3;x; = efi(x, x', e), j = µ + 1, • • • , n, 
(35) 

with Z1' Z2' z. 'z4' gas above, with cr1(0) = Wo > 0, cr;(0) > 0, j = 2, ••• 'v, 
{3j(0) ~ 0,j = P + 1, • • • , n, and either a;(0) ~ 0, or ai(0) = 0, cr;(0) ~ mwo, 
m = 0, 1, 2, • • ·, j = 2, • • ·, µ. If we take Zn = (1 ...:... xi)x~ then, by (34), 
P = (½)(1 - A2/4cri) and (35) has a cycle of the form 

(36) x1 = Aw-1 sin (wt + 0) + 0(e), Xj = 0(e). j = 2, • • • , n, 

with}.. = 2cr1(0) + 0(e), w = cr1(0) + 0(e). For Z12 = Z13 = Z14 = g = 0, 
µ = n = 1, (35) reduces to the autonomous van der Pol equation xf + x1 = 
e(l - xi)x~. If we take Zn= (1 - xi - x?)x~, then P = (½)(1 - }..2/cri) and 
(35) has a cycle of the form (36) with>-. = cr1(0) + 0(e), w = cr1(0) + 0(e). 
If we take Zn = (1 - I x1 !)x~, then by using (33) we have P = (T>-.)-1 

J'(; (1 - Aw-1 I sin wt I) cos2 wt dt = (½) (1 - A/1rcr1) and (35) has a cycle (36) 
with A= 1rcr1(0) + 0(e), w = cr1(0) + 0(e). Note that no hypotheses are made 
on the functions !2, • • • , fn, Z2, Za, Z4, g, but the standard ones above and 
continuity as in §1. 

As another example we may consider the system 

x" + x - e(l - x2 - y2)x' = efi(x, Y, y') + eg1(x, x', Y, y')y, 

(37) "+ 2 (1 2 2) ' f ( ' ) + ( ' ') y y - E - x - y y = e 2 x, X , y eg2 x, x , Y, y x, 
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where J1( -x, y, y') = -J1(x, y, y'), h(x, x', -y) = h(x, x', y). By putting 
either x = x1 , y = X2 , or y = x1 , x = X2 , and applying the considerations 
above we find that (37) has two cycles ([16]) given by 

x = A sin (wt+ 8) + 0(E), y = 0(E), A = 2 + 0(E), w = l + 0(E), 

x = 0(E), y = A sin (wt+ 8) + 0(E), A = 2½ + 0(E), w = 2½ + 0(E). 

Both cycles are asymptotically orbitally stable. 
All theorems of the present section have been extended in [25] to the case 

where the second members of equations (28) are finite sums of functions of 
the type 

k 

Lf;.[x(t - As), x'(t - As), E] 
•-1 

where A1 , • • • , Ak :2: 0 are arbitrary numbers (lags). For instance the van der 
Pol equation with a small parameter E and a lag A, 

x"(t) + x(t) = E[l - x2 (t)]x'(t) + Ep[l - x2 (t - A)]x'(t - A), 

has a periodic solution similar to the one of the usual van der Pol equation 
(p = 0). 

§5. Systems presenting symmetries 

We shall now consider systems (16) with 0 ::;; J1 ::;; µ = r ::;; n, <Xj = 0, 
j = 1, • • • , µ, /3i = 0,j = µ + l, • • • , n. In other words, we consider systems 

xJ + IT}Xj = EJi(x, x', t, E), j = 1, • • • , µ, 

x; = EJiCx, x', t, E), j = µ + l, • • • , n, 
(38) 

with 1TiCO) aiw/bi, w > 0, ai, bi > 0 integers, j = 1, • • • , JI, 0 < ITj(0) ~ 
mw/bo, bo = b1b2 • • • b,, m = 0, l, 2, • • • , j = JI + 1, • • • , µ. Then we have 
2J1 + (m - µ) functions Pi, Qi, j = 1, • • • , J1, Rµ+J, j = 1, • • • , n - µ, and 
parameters A = (A1, ···,A,), 8 = (81, • • ·, 8,), 'Y/ = ('Y/1, • • ·, 'Y/n-µ), We 
suppose that, for some m, 0::;; m::;; v, and all u = (x1, • • • , Xm), v = (xm+l, • • • , 
Xµ), w = (xµ+1, • • • , Xn), we have 

