
PIECEWISE CONTINUOUS DIFFERENTIAL EQUATIONS* 

BY JOHANNES ANDRE AND PETER SEIBERT 

1. Introduction 

Certain problems in the theory of automatic control systems gave rise to the 
investigation of differential equations with piecewise continuous right-hand 
sides. Special cases have previously been studied from various points of view, 
e.g., by Bilharz, Bushaw, Fliigge-Lotz and the authors1. The present paper 
gives a brief survey of the local properties of the solutions and of the phenomenon 
called "after-endpoint motion" occurring in systems with retardation. A more 
detailed exposition of the subject will appear in the "Contributions to the Theory 
of Nonlinear Oscillations", volume V, edited by S. Lefschetz. 

2. The system under consideration 

The systems studied in this paper are of the type 

(S) :ii: = dx/dt = f(x, sgn s(x)) 

where x = (x1 , • • • , Xn) is an n-dimensional vector depending on t and sgn 
s = s/\ s \ for s 'iF-0 (sgn O is undefined). We assume: 

(i) f±(x) = f(x, ±1) and s(x) are of the types C1 and C2 respectively, 
(ii) s(x) and grad s(x) do not vanish simultaneously at any point of the 

space R". 
The right-hand side of (S) is discontinuous along the (smooth) hyper-surface 

S = {x\ s(x) = O} 

of Rn, called the switching space of (S). Furthermore, we denote 

D± = {x\ s(x) z O}. 

3. Concept of solutions of (S) 

In order to define solutions of (S) we consider, together with (S), the pair of 
systems. 

* This research was partially supported by the United States Air Force through the 
Air Force Office of Scientific Research of the Air Research and Development Command 
under Contract Number AF 49(638)-382. Reproduction in whole or in part is permitted for 
any purpose of the United States Government. 

1 H. Bilharz, Z. angew. Math. Mech. 22, 206-215 (1942), D. Bushaw, Contributions to the 
theory of nonlinear oscillations, IV, Princeton 1958; I. Flugge-Lotz, Discontinuous auto­
matic control, Princeton 1953; J. Andre and P. Seibert, Archiv d. Math. 7, 148-156, 157-165 
(1956), Comptes Rend us 245, 625-627 (1957). 
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DEFINITION.2 A continuous vector function x(t) is called a solution of (S) if 
the two following conditions hold: 

(I) x(t) satisfies (S±) in D± resp., 
(II) x(t) has only isolated points in S. 

(By condition (II), in particular, curves completely contained in Sare excluded 
as solutions.) 

Due to the usual existence and uniqueness theorems for differential equations, 
there exists exactly one solution through every point outside S. For points of S 
( which will be called switching points), however, this is not necessarily the case. 

4. Types of switching points 

A rough classification3 of the switching points with respect to the local topo­
logical behavior of the solutions of (S) yields three principal types. 

Denote by r(t, u) [u E S] the solution of (S±) with the initial point u (i.e., 
x±(o, u) = u). Then the following cases may occur4: 

x + (t, u) E D± for t ~ 0, 
(a) 

for t ~ 0, 

or vice versa. In this case u is called a tranS?.:tion point. Through every such point 
there exists exactly one solution of (S), [as in the case of a point outside S]. 

x + (t, u) E n± for t ~ 0, 
(b) 

for t ,; 0. 

Here u is called a starting point: Two solutions "start" at u, i.e., they are defined 
fort 2:: 0 but not fort < 0. No solution starting outside u can ever reach u. 

for t ,; 0, 
(c) 

for t ~ 0. 

In this case u is called an endpoint. At every such point two solutions "end", 
i.e., they are defined for t ~ 0 but not for t > 0. 

All switching points u at which neither x + (t, u) nor x -(t, u) is tangent to S 
and which are not critical points for (S+) or (S-), are called normal, all others 
exceptional. Clearly, every normal point belongs to one of the classes (a), (b), 
( c). In general, the exceptional points form a set of measure O with respect to 
S. Among them two cases are of particular interest: 

(d) Bifurcation points. One of the curves through u, e.g., x-(t, u), is tan-

2 An alternative definition was given by Solncev, Moscow. Gos. Univ. Ucenye Zapaki, 
148, Mat. 4, 144--180 (1951). 

3 The first classification of this kind was given by Solncev, loc. cit. 
4 The following formulas are to be understood for sufficiently small \t\. 
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gent to Sat u and contained inn- (near u) while the other lies inn+ for small 
t > 0. Then, apparently, at u a half trajectory \x-(t, u) Jt < 0} splits up into 
the two half trajectories l x± ( t, u) It > 0} . 