Jiu, -v, w, -u', v', -t) = Ji(u,v,w,u',v',t), j = 1, • • • ,m, 

( 39) J ( ' ' ) J ( ' ' ) • + 1 ; u, -v, w, -u, v, -t = - i u, v, w, u, v, t , J = m , • • • , n. 

In other words, all Ji , j = 1, • • • , m, are even in the vector ( v, u', t), and all 
others Ji, j = m + 1, • • • , n, are odd in the same vector. Thus, for m = 0, all 
Ji are odd in the same vector. Under these hypotheses it was shown [7, 19] that, 
by taking 8; = 1r/2, j = 1, • • • , m, 8; = 0, j = m + 1, • • • , J1, all Pi, Ri are 
identically zero. Thus the determining system (17) reduces to only JI equations 

(40) aib .. ;1w - EQiCa, b, A, 'Y/, w, E) - ITi(E) = 0, j = 1, • • • , JI, 

in the v + (n - µ) unknown amplitudes A = (A1, • • • , A,), 'Y/ = (rJ1, • • • , 
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1/n-µ). Thus system ( 40) may present some degree of indetermination, and, in 
correspondence, (38) will have a family of periodic solutions of the form (de
duced from (19)): 

Xj = Aja11bjw cos aib-;1wt + 0(e), j = 1, • • • , m, 

(40) 
Xi = Aja11biw sin ajb-;1wt + 0( e), j = m + 1, • • • , v, 

X j = 0 ( e), j = V + 1, • • ' , µ, 

Xj = 1/j-µ + 0( e), j = µ + 1, • • ·, n. 

By division by e and limit as e - 0 equations ( 40) become 

(41) 

For Qio we have here, instead of (18), the expressions 

Qjo = (TAi)- 1 1T f/ ···)cos ai b-;1 wt dt, J = I, • • • , m, 

Qjo = (TAJ)-1 1r Ji(···) sin ai b-;1 wt dt, j = m + 1, • • ·, v, 

where the arguments of fi are the x; s given in ( 40) for e = 0, _j = 1, • • • , n, 
the corresponding derivatives x;, _j = 1, • • • , v, and t and e = 0. We give here 
only a statement corresponding to (iii) (see [19]): 

(ix) If system ( 41) has a solution Ao( 7/) for every 7/ in a compact set G, 
if for every 7/ in G the functions Qio have continuous first partial derivatives with 
respect to A1, • • • , A, with Jacobian ¢ 0, then for all I e I sufficiently small and 
all 7/ in G, equations (40) have a solution A(7J, e), and then system (38) has a 
family of periodic solutions (40) with A= A(7J, e) depending upon 7/ in G, for 
all \ e \ sufficiently small. 

Obviously under these conditions the Jacobian of order 2v + (n - µ) con
sidered in §3 is identically zero. A good example for (ix) is the third order equa
tion ([19]) 

(42) y'" + riy' = Ej(y, y', y", t, e) 

with f periodic in t of period T = 27r/w, w > 0, with f(y, -y', y", -t, e) = 
-f(y, y', y", t, e), o-(0) = aw/b, a, b > 0 integers. Then ( 42) has a one parameter 
family of periodic solutions of the form y = c 1awb-1o--2 cos a b-1wt + c2 + 0(e), 
c1 = c1 ( c2 , e), for all \ e I sufficiently small provided there is a solution c10 

c10(c2) of the equation H = 0 with 0H/oc1 ¢ 0 and 

H = (c1T)- 1 for J[y(t, 0 ), y'(t, 0), y" (t, 0), t, 0] sin ab- 1 wt dt. 

The autonomous case leads to analogous results. Nevertheless we mention 
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here only the following one which is an explicit existence theorem of families of 
periodic solutions ( [7], [19]). 

(x) Consider an autonomous. system 

x7 + u;xj = Ejj(X, x', E), j = 1, • • • , µ,, 
(43) 

x; = Ejj(x, x', E), j = µ, + l, • • • , n, 

where the functions f i, j = 1, • • • , n, are Lipschitzian in then + µ, variables 
x1, • • • , Xn , x~ , • • • , x; , and continuous in E, for [ x. [ :s;; R, s = 1, • • • , n, 
I x; [ :s;; R, s = 1, • • • , µ,, and I E I :s;; Eo. In addition suppose for !1 only, that 
f1(O, x2, • • • , Xn, 0, x~ , • • • , x;, E) = 0. Suppose that either allfj ,j = 1, • • • , n, 
areoddin(x1, ••• ,x,.),orfiisevenandf2, ••• ,fnareoddin(x2, ••• ,x,.,x~). 
Suppose u/E) > 0, j = 1, • • • , µ,, are continuous functions of E [or constants] 
and !Tj(O) ·~ m u1(O), m = 0, l, 2, • • • , j = 2, • • • , µ,. Put wo = u1(O) and let 
r2 < R. Then there exists an E1 , 0 < E1 :s;; Eo, such that for all real E, X1, 'Ill, • • • , 

"In-µ, I E I :s;; E1 , I X1 I, I '111 I, · · · , I "In-µ I :s;; r2, system ( 43) has a (real) cycle of 
the form 

x1(t, E) = X1w -l cos wt + 0( E), or x1(t, E) = X1w -l sin wt+ 0( E), 

(44) Xj(t, E) = O(E), j = 2, • • • , µ,, 

Xj(t, E) = 'llj-µ + O(E), j = µ, + l, • • • , n, 

where x1 is even ( or odd) in t, X2 , • • • , x,. are odd, x,.+1 , • • • , Xn and even, where 
w = w( E, X1, '111, • • • , "In-,.) is a continuous function of these parameters, and 
w = wo for E = 0. Also t can be replaced by t + 0, 0 arbitrary. Thus ( 43) has 
a (n - µ, + 2)-parameter family of cycles. 

As a first example we may consider the simple equation x" + x = Ef(x, x') 
with f(0, 0) = 0 and either f(x, -x') = f(x, x'), or f(-x, x') = -f(x, x'). 
This equation has a family of cycles of the form x = Xw -l cos ( wt + 0) + O ( E), 
or x = Xw-1 sin (wt+ 0) + O(E), with w = w(X, E) = 1 + O(E), X, 0 arbitrary, 
\ E I sufficiently small. We may take for instance, f = x + x2 + x12, or f = I x I + 
\ x' \, or f = \ x [x'. 

As another example we may consider the system 

x" + x = E(l - [ y \)x', y" + 2y = E(l 

which has two families of cycles respectively of the forms 

IX [)y' 

x = Xw-1 cos (wt+ 0) = O(E), y = O(E), w = w(X, E) = 1 + O(E) 

x = O(E), y = Xw-1 cos (wt + 0) + O(E), w = w(X, E) = 2½ + O(E) 

X, 0 arbitrary, I E I sufficiently small. 
As a further example let us consider the third order equation ([19]) 

(45) x"' + u2x' = Ef(x, x', x", E) 
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wheref(x, -x', x", e) -f(x, x', x", e). It is proved [19] that (45) has a family 
of cycles of the form 

with x(c1, Cz, e, -t) = x(c1, Cz, e, t), where o-t can be replaced by o-t + 0, c1 , 

c2, 0 are arbitrary, I c1 I,\ Cz I ~ r2 < R, and I e I is sufficiently small. Thus (45) 
has a 3-parameter family of cycles. 