(e) Fusion points. Here the situation is the same as in case (d) but with 
reversed orientation of the trajectories, so that two negative half trajectories 
have a common continuation. 

5. Systems with retardation (switching delay) 

In physical systems there is usually a switching delay or retardation, i.e., the 
jump from x± to x=i= takes place a short time after the trajectory passes through 
S rather than at the precise moment of transition. 

To formulate this effect quantitatively we consider a given open set ~ con­
taining S. We split the boundary a~ of~ into the two sets 

a±~= a~ n n±. 

On every continuous curve x( t) defined in a closed interval I = [0, T] or [0, oo) 
and satisfying condition (II) of §3, we define a piecewise constant function e(t) 
uniquely by the conditions: 

(A) e(t) = ±1, 
(B) e(0) = lim sgn s(x(t)) 

t-+o 
( C) e( t) changes sign at points t' at which x( t) leaves~ through a+~ [a-~], 

provided that lim e(t) = -1 [+l]. Everywhere except at these points it re-
t-t '-0 

mains constant. 
To every system (S) and set~ we associate the collection of continuous curves 

x(t) satisfying condition (II) of §3 and the following: 
(I*) For every tat which e(t) is continuous and = ±1 the function x(t) 

satisfies (S±). 
The collection of all these curves x(t) will be denoted by (S, ~) and we call 

every x(t) a solution of (S, ~). For the system (S, ~) the following existence 
theorem holds: 

Given any point Xo E Rn there exists a solution of (S, ~) with initial point Xo 

which is defined for all t ~ 0. 

6. After-endpoint motions 

The most significant effect of retardation takes place around the domain of 
endpoints which we denote by E(CS). When a trajectory of (S, ~) reaches an 
endpoint of (S) the motion, instead of becoming undefined as in the case of the 
"ideal" system (S), performs oscillations of high frequency (known to engineers 
under the name of "chattering") around the switching space, the so-called 
after-endpoint motion. 

Since every endpoint u is reached by exactly two motions of (S) ( vid. §4 ( c)), 
there exist two after-endpoint motions with u as initial point which we denote 
by x_(t, u) and x+Ct, u) respectively (vid. §3). 
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We now give an approximate representation of the after-endpoint motions 
for the case that ~ is a narrow zone around S. Consider a compact set U, con­
tained in the interior of E, and assume that for some r > 0 every trajectory 
x±(t, v) with v E U leaves ~ at a time t E (O, r]. 

Then for every u E U there exists a curve x* ( t, u), contained in S, such that 

x±(t, u) = x*(t, u) + 0( r) 

holds for all t for which x* ( t, u) E U. ( 0 is the usual Landau-symbol applied 
to every component.) Moreover, x* satisfies the fallowing system of differential 
equations: 

x = P(x)f+(x) [=P(x)t(x)] 

(S*) t+ f+(x) grad s(x) + 
= (x) - (f+(x) - f-(x)) grad s(x) (f (x) - t(x)). 

The operator P(x) can be interpreted geometrically as a projection of the Rn 
into the tangential hyperplane of S at the point x in the direction of 

7. Infinitesimal retardation 

Consider a sequence {~.} of sets containing the switching space S and a se­
quence of numbers { r,} tending to zero such that any solution of (S±) starting 
on S will have left ~. by the time r, . Therefore, obviously 2:, - S. Then every 
sequence {x(t, Xo; 2:,)} of solutions of (S, 2:,) with a common initial point Xo 
tends to a limiting curve x*(t, Xo) for v - oo. The collection of all these limiting 
curves is called the system with infinitesimal retardation (S*) associated to (S). 
The restrictions of this system to the sets Rn - E and E coincide with those of (S) 
and (S*) respectively. 

In particular, every curve x* n Eis the common continuation of uncountably 
many solutions of (S). 

Remark. In the case of a system with constant time-lag r, defined by 

x(t) = f(x(t), sgn s(x(t - r))), 

the after-endpoint motions tend to the same curves x* for r - 0 ( vid. Andre­
Seibert loc. cit.) as in the case considered here. 

MATHEMATISCHES lNSTITUT, TECHNISCHE HocHSCHULE, BRAUNSCHWEIG 

RIAS, BALTIMORE, MARYLAND 