§6. The linear case. Theorems of boundedness 

Let us consider linear differential systems of the form 

(46) x' = Ax+ eB(t)x, X = (x1, • • • , Xn), 

where e is a parameter, I e I small, A an n X n-constant matrix, B(t) an n X n 
matrix whose elements are periodic in t of period 21r/w, L-integrable in [O, T]. 
By Floquet's theory system ( 46) has a number of solutions of the form x = e'tp(t), 
for convenient numbers r ( characteristic exponents) and periodic vector func
tions p(t) of period T. A substitution x = e'tu with r indeterminate maps (46) 
into the system 

(47) u' = (A - rl)u + eB(t)u, u = (u1, • • • , Un), 

I the unit matrix, and thus the particular values of r for which ( 47) has a periodic 
solution u = p(t) of period Tare the characteristic exponents. If we apply the 
approach of §§1, 2, 3 to the determination of these periodic solutions u = p(t) 
of (47) (and corresponding values r), we have a natural process for the deter
mination of the solutions of the form e'tp(t) of (46) for I e j sufficiently small. 

Note that, if Y(t, e) is a fundamental system of solutions of (46), then the 
roots Pi, j = 1, • • • , n, of the equation det[Y(T, e) - pl] = 0 are the char
acteristic multipliers of ( 46) and the characteristic exponents r i , j = 1, • • • , n, 
are then determined up to multiples of wi by the relations Pi= e';T,j = 1, • • • , n. 
The n numbers Pi(O) coincide with the characteristic roots of the matrix eAt 
and the functions Pi( e) are continuous in e, even analytic with at most branch 
points algebraic in character [2]. If some p.(O) is a characteristic root of A of 
multiplicity k, then there is a group of exactly k multipliers p ;( e) approaching 
p,(O) as e - 0. The approach of §§1, 2, 3 applied to ( 47) makes it possible to 
determine these groups of multipliers, namely, matrices of order k can be given 
explicitly whose characteristic roots are the k multipliers Pi( e) ( I e j sufficiently 
small) [21, 23]. The present approach has led to the following theorem 
of boundedness under conditions of symmetry, which is similar in form and proof 
to (ix) and (x) (see [18]): 

(xi) Consider the linear real system 

(49) 
x7 + o-;xi = ef;(x, x', t, e), j = 1, • • • , µ, 

x; = ef ( x, x', t, e), j = µ + 1, • • • , n, 
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where all f;, j = 1, • • • , n, are linear functions of x1 , • • • , Xn, x~ , • • • , x;, 
with coefficients which are functions of t, periodic of period T = 21r / w, £-in
tegrable in [0, T] (and in absolute value~ K(t) for some fixed £-integrable func
tion K(t)). Suppose u > 0, ui ± uh ~ mw, j ~ h,j, h = 1, • • ·, µ, m = 0, 
± 1, • • • . Suppose that for some 0 ~ m ~ µ ~ n, and all u = (x1 , • • ·, x,,,), 
v = (Xm+i, ••• , Xµ), w = (Xµ+i, ••• , Xn), relations (39) hold. Then for all 
I E I sufficiently small all solutions of ( 49) are bounded in ( - ,x,, + ,x, ) . 

For n > µ no other proof is known of this statement besides the one given in 
18 by the present approach. However, the particular cases n = µ and n = µ + 1, 
could be proved independently. A very elementary proof for n = µ and n = µ + 1 
was given in [20]. (See also [4], §4.5.) For n = µ another proof has been given by 
V. A. Yacubovich by the use of properties of the matrix Y(T, E) already ob
served by A. Lyapunov. (See [23] for this type of elementary proof.) For n = µ 

system ( 49) can be written in the form 

(50) x" + Ax = EB(t)x + EC(t)x', x = (x1, • • • , Xn), 

A = diag ( ui , · • • , u!), and conditions ( xi) mean: 

(51) B(-t) = B(t), C(-t) = -C(t). 

Another theorem of the same nature was proved since 1940 in [6) by the same 
method, namely supposing, instead of (51), that 

(51*) B_1 (t) = B(t), C(t) == 0. 

Under these conditions system ( 50) is "canonic", and an improved form of the 
same statement has been recently reproved in the frame of the theory of canonic 
systems by J. Moser, and by properties of the matrix Y(T, E) by V. A. Yacu
bovich. 

The results above have the following interpretation. Let us consider an 
auxiliary wE-plane. For every pair (w, E), i.e., point of the wE-plane, we may ask 
whether system (50) has solutions x(t) all bounded in (-,x,, +oo), or not. 
Accordingly, as the former or the latter occurs, we may divide the wE-plane into 
zones, which usually are called of stability or instability respectively. Note that 
fol"w > 0, E = 0 the solutions of (50) are all bounded in ( - ,x,, + ,x,) but it 
may occur that points (w, 0) are on the boundary of zones of instability, and then 
the corresponding frequencies ware called critical. The results above assure that 
for system (50) with B even and Codd, or B symmetric and C == 0, at most the 
frequencies w = 2a'jjm, or w = (ui ± uh)/m, m = 1, 2, • • • , may be critical. 
For systems ( 50) with n = 1 the same holds under no condition on B or C ( [8]). 

For instance, the system 

x" + u2x = EY cost + EZ cos 2t 

y' = EX sin t + EZ sin 2t 

z' = EX sin 2t - EY sin t 
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with CT ;;z,f m, m = l, 2, · · · , has solutions all bounded in ( - co, +co) for all 
I e I sufficiently small because of (xi) with n = 3, µ = l, m = l. The system 

x" + CTiX = EX cos t + ey cos 2t + ey' sin t 

y + <T:Y = ex cos 3t + ey cos t + ex' sin 2t 

with CT1 , CT2 > 0, 2<T1, 2<T2, I CT1 + CT2 I ;;z,f m, m = l, 2, • • • , has solutions all 
bounded in ( - co, +co) for I e I sufficiently small because of (xi) with n = 2, 
µ = m = 2. The same holds for the system 

x" + <Tix = EX sin 2t + ey cos t 

y" + <T:Y = EX cos t - ey cos t 

with CT1, CT2 as above, because of (51*). The same holds for the second order 
equation 

x" + ix = ex sin t + ex' (sin t + cost), 

with 2<T ;;z,f m, m = 1, 2, • • • , because of [8]. 
The independent research mentioned above (J. Moser, V. A. Yacubovich, and 

also M. G. Krein, I. M. Gelfand and V. B. Lidsky) have reduced the set of pos
sible critical points. For instance the points (<Ti - <Th)/m are not critical under 
conditions (51) or (51*). 

The study of single frequencies w for a given system to establish whether they 
are critical or not has been initiated in [21] by the present approach and by the 
authors mentioned above by canonical systems or Lyapunov's arguments (see 
[23] for a summary of results). Other results by the present approach have been 
anouncned ( [24]). 

For systems ( 50) when n > 1 and no symmetry prevails the situation is quite 
different as it was proved since 1940 in [6] by the present approach as well as 
later in [11]. Then every frequency is likely to be critical. Namely, in [11] suffi
cient conditions for this occurrence are proved by the present approach for 
given systems (50). In other words, if the numbers <Tj are known, as well the 
matrices B(t), C(t), i.e., the coefficients of the Fourier series of their elements, 
and e, w are considered as parameters, then a frequency w is not critical, or criti
cal, according as a certain infinite set of expressions M, N, · • · , are all zero, or at 
least one is ;;z,fO [11]. For instance, for the system 

every frequency w is critical in the sense that every point (w, 0) is point of ac
cumulation of points (w', e) for which the same system has unbounded solutions 
in (0, +co). The general result just mentioned is similar to a weaker one of 
V. A. Yacubovich who proved that, for all given CT1, • • • , <Tn, wit is possible to 
choose matrices B(t), C(t) in such a way that the solutions of (50) are not all 
bounded in ( - co, co ) for I e I ;;z,f O sufficiently small. 
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§7. Stability of periodic solutions of nonlinear systems 

Given a periodic solution x = X ( t) of period T = 2rr / w of a periodic or 
autonomous system x' = f(x, t), x = (x1 , • • • , xn), then the stability ofX(t) is 
related to the characteristic exponents of the linear variational system with 
periodic coefficients 

(52) y' = H(t)y, H(t) = of /ox lx-X(t) • 

If f(x, t) is actually periodic in t of period T (not constant) and all character
istic exponents of (52) have negative real parts, then x = X(t) is asymptotically 
stable. If f is independent of t, then one of the characteristic exponents is zero 
( =c0 mod wi), and, if all remaining n - l ones have real parts negative then 
x = X(t) is asymptotically orbitally stable (A. Lyapunov). If f(x, t) = 

Ax+ 1:g(x, t, 1:), where 1: is a small parameter, then the same parameter appears 
in ( 52) and the results mentioned in §6 and others obtained by the same present 
approach can be applied. 

In [3] periodic systems (16) are considered with v = µ = n. This is actually 
the most difficult case (for n > 1) since then the characteristic exponents form a 
unique group of n elements as explained in the first lines of §6. In [3], by using 
the present approach, explicit expressions are given of the elements of the ma
trix of order 2n whose characteristic roots are the characteristic exponents for 
I 1: I small. The results have been applied, for instance, to the system of two 
van der Pol-type equations 

x" + x = 1:(A - By 2)x' + p cost 

y" + y = 1:(C - Dx2)y' + qcos2t 

(i.e., system (23) with £T1 = £T2 = 1, and a1 = b1 = a2 = b2 = 1). 
In general the grouping of the characteristic multipliers ( §6) is not so bad, and 

in this most usual situation explicit results have been obtained straightforwardly 
by the present approach in [22]. We mention here only the following two state
ments, of which in [23] an idea of the proof is given. 

(xii) Let us consider a periodic system (16) withµ= n, aj = O,j = 1, • • • , 
µ, v = l, functionsh of class C', and corresponding periodic solution x = xo(t, 1:) 

given by (19), I 1: I sufficiently small. Then £T1 = a1b11w, To = 2rrbi/(a1w)). Sup
pose 2£Tj ~ mw, \ O"j ± £Th\ ~ mw, j ~ h, j, h = 2, • • • , v, m = l, 2, • • • . Then 
(19) is asymptotically stable as t---'> + oo providedAj < 0, B > 0, j = 1, 2, • • ·, 
and A1 ~ B, Ai~ B, where 

Aj = 1To fi:,,; [xo(t, 0), x~(t, 0), t, 0] dt, j = 1, 2, · • ·, v, 

B = (2T£Ti)-1 [£Ti Ai + C2 - D2 - E 2], 

Tc 1To 

D = 1 f 1x1 cos 20"1 t dt - 0"1 
0 

fi:,,i sin 2£T1 t dt, 

E= 1To 1To 

f 1x 1 sin 2£T1 t dt + £T1 fix' cos 20"1 t dt. 
0 0 1 
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Except for the condition A1 r"-B, Ai r"-B this generalizes a result of L. Mandel
stan and N. Papalexi. This is also a corollary of the result of [3] for n = 1. 

(xiii) Let us consider an autonomous system (28) with v = 1, r = n, 
ai(0) = 0, J = 1, • • ·, v, functionsf; of class C', and corresponding cycle (32), 
I e I sufficiently small. (Then a1 = b1 = 1, 0-1 = o-1 ( 0) = wo , T = 21r / wo). Suppose 
2o-; r"- mwo, Io-; ± <Th I r"-mwo, J r"- h, J·, h = 2, • • • , v, m = I, 2, • • • . Then 
(32) is asymptotically orbitally stable as t-+ + oo provided 

T 

Ai = 1 f;x'. [xo(t, 0), x~(t, 0), 0] dt < 0, J = 1, 2, • • ·, v. 
0 ' 
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